NORTHWEST ATLANTIC FISHERIES ORGANIZATION

Scientific Council Reports 1987

Dartmouth, Canada

December 1987

PREFACE

This eighth issue of NAFO Scientific Council Reports contains the approved reports of . three meetings that were held during the calendar year 1987: (A) Scientific Meeting during 28 January-2 February 1987; (B) Scientific Meeting during 3-17 June 1987; and (C) Annual Meeting during 9-18 September 1987. Part D of this volume contains the agenda, list of research and summary documents, list of participants, and list of recommendations and proposals relevant to the three meetings.

The NAFO Scientific Council Reports series was initiated with the first issue in December 1980. It replaced ICNAF Redbook series which terminated with the last issue in 1979.

[^0]V. M. Hodder

Assistant Executive Secretary

CONTENTS

CONTENTS

Page
PART A. Report of Scientific Council, January 1987 Meeting 5
App. I. Report of Standing Committee on Fishery Science (STACFIS) 11
PART B. Report of Scientific Council, June 1987 Meeting 21
App. I. Report of Standing Committee on Fishery Science (STACFIS) 33
App. It. Report of Standing Committee on Research Coordination (STACREC) 87
App. Ill. Report of Standing Committee on Publications (STACPUB) 93
PART C. Report of Scientific Council, Annual Meeting, September 1987 97
App. I. Report of Standing Committee on Fishery Science (STACFIS) 103
App. II. Report of Standing Committee on Research Coordination (STACREC) 109
App. 111. Report of Standing Committee on Publications (STACPUB) 113
App. IV. Decision of the Fisheries Commission on Establishment of an Annual Scientific Program $i 15$
PART D. Miscellaneous 117
I. Agenda for Scientific Council Meetings, 1987 119
11. List of Research and Summary Documents, 1987 127
IfI. List of Participants in Scientific Council Meetings, 1987 133
IV. List of Recommendations and Proposals, 1987 135

PART A

REPORT OF SCIENTIFIC COUNCIL

January 1987 Meeting

CONTENTS

Page
I. Fisheries Science (App. 1) 7

1. Assessment of Shrimp Stock in Subareas 0 and 1 7
2. Assessment of Shrimp Stock in Denmark Strait 8
3. Other Fishery Science Matters 8
II. Other Matters 9
4. Question of Need for Future Meetings on Shrimp 9
Ill Adjournment 9
Appendix I. Report of Standing Committee on Fishery Science (STACFIS) 11
5. Assessment of Shrimp Stock in Davis Strait (Subareas 0 and 1) 11
6. Fishery Trends 11
7. Input Data 12
8. Prognoses 14
9. Greenland Shrimp Fishery North of $70^{\circ} 52.5^{\prime} \mathrm{N}$ (Div. |A) 15
10. Future Research Requirements 15
II. Assessment of Shrimp Stock in Denmark Strait 15
11. Fishery Trends 15
12. Input Data 16
13. Environmental Considerations 18
14. Prognoses 19
15. Future Research Requirements 19
16. Other Matters 19
17. Proposal for a Working Group on Ageing Shrimp 19
18. Response to Canadian Request for Analysis of Research Activities in Subareas 0 and 1 19
19. Acknowledgements 20

Chairman: J. Messtorff

Rapporteur: V. M. Hodder

The Scientific Council met at the Greenland Fisheries and Environmental Research Institute, Copenhagen, Denmark, during 28 January-02 February 1987, to consider matters that were deferred from the June 1986 Meeting, namely, the provision of advice on the status of the shrimp stocks in Subareas 0 and 1 and on the scientific basis for their management in 1987, as requested by Canada and by Denmark (Greenland), and also the shrimp stock in Denmark Strait as requested by Denmark (Greenland). The Council also agreed to deal with the Canadian request for an analysis of the research activity that is necessary to allow estimation of total biomass, distribution of biomass between subareas, and target levels for removals in Subareas 0 and 1. Representatives attended from Canada, Denmark (Greenland), European Economic Community (EEC), Iceland and Norway. The participants were welcomed to the Institute by Sv. Aa. Horsted (Director).

The stock assessments were undertaken by the Standing Committee on Fishery Science (STACFIS), whose report, as approved by the Council at this meeting, is at Appendix l. The agenda, the list of relevant documents and the list of participants are given in Part D (this volume). A brief summary of the Committee's report and other matters considered by the Council are given below.

I. FISHERIES SCIENCE (APP. I)

1. Assessment of Shrimp Stock in Subareas 0 and 1

In 1979 and 1980, the offshore shrimp fishery in Davis Strait was regulated by an overall TAC (total allowable catch) of 29,500 (metric) tons, and the nominal catches were 27,000 and 37,000 tons respectively (Table 1). The same TAC was advised for each year of 1981-84, but the coastal states set overall TACs of $35,000,34,800,34,625$ and 34,925 tons respectively. The advised and effective TACs of 36,000 and 42,100 tons respectively were the same for 1985 and 1986. Provisional statistics for 1985 and 1986 indicate overall offshore catches of 43,600 and 44,600 tons respectively. These nominal catches do not include 4,300 and 11,000 tons of shrimp in 1985 and 1986 respectively from a trial fishery by Greenland trawlers north of $71^{\circ} \mathrm{N}$, which was considered to be outside the fishing areas for which previous TAC advice had been given.

Table 1. Nominal catches (tons) of shrimp in Subarea 0 and the offshore grounds in Subarea 1 (south of $71^{\circ} \mathrm{N}$, with advised and effective TACs for 1977-86.

	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
Catch	34,500	26,869	27,087	36,652	37,300	36,827	39,267	35,883	43,618	44,584 ${ }^{1}$
Advised TAC Effective TAC ${ }^{2}$	40,000 36,000	40,000 40,000	29,500 29,500	29,500 29,500	29,500 $35,000^{3}$	29,500 $34,800^{3}$	29,500 34,625	$\begin{aligned} & 29,500 \\ & 34,925^{3} \end{aligned}$	$\begin{aligned} & 36,000 \\ & 42,120^{4} \end{aligned}$	$\begin{aligned} & 36,000 \\ & 42,120^{4} \end{aligned}$

1 Provisional data.
${ }^{2}$ Total of coastal states' TACs. 4 Includes TAC of 6,120 tons for Subarea 0.
The shrimp fisheries in 1985 and 1986 were not hampered by ice to the same extent as in 1982-84, and the fishing grounds were generally open to the fishery at the beginning of the year. Greenland vessels, which comprise the largest component of the fishery, operated in Div, 18, 1C and 10 throughout 1985 and 1986, with fishing effort being more widely distributed in these divisions than in earlier years.

Catch rates declined during 1976-78 but they generally showed an increasing trend during 1977-86. Abundance indices, based on photographic surveys, showed relative stability in recent years to 1985. Unfortunately, the survey was not carried out in 1986. It is believed, however, that the increasing trend in catch rates may be strongly influenced by advanced gear technology since 1980 and particularly by the use of larger trawls during the last $2-3$ years. Until the effects of these changes can be quantified, further use of commercial catch rates as an index of stock abundance is unacceptable.

A TAC of 40,000 tons was advised for 1977 and 1978. The TAC was reduced by about 26% to 29,500 tons for 1979, in recognition of a perceived decrease in abundance from 1976 to 1978. An increase in TAC was not advised for 1979-84 because of the difficulty in interpretating the catch-rate series and of the concern about recruitment prospects for the stock. Despite the continuing uncertainty about recruitment, catch rates have not decreased. Because of the apparent stability of
the stock, with higher-than-average yields during this period of stability, the Council, at its meeting in January 1985, advised that the overall TAC for Subarea 0 and the offshore grounds of Subarea 1 in 1985 should not exceed 36,000 tons, which corresponds to the average catch during 1979-84. The stability of the stock was again evident from the survey data and commercial catch rates in 1985, and the Council, at its meeting in January 1986, advised that the overall TAC for 1986 should be set at the same level as advised for 1985 (i.e. 36,000 tons). With the lack of survey data for 1986 and the unacceptable nature of the catch-rate data as an index of stock abundance, the Council has no basis to advise a change in the TAC for 1987 from the previously-advised level of 36,000 tons.

The Council endorsed the recommendations of STACFIS concerning future research requirements in Subareas 0 and 1.
2. Assessment of Shrimp Stock in Denmark Strait

The shrimp fishery in this region expanded rapidly from 1978 to 1980. Total catches on both sides of the midline between Greenland and Iceland declined sharply from about 8,300 tons in 1980 to 4,800 tons in 1981 (Table 2), when the fishery west of the midline was regulated by an effective TAC of 8,000 tons, which was set by the EEC. During 1982-85, when the effective TACs on the western side of the midline (set by the EEC) were $4,500,5,725,5,245$ and 6,090 tons respectively, the nominal catches in Denmark Strait increased from 4,900, to 8,100 tons. In 1986, an effective TAC of 7,225 tons was set by Denmark (Greenland), but the nominal catch in the region as a whole was approximately 10,800 tons.

Table 2. Nominal catches (tons) of shrimp in Denmark Strait in 1978-86, with advised and effective TACs for 1981-86.

| | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Catch | 363 | 1,285 | 8,260 | 4,792 | 4,902 | 4,175 | 6,731 | 8,100 | $10,815^{1}$ |
| Advised TAC | - | - | - | - | 4,200 | 4,200 | 4,200 | 5,000 | 6,000 |
| Effective TAC^{2} | - | - | - | 8,000 | 4,500 | 5,725 | 5,245 | 6,090 | 7,225 |

[^1]As in 1984 and 1985, the 1986 fishery took place in the area of Strede Bank and Dohrn Bank and on the slopes of Storfjord Deep. Due to favourable ice conditions, the fishery was more widespread in 1985 and 1986 than in earlier years. Catch rates for the March-May period declined during 1978-80 but have remained relatively stable since then to 1985 . The stock has sustained catches averaging about 6,000 tons annually since 1980 without an apparent decline in commercial catch rate or a decrease in the size range of shrimp. The following scenarios were implied from these observations at the January 1986 Meeting: (i) the shrimp fishery began at a time when the stock was expanding and the catches since 1980 have approximated the surplus production, implying a TAC of 6,000 tons for 1986; and (i) the stock was at a maximum equilibrium level in the late 1970^{\prime} s and accumulated catches since then have not had a significant impact on stock abundance, implying that a TAC of 6,000 tons for 1986 was conservative.

New information at the present meeting indicated conflicting trends in catch rates of different fishing fleets. In view of the variation which is believed to exist among these fleets relevant to increased efficiency of fishing, the Council could not fully evaluate the catch-rate data, particularly in relation to the previous scenarios. Data from research-vessel surveys in 1985 and 1986 indicated that recent catches have not adversely affected the stock, but the available data were not sufficient to allow the Council to advise a precise TAC for 1987 in this region.

The Council endorsed the recommendations of STACFIS concerning future research requirements in Denmark Strait, particularly with reference to the need for environmental studies.
3. Other Fishery Science Matters
a) Proposal for further work on ageing of shrimp

The Council agreed with the proposal of STACFIS that some shrimp experts should meet sometime during 1987 to analyze the West Greenland shrimp samples and that a working group on shrimp ageing should be convened at the June 1988 Meeting to consider these analyses and any other contributions on ageing of shrimp.
b) Canadian request for analysis of research activities

With regard to the Canadian request for analysis of research activities that would be required to allow (i) estimation of total biomass in Subareas 0 and 1 , (i i) estimation of dis-
tribution of that biomass between Subareas 0 and 1 , and (iii) provision of advice on target levels for removals, the Council agreed that an extensive stratified-random trawl survey of all shrimp grounds in the entire region would be necessary. Such a survey could best be undertaken during June-July and would require approximately 50 days at sea. However, advice on target levels for removals (ili above) would not be forthcoming until several years of trawl-survey data become available.

II. OTHER MATTERS

1. Question of Need for Future Special Meetings on Shrimp

Some representatives doubted the need for continuation of a special meeting in January to assess the shrimp stocks, because it has not been possible to provide realistic advice on the TACs due to the difficulties of interpreting the abundance indices from the commerclal fishery and the photographic surveys and to the absence of an adequate time series of trawl surveys. However, the Council was informed that the results of discussions at the January meeting form the basis for Greenland authorities to establish the TACs for the ensuing year. The Council agreed to discuss this matter further at its meeting in June 1987, when representatives from more Contracting Parties will be present.

l!l. ADJOURNMENT

On behalf of the Scientific Council, the Chairman expressed his gratitude to the Director and Staff of the Greenland Fisheries and Environmental Research Institute for the excellent meeting facilities and hospitable atmosphere. He also thanked the Chairman of STACFIS and all other participants for their cooperation and support during the course of the meeting and acknowledged the assistance of the NAFO Secretariat and those of the Institute Staff who assisted the Secretariat. The meeting adjourned at 1830 hr on 02 February 1987.

The Committee met at the Greenland Fisheries and Environmental Research Institute, Copenhagen, Denmark, during 28 January-02 February 1987 to review the status of the shrimp stocks in Subareas 0 and 1, as referred to it by the Scientific Council, based on the specific requests of Canada and Denmark (Greenland). Furthermore, the Committee addressed the addendum to the Canadian request concerning an analysis of research activities that are necessary to allow estimation of total biomass, distribution of biomass between the two subareas, and advice on target levels for removals. At the request of Denmark (Greenland), the Committee also reviewed the status of the shrimp stock in Denmark Strait. Scientists attended from Canada, Denmark (Greenland), EEC, Iceland and Norway.

1. ASSESSMENT OF SHRIMP STOCK IN DAVIS STRAIT (SUBAREAS 0 AND 1)

1. Fishery Trends (SCR Doc. $87 / 1,8$)

The nominal catch of shrimp in the offshore areas of Subareas 0 and 1 increased from less than 1,000 tons before 1972 to almost 43,000 tons in 1976, decreased to 27,000 tons in 1978 and 1979 , and increased to an average of about 37,000 tons annually in 1981-84 (Table 1). Preliminary statistics for 1985 and 1986 indicate total offshore catches of about 43,600 and 44,600 tons respectively in the region south of $71^{\circ} \mathrm{N}$. In addition, the experimental fishery north of $71^{\circ} \mathrm{N}$ yielded about 4,300 and 11,000 tons in 1985 and 1986 respectively. This northern area is considered to be outside the fishing area for which TAC advice had been given previously. The West Greenland inshore fishery has been relatively stable with estimated catches of $7,000-8,000$ tons annually since 1972 (except 10,000 tons in 1974).

Table 1. Nominal catches and TACs (metric tons) of shrimp (Pandalus borealis) in Subareas 0 and $1,1977-86$.

		1977	1978	1979	1980	1981	1982	1983	1984	$1985{ }^{1}$	$1986{ }^{1}$
SA 0	Canada	-	-	-	59	1,590	858	2,030	448	206	126
	Denmark	68	86	67	-	1,923	946	2,627	526	151	1,208
	Faroes	239	-	115	-	1,686	-	756	730	-	530
	France	-	21	7	-		-	-	436	-	-
	Greenland	-	-	149	815	85	8	-	2	2,696	1,131
	Norway	150	15	791	-	-	\sim	-	-	-	-
	Total	457	122	1,129	874	5,284	1,812	5,413	2,142	3,053	2,995
SA 1	Canada	-	-	245	590	-	-	-	-	-	-
	Denmark	5,842	3,382	1,327	872	995	959	451	397	426	572
	Faroes	12,612	8,070	6,867	3,554	1,234	530	1,583	360	581	481
	France	924	805	353	247	535	672	408	404	431	535
	Fed. Rep. of Germany	31	-	-	-	-	-	-	-	-	-
	Greenland (N of $71^{\circ} \mathrm{N}$)	-	- ${ }^{-}$	-	-	-5	7, ${ }^{-}$	7,50-	7 ${ }^{-}$	4,349	11,045
	Greenland (S of $71^{\circ} \mathrm{N}$) (I) ${ }^{2}$	7,800	7,600	7,500	7,500	7,500	7,500	7,500	7,500	7,500	7,500
	Greenland (S of $71{ }^{\circ} \mathrm{N}$) (0) ${ }^{2}$	7,081	5,531	12,527	27,501	28,197	32,016	30,929	32,129	38,674	39,537
	Norway .	7,353	8,959	4,639	3,014	1,055	838	483	451	453	464
	Total	41,643	34,347	33,458	43,278	39,516	42,515	41,354	41,241	52,414	60,134
	Offshore (S of $71{ }^{\circ} \mathrm{N}$)	33,843	26,747	25,958	35,778	32,016	35,015	33,854	33,741	40,565	41,589
SA $0+1$	Offshore Catch (S of $71{ }^{\circ} \mathrm{N}$)	34,300	26,869	27,087	36,652	37,300	36,827	39,267	35,883	43,618	44,584
SA $0+1$	Advised Offshore tac	40,000	40,000	29,500	29,500	29,500	29,500	29,500	29,500	36,000	36,000
SA $0+1$	Effective Offshore TAC	36,000	40,000	29,500	29,500	$35,000^{3}$	$34,800^{3}$	34,625 ${ }^{3}$	$34,925{ }^{3}$	$42,120^{4}$	42,120 ${ }^{4}$

1 Provisional data.	3	Includes TAC of 5,000 tons in Subarea 0.
2 I $=$ Inshore; $0=0$ fishore.	4 Includes TAC of 6,120 tons in Subarea 0.	

3 Includes TAC of 5,000 tons in Subarea 0.
4 Includes TAC of 6,120 tons in Subarea 0.

The offshore fishery has been regulated by TAC since 1977. Advised TACs by the Scientific Council were 40,000 tons for 1977 and $1978,29,500$ tons annually for the $1979-84$ period, and 36,000 tons for. 1985 and 1986. Both effective TACs and nominal catches were below or at the advised TAC level in 1977-79, but they have since been substantially higher. Since 1981, Canada and the EEC (Greenland Home Rule Authorities since 1986) have set separate TACs for Subareas 0 and 1 respectively. The effective TAC for Subarea 0 was 5,000 tons annually during 1981-84 and 6,120 tons for 1985 and 1986, whereas effective TACs in Subarea 1 were in the range of 29,625-30,000 tons in $1981-84$ and 36,000 tons in 1985 and 1986.

Ice conditions in the spring months of 1982,1983 and 1984 severely hampered access to the main fishing grounds in Davis Strait, but the 1985 and 1986 situations were more similar to conditions
in earlier years when fishing grounds in the southern part of Div. 18 were open to the fishery from the beginning of the year. Greenland vessels fished in Div. $1 C$ and 10 and on the southern grounds in Div. 1B throughout the year both in 1985 and 1986, with more effort being expended in these areas than in earlier years. In 1986, the northern grounds in Div. 18 and the southern grounds in Div. 1A were fished throughout the year. Also, Greenland vessels fished in Div. 1A north of $70^{\circ} 52^{1} \mathrm{~N}$ from June to November. The Norwegian fishery in 1986 occurred in Div. 18 and 10 compared to Div. IC and 1D in 1985. Two French vessels fished in Davis Strait during 1986, one of which fished in Div. 18 in July and in Div. 18 and 1 C in August. There was no information on the distribution of fishing effort by other countries in Subarea 1. In Subarea 0, Canadian, Danish, Faroese and Greenland vessels fished from June to November, mainly in the region of $58^{\circ}-59^{\circ} \mathrm{W}$ and $67^{\circ}-68^{\circ} \mathrm{N}$, as in previous years.

In Subarea 1 , a total of 52 vessels ($>80 \mathrm{GRT}$) participated in the fishery in 1986 , compared to 56 , 48,47 and 50 in 1982-85 respectively. The Greenland trial fishery north of $71^{\circ} \mathrm{N}$ took place from May to December, with 27 vessels ($>80 \mathrm{GRT}$) participating. Information on the geographical distribution of this northern fishery in 1985 and 1986 was available from logbooks of these trawlers.
2. Input Data
a) Commercial fishery (SCR Doc. $87 / 1,8$)

i) Catch rates

Catch and effort data for the shrimp fishery in 1986 were available from Canadian observer reports for Subarea 0 and from French, Greenland and Norwegian logbook records for Subarea 1. Canadian observer reports showed an increase in catch rates in 1986 relative to 1985 , with the June 1986 catch rate ($682 \mathrm{~kg} / \mathrm{hr}$) being the highest ever reported from the Canadian shrimp fishery in Div. OA. The general increase in the catch rate for the July-September period was about 10% higher than for the same period in 1985. Norwegian logbook data showed an increase in mean catch rate for Div. 10 from 213 to $299 \mathrm{~kg} / \mathrm{hr}$ for the May-July period. Mean catch rates for Div. 1 B in May and June were also higher than in the corresponding months of 1982, 1983 and 1984. Logbook data from one French trawler which fished in Div. 1 B in July and August and in Div. IC in August showed a substantial increase in mean catch rate relative to earlier years. However, the rates are not directly comparable, because this trawler is larger than those from which the earlier data originated.

Logbook data from seven Greenland trawlers (630-722 GRT) showed increasing catch rates in Div. 18 from January to April. This was followed by a decline in May and an increase in July to almost the same level that was observed in April. Catch rates declined again from July to October, followed by an increase in November and December. Although the expected spring peak in catch rate was found in April, it was not followed by a decline throughout the year, as was the case in most years since the fishery started. STACFIS was not able to explain this difference in the yearly development of the catch rates, but it was noted that favourable ice conditions in 1985 and 1986 may have influenced the distribution of the fishery on the different components of the stock.

Mean catch-rate indices for the July-September period of 1976-86 for the national fisheries in Div. $1 B$ (standardized to 1976) and for the Canadian fishery in Div. OA (standardized to the average of the other indices in 1980) are given in Table 2. Generally, all indices declined by about the same proportion from 1976 to 1979 and fluctuated similarly from 1980 to 1984, except for the abnormally high 1981 value for the French fishery (no index available for 1983-84) and the stabilization of the Norwegian index for 1982 and 1983 (no index available for 1985-86). These exceptions, however, were based on relatively small catches. From 1984 to 1985, there was an increase in the Greenland index of about 12%, while the Canadian index showed a minor decrease. From 1985 to 1986, all available indices increased, the Greenland figure by about 11% and the Canadian figure by about 10%. The French figure increased by more than 60%, but this may at least be partly explained by the use of a larger vessel in 1986, as noted above.

Table 2. CPUE indices (July-September) from Greenland, Norwegian and French fisheries for shrimp in Div, 1B and the Canadian fishery in Div. OA, 1976-86.

	Div.	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
Green1and	IB	1.00	0.74	0.67	0.51	0.63	0.59	0.74	0.66	0.67	0.76	0.84
Norway	1B	1.00	0.84	0.60	0.47	0.60	0.43	0.57	0.56	0.61^{1}	-	-
French 2	1B	1.00	1.13	0.61	0.48	0.58	0.80	0.60	-	-	0.62	1.01
Canada 3	OA	-	-	-	-	0.60	0.66	0.78	0.63	0.64	0.61	0.67

July only.

${ }^{2}$ All French data are from July only except for 1985 (August only) and 1986 (July and August).
3 Div. OA (1980 is average of the other 3 indices).

Figure 1 shows a comparison between total offshore catches in Subareas 0 and 1 (excluding catches in the northern trial fishery) and the catch rates of the Greenland vessels in Div. $1 B$. As STACFIS has pointed out several times before, the introduction of more efficient gears around 1980 may have resulted in an upward bias of catch rates since then, but the effects have not been quantified. In the last 2 years, this bias may be even more pronounced as new high-opening trawls, with reportedly-higher catch rates, have been introduced, together with trawl-positioning systems that allow better checks on the performance of the gear. Furthermore, new net materials, with reduced water resistance, allows the use of larger trawls which are towed at higher speeds with the same engine power. Again, STACFIS was not able to quantify the effects of these improvements in fishing power, but it was agreed that more efficient gears may partly explain the increase in mean catch rates and that the rates may not be directly comparable from year to year.

Fig. 1. Shrimp CPUE indices for the July-September period of 1976-86 in Div. 1B compared with total offshore catches in Subareas 0 and 1 excluding catches in the Greenland trial fishery. (Mean CPUE values are based on logbook records of seven trawlers of the Greenland Home Rule; catches for 1985 and 1986 are provisional).
ii) Biological data

A times series of commercial samples from a Greenland trawler in August 1986 showed substantial changes in the proportions of the various sexual components over a 24 -hour period. Such changes should be considered when determining the size composition of the commercial catches. The data also showed that the catches in August consisted primarily of male shrimp around 21-22 mm CL (carapace length) and that primiparous females (spawning for the first time) were relatively scarcer than males and older (multiparous) females (SCR Doc. 87/8).

The observed discarding of shrimp in Div. OA during 1986 averaged 2.3%, which was lower than levels observed in previous years (SCR Doc. 87/1). No length frequencies were available to determine the size range of discarded shrimp.
iv) By-catches

Logbook records for eight Greenland trawlers showed a by-catch of 2.8% (by weight) of the shrimp catch in 1986, compared to 2.1% in 1984 and 1985 and about 1% in $1981-83$. The dominant species in the by-catch was redfish (SCR Doc. 87/8). In the Canadian fishery in Div. $O A$, the observed monthly by-catch ranged from 15 to 30% of the total catch, higher than in the previous year. Catch rates of redfish in 1986 were the highest observed over the 1980-86 period. As in previous years, the by-catch of Greenland shark increased in October and November (SCR Doc. 87/1).
b) Research vessel surveys (SCR Doc. $87 / 5$, 8)
i) Abundance estimates from photographic surveys

In 1986, the standard photographic survey was not carried out, but a special sampling survey to obtain information on diel variation in abundance was attempted. However, due to technical problems, no data were available from this survey. During the $1977-85$ period, data from bottom photography were used for describing the distribution of shrimp off West Greenland in the region from $66^{\circ} 00^{\prime} \mathrm{N}$ to $69^{\circ} 30^{\prime} \mathrm{N}$ at depths between 100 and 600 m . From 1980, a regression model was used to investigate the dependence of shrimp abundance on various physical variables and to give an estimate of the total biomass in the area. During the years when this model was used, STACFIS expressed its concern about the apparently high variances involved in the data and thus their implications for the final calculation of the biomass estimates. STACFIS also noted that indications of variation in abundance of small shrimp from the photographic material have not been reflected in later variations in catch rates. Despite these concerns, STACFIS noted the continuing improvements in the model and expressed optimism on its continued use as an independent index of stock abundance.

STACFIS considered that, in view of the recent development in commercial trawling gear towards the use of high-opening trawls, the photographic data might represent only a very small proportion of the total shrimp stock, because the data represent only that part of the stock which is actually situated on the bottom. The problems are further complicated by diel variation in size composition of the shrimp in commercial catches (SCR Doc. 87/8), for which it has not been possible to adjust the photographic data in a reliable way. Off-bottom photographic sampling was not considered to be a feasible technique for obtaining information on shrimp distribution.

Comparisons of data on abundance of the different size-groups from the photographic sampling and from biological trawl samples at approximately the same time and place (SCR Doc. $87 / 5$) showed poor agreement between the two sets of data. It was noted that some reduction in variance from the photographic sampling might be achieved by increasing the number of sampling stations to obtain a better coverage of the different bottom types, and by adjusting the abundance estimates to account for diel migrations, if they can be determined quantitatively.
ii) Biological data

Research samples from the Greenland trawl survey showed modal size-groups of males around 12, 15, 18-19 and 21-22 mm CL (SCR Doc. $87 / 8$). The group of $12-\mathrm{mm}$ males was dominant in a sample from shallow water (190 m) on the western slope of Store Hellefiske Bank, indicating the possible existence of a specific nursery area.

Length frequencies from the Canadian fishery in Div. OA showed that two size-groups dominated in the catches in all months. The modal group of males at 21-22 mm CL (similar to the Greenland data) might represent the 1981 year-class, and the larger mode at 25 mm CL (females) might represent primarily the 1980 and 1979 year-classes. Despite previous concerns over the possibility of a poor 1981 year-class, this presumed yearclass was well represented in the 1986 fishery data.

Canadian research samples from Div. OA were analyzed for age composition and showed that males formed a single mode which was presumed to be age 5. Primiparous and multiparous females (possibly ages 6 and 7) had average lengths of 23 and 25 mm CL respectively, but the former comprised only 6% of the total sample, which is consistent with the Greenland data for Subarea 1. An additional modal group of females (27.5 mm CL) of uncertain age was also interpreted from the data.

3. Prognoses

Catch rates from the Canadian fishery in Div. OA for the July-September period in 1986 were about 10% higher than in the previous year. Norwegian data showed that catch rates in Div. 1D from May to July increased from $213 \mathrm{~kg} / \mathrm{hr}$ in 1985 to $299 \mathrm{~kg} / \mathrm{hr}$ in 1986 . Data from a French trawler showed higher catch rates for July and August in Div. $1 B$ and $1 C$ than in previous years, but it was noted that this trawler was larger than those used previously. The Greenland data also showed an increase in catch rates for the July-September period of about 10% from 1985 to 1986. The trend in the Greenland data was an overall increase from 1979 to 1986 . It was noted that this trend may have resulted from the influence of improved trawl design since 1980 and unfavourable ice conditions in the spring months of 1982, 1983 and 1984. Although the effects of these factors cannot be estimated, it is possible that they could account for the observed increase.

In 1985, STACFIS recognized that, despite concerns about possible poor recruitment, catch rates in recent years had not declined (NAFO Sci. Coun. Rep., 1985, page 20). Also, because of the apparent stability of the stock, with higher-than-advised yields during the period of stability,

STACFIS advised an overall TAC of 36,000 tons, which corresponded to the average catch during 1979-84. At the January 1986 Meeting, data from the commercial fishery and the photographic surveys indicated continued stability in abundance since 1982. Therefore, it was advised that the overall TAC in 1986 should not exceed 36,000 tons. Because similar data were not available at the present meeting from the Greenland survey in 1986, and because it could not be established whether the increasing trend in catch rates was due to technological effects or represented a real increase in the stock, STACFIS has no basis on which to advise a change in TAC, for the offshore grounds in Subarea 1 south of $71^{\circ} \mathrm{N}$ and the adjacent parts of Subarea 0 , from the previouslyadvised level of 36,000 tons.
4. Greenland Shrimp Fishery North of $70^{\circ} 52.5^{\prime} \mathrm{N}$ (Div. 1A) (SCR Doc. 87/7)

The Greenland trial shrimp fishery north of $70^{\circ} 52.5^{\prime} \mathrm{N}$ in Div. 1A was initiated in 1985 . At that time, this area was not considered to be a part of the commercial shrimp fishing areas for which TAC advice was given by STACFIS, and, therefore, it was not included in the quota regulation of the Greenland shrimp fishery in 1985. Nominal catches were 4,349 tons in 1985 and 11,045 tons in 1986. For 1987, the Greenland Home Rule Administration has proposed a preliminary TAC at 11,500 tons for the area north of $71^{\circ} 00^{\prime} \mathrm{N}$.

STACFIS evaluated the preliminary data and shrimp samples from Greenland trawlers which fished north of $71^{\circ} \mathrm{N}$. After considering similar data from the West Greenland shrimp fishery south of $71^{\circ} \mathrm{N}$, the Committee was unable to discern a significant difference between stocks from the two areas, although differences in mean size within the trial area were observed. The Committee was unable to decide whether the shrimp north of $71^{\circ} \mathrm{N}$ constitute a separate, self-sustaining stock, or represent a northward extension of southern stocks or a combination of both.

It is possible that the stock depends on larval drift or movement of adult and juvenile shrimp from southern areas, in which case the stock may be able to sustain a continued fisheryat a certain level. If, in fact, the stock is self-sustaining, a very cautious approach is recommended until further investigations have been made, because low temperatures in the area and the possibility of low reproductive potential are factors which may cause very slow renewal of the stock.

5. Future Research Requirements

Some of the recommendations from the January 1986 Meeting (NAFO Sci. Coun. Rep., 1986, page 16) have been addressed (e.g. sampling data were collected from the trial fishery north of $70^{\circ} 52.5^{\prime} N$, and some effort was made to determine possible nursery grounds). STACFIS agreed that previous recommendations which were not addressed during 1986 should be reiterated. These are as follows:
i) Because recent developments in commercial fishing gear technology has reduced the value of catch rates as indices of abundance, STACFIS again recommends that stratified-random trawl surveys be conducted for a number of years to determine changes in distribution and abundance.
ii) Because there was no evident expansion of the observer programs in 1986, STACFIS again recommends that observer programs be continued and extended to cover a greater portion of the fleet with the main objectives to obtain sampling data on shrimp catches, by-catches and objective estimates of discard rates.
iii) Since no selectivity studies were carried out during 1986, STACFIS again recommends that selectivity studies be conducted for shrimp in Davis Strait to determine optimal mesh size.
iv) Because a knowledge of the nursery areas and their extension is of utmost importance, STACFIS accordingly recommends that research surveys be continued to determine the location of nursery grounds for shrimp in the Davis Strait.
v) Because CPUE data as indices of shrimp abundance have been more difficult to evaluate due to the introduction of more efficient trawls and the use of trawl-positioning equipment, STACFIS therefore recommends that a study be undertaken to quantify the effects of new gear technology in the fishery.

II. ASSESSMENT OF SHRIMP STOCK IN DENMARK StRAIT

1. Fishery Trends (SCR Doc. 87/3, 4, 9)

The shrimp fishery in Denmark Strait began in 1978 by an Iceland vessel on the eastern side of the midline between Greenland and Iceland (Table 3). Nominal catches increased to 1,300 tons in 1979, when Norwegian trawlers participated in the fishery on the western side of the midline, and exceeded 8,200 tons in 1980 with the additional involvement of Danish, Faroese, French and Greenland vessels. The total catch on both sides of the midine declined to 4,800 tons in 1981, well below the level of 8,000 tons that was aimed at by the EEC for regulation of the fishery in the area

Table 3. Nominal catches and TACs (tons) of shrimp (Pandalus borealis) in Denmark Strait, 1978-86.

Country	1978	1979	1980	1981	1982	1983	1984	1985^{1}	1986^{1}
Denmark	-	-	702	581	740	204	443	353	500
Farae Islands	-	-	4,233	713	737	443	668	674	727
France	-	-	50	353	414	291	500	642	780
Greenl and	-	-	200	1,004	1,115	1,467	2,250	2,596	5,781
Iceland	363	485	614	125	-	43	742	1,784	1,030
Norway	-	800	2,461	2,016	1,896	1,727	2,128	2,051	1,997
Total	363	1,285	8,260	4,792	4,902	4,175	6,731	8,100	10,815
Advised TAC	-	-	-	-	4,200	4,200	4,200	5,000	\ldots
Advisective TAC ${ }^{2}$	-	-	-	8,000	4,500	5,725	5,245	6,090	7,225

Provisional data.
On western side of midline only.
west of the midiline. A TAC of 4,500 tons was set by the EEC for the western side of the midline in 1982, whereas the Scientific Council advised an overall TAC of 4,200 tons; the reported catch was 4,900 tons: For 1983, the EEC set a TAC of 5,725 tons, whereas the Scientific Council advised an overall TAC of 4,200 tons (as in 1982); the reported catch was 4,200 tons. for 1984 , the EEC set a TAC of 5,245 tons, whereas the Scientific Council advised an overall TAC of 4,200 tons (as previously); the reported catch was 6,700 tons. In 1985 , Greenland authorities set a TAC of 6,090 tons for the Greenland side of the midline, whereas the Scientific Council advised an overall TAC of 5,000 tons; the reported catch was 8,100 tons. In 1986 , Greenland authorities set a TAC of 7,225 tons for the Greenland side of the midline, whereas the Scientific Council proposed two scenarios, one of which implied at TAC of 6,000 tons for the area as a whole and the other indicating that this figure may be conservative; the reported total catch in 1986 was 10,815 tons.

In 1986, the shrimp fishery in Denmark Strait took place in the area of Strede Bank and Dohrn Bank as well as on the slopes of Storfjord Deep, with higher catch rates in more easterly areas than in 1985. Although ice conditions in 1985 allowed for a more widespread fishery than in earlier years, poor weather and ice conditions hampered the fishery in early 1986. The main fishing area in 1986 extended from $65^{\circ} 30^{\prime} \mathrm{N}$ to $67^{\circ} \mathrm{N}$ (about 30 nautical miles farther north than in 1985) and between $29^{\circ} \mathrm{W}$ and $31^{\circ} \mathrm{W}$.

In 1983, the overall fishing period extended from March to November, with the main fishing period from March to June. In 1984, the fishing periods west and east of the Greenland-lceland midline differed considerably. West of the midline, the fishing period extended mainly from January to May, ending in May when most national allocations had been taken, but Faroese vessels continued fishing in November and December. East of the midline, on the other hand, the fishing period extended from June to December, the main fishing period being September and October. in ig85, fishing took place throughout the year with a larger proportion of the catch being taken in the second half of the year than in 1984 and previous years.

A total of 41 vessels participated in the fishery in 1983 and 1984 , and there were 47 vessels in 1985 (excluding lceland vessels). In 1986, there were 59 vessels actively engaged in the fishery, with occasional fishing by lceland vessels. However, the latter vessels fished more actively off northern Iceland, thereby reducing by 43% their activity on the eastern side of Dohrn Bank relative to 1985.
2. Input Data
a) Commercial fishery (SCR Doc. $87 / 3,4,9)$
i) Catch rates

Monthly catch rates and corresponding fishing effort, based on logbook data for the French, Greenland, lceland and Norwegian fisheries during 1981-86, are listed in Table 4. Catch rates were highest during March-April in 1981 and 1983 and during May in 1982. The catch rates for Greenland vessels in January 1984 were almost as large as the highest that have been observed in that month, but they then declined during February and March. This high January catch rate did not occur in 1985 or 1986 , but the catch rates for the other months were similar to the respective rates in previous years, except for the October-December catch rates, which were the highest on record. However, these were based on a low level of catch. The catch rates for the french vessels were considerably higher in April and May of 1981 and 1984 than in the same months of 1982, 1983, 1985 and 1986, with the catch rates of 1985 being higher than the corresponding rates for 1982 , 1983 and 1986. The catch rates for Norwegian vessels have shown little change from year

Table 4. Month1y catch rates (kg per hour trawling) and corresponding effort (hours trawling) from available logbooks of vessels involved in the shrimp fishery off East Greenland, 1981-86.

Year	Month	Greenland ${ }^{1}$		France		Norway		Iceland ${ }^{2}$	
		CPUE	Effort	CPUE	Effort	CPUE	Effort	CPUE	Effort
1981	Mar	-	-	, -	\square	364	137	-	-
	Apr	486	1,343	433	157	296	3,848	-	-
	May	263	914	261	522	161	4,057	-	-
	Jun	123	6	144	257	119	1,101	99	688
	Jul	-	-	-	-	-	-	78	603
	Aug	-	-	-	-	42	167	39	245
	Sep	-	-	-	-	46	65	-	-
1982	Mar	160	763	\rightarrow	-	197	1,548	-	-
	Apr	195	1,570	216	331	171	4,450	-	-
	May	280	1,394	264	563	248	3,339	-	-
	Jun	-	-	185	238	-	\rightarrow	-	-
1983	Mar	345	484	-	-	-	-	-	-
	Apr	160	457	165	248	128	2,734	-	-
	May	-	-	254	245	255	1,439	50	2
	Jun	-	-	162	206	143	1,797	99	52
	JuI	-	-	-	-	133	45	-	-
	Aug	-	-	-	-	98	622	-	-
	Sep	-	-	-	-	-	-	-	-
	Oct	\cdots	-	-	-	-	-	172	80
	Nov	-	-	-	-	-	-	155	158
1984	Jan	600	105	-	-	-	-	-	-
	Feb	356	312	-	-	232	341	-	-
	Mar	224	281	316	132	224	2,777	-	-
	Apr	-	-	487	723	183	4,000	-	-
	May	\sim	-	304	349	167	2,994	-	-
	Jun	-	-	-	-	-	-	42	53
	Jul	\sim	-	-	-	-	-	69	655
	Aug	-	-	-	-	-	-	70	116
	Sep	-	-	-	-	-	-	99	1,546
	Oct	-	-	-	-	-	-	154	1,887
	Nov	\sim	-	-	-	-	-	74	2,391
	Dec	-	\cdots	-	-	-	-	118	569
1985	Jan	311	647	-	-	-	-	-	-
	Feb	302	610	-	-	-	-	105	53
	Mar	271	697	-	-	181	3,094	13	7
	Apr	222	625	342	257	163	4,510	22	19
	May	-	-	299	402	128	1,386	70	2,256
	Jun	-	-	219	137	-		114	1,620
	Jul	-	-	-	-	-	-	100	3,066
	Aug	-	-	-	-	-	-	82	2,992
	Sep	-	-	-	-	-	-	88	3,337
	Oct	-	-	252	294	-	-	49	247
	Nov	-	-	243	37	-	-	55	317
1986	Jan	193	759	-	-	112	275	-	-
	Feb	212	1,314	-	-	141	1,465	-	-
	Mar	380	1,801	481	27	145	4,259	-	-
	Apr	236	725	251	558	125	3,976	21	24
	May	118	505	273	675	123	2,162	77	308
	Jun	-	-	165	121	-	-	101	30
	Ju1	-	-	-	-	71	28	122	112
	Aug	\sim	-	-	-	131	797	94	2,904
	Sep	-	-	365	156	114	157	93	3,097
	Oct	-	-	333	327	-	-	83	1,551
	Nov	465	271	185	27	-	-	88	758
	Dec	766	113	-	-	-	-	258	81

[^2]to year since 1982, although a decreasing trend may be seen. The iceland catch rates were stable in June from 1980 to 1983 (no fishing took place in 1982), declined in 1984, increased in 1985 and remained stable in 1986.

Ice conditions differed considerably from month to month throughout the years and thereby affected the distribution of the fishery, making the evaluation of CPUE data difficult. This difficulty was compounded by incomplete data on catch location and fishing effort for a substantial portion of the fleet. Having one series of catch rates that shows a decrease and three series that show little difference, and bearing in mind the difficulties with ice, gear improvements, and lack of logbook information for many vessels, the Committee could not interpret the changes that have been observed in catch rates.
ii) Biological data

Data on the biology of shrimp in Denmark Strait were available from Greenland, Iceland and Norwegian trawlers in 1986. Data from Greenland trawlers in January and April did not show the pronounced changes in the proportions of the sexual stages over a 24 -hour period that were evidenced in the West Greenland data. The samples showed the presence of both male and female shrimp in the catches, and the component of large females up to 35 mm CL was still present. Iceland data showed that $77-84 \%$ of the egg-bearing females in April and late May also had developing head roe, indicating that most females spawn annually, which is contrary to some previous findings. The deviation method was used in an attempt to detect strong year-classes from the historical length-frequency data, but year-classes were difficult to trace and growth difficult to interpret. Norwegian size compositions showed that catches were dominated by shrimp of about $29-30 \mathrm{~mm} \mathrm{Cl}$, similar to the findings of previous years.
iii) Shrimp discards

Information from one Norwegian trawler indicated a discard rate from 0% to 1.6% by weight, with an average of 0.9%. The discards consisted mostly of broken shrimp of relatively large size.
iv) By-catches

Data on by-catches of fish in the shrimp fishery were reported for nine Greenland vessels (logbook information) and for one Norwegian vessel (observer report). The reported by-catches in the Greenland fishery decreased from 9.1% in 1984 to 0.2% in 1985 but increased to 0.5% in 1986. The observed number of fish per kilogram of shrimp in the Norwegian fishery increased from 0.13 in 1985 to 0.26 in 1986. The total by-catch was still low in 1986, the major component being small redfish.

Research vessel surveys (SCR Doc. 87/2)
The Norwegian research cruise to Denmark Strait in September 1986 provided additional information on the biology of this stock. The distribution of catches by sex was simjlar to that in 1985. Males were found in highest proportion in the western and northern parts of the region and in lowest numbers around $66^{\circ} \mathrm{N}$ and $30^{\circ} \mathrm{W}$. For the surveyed area as a whole, males constituted about 41% of the shrimp by number in 1986 compared to 43% in 1985 . Most of the females were ovigerous, few had head roe, and 26% were without roe. The incidence of females without roe was highest in the north and lowest around Dohrn Bank. Shrimp sizes increased from north to south, with the smallest males being found mainly in the north.

The largest catches during the survey were taken northeastward of the main fishing grounds in the spring. Biomass calculations, using the swept-area method, gave an estimate of 49,000 tons for the investigated area. This represents an increase of 17,000 tons for similar coverage during the 1985 survey. Part of this increase may be due to increased experience in trawling, but the use of a low-rise trawl and making no allowance for diel variation in availability during day and night fishing would result in lower average catch rates and a possible downward bias in the biomass estimate. Nevertheless, a time series of survey data is needed before the estimates can be used as indices of abundance.
3. Environmental Considerations (SCR Doc. 87/6)

In accordance with previous recommendations of STACFIS (NAFO Sci. Coun. Rep., 1986, page 20), the Chairman of the Environmental Subcommittee (M. Stein) presented a paper on the variability of water masses, currents and ice in Denmark Strait. "During discussion of the paper, it was considered that more emphasis should be given to the Storfjord Deep region where the shrimp occur. The question whether the dynamic regime of the Irminger Current system is responsible for maintaining the stock in this area can only be answered if biological and oceanographic sampling is carried out regularly on a grid where the stations are no more than 10 nautical miles apart. The Subcommittee Chairman offered to undertake further evaluation of the Dohrn Bank data in the com-
puter files of the Federal Republic of Germany with regard to the baroclinic aspect of the current field and to interannual changes. The results of this analysis will be presented at the next meeting of STACFIS when the shrimp stocks are reviewed.
4. Prognoses

At the January 1986 Meeting, two scenarios were presented on the interpretation of catch rates and the continued presence of large shrimp. The inclusion of the 1986 CPUE data, together with the discussion on ice conditions, gear improvements, etc., made it impossible to draw realistic conclusions from the catch rates. However, data from trawl surveys in 1985 and 1986 showed no change in the size compositions of catches and the relative proportions of males and females were also similar. In addition, the biomass estimates for 1986 were higher than for 1985 , but this may have resulted from non-biological factors, as noted previously. The surveys were carried out in September when most of the annual catch had already been taken. Thus, it seems that the catches in recent years have had no impact on stock abundance. Because of uncertainties in the catch-rate data and the short time series of data from the trawl surveys, STACFis was unable to advise on a TAC for 1987.
5. Future Research Requirements

Data on biological characteristics of shrimp in Denmark Strait were available in reports from Greenland, Iceland and Norway, but their usefulness in assessing the stock was limited by the lack of full geographical coverage on a year-round basis. STACFIS noted that Norway had again carried out a research survey in 1986 and provided a biomass estimate for the stock. Thus, while some of the recommendations from the January 1986 Meeting were addressed, others were not dealt with and it was agreed that these be reiterated. STACFIS therefore recommends i) that the biological samples be obtained from all components of the fishery in Denmark Strait; ii) that research vessel surveys in the area be continued and intensified; and iii) that plankton surveys be carried out to observe the distribution of shrimp larvae.

STACFIS welcomed the paper on environmental conditions in Denmark Strait (SCR Doc. 87/6) but noted that no data were available in the main area of shrimp distribution. STACFIS therefore recommends that environmental studies be undertaken in the area of Storfjord Deep.

I:I. OTHER MATTERS

1. Proposal for a Working Group on Ageing Shrimp

At its meeting in June 1986 (NAFO Sci, Coun. Rep., 1986, page 85), STACFIS agreed that planning for a second workshop on ageing shrimp should be discussed at its midterm meeting to assess the shrimp stocks in early 1987. After discussion, it was concluded that some experts on shrimp should meet at some time during 1987 to analyze data from the West Greenland shrimp samples, and that the results of this analysis and other contributions should be presented to a working group of STACFIS during the June 1988 Meeting. Participants of the 1981 Workshop should be invited to attend and the experts should consider the possibility of inviting others who might have relevant information to present.
2. Response to Canadian Request for Analysis of Research Activities in Subareas 0 and 1

Canada requested the Scientific Council, when reviewing the status of the shrimp stock overlapping Subareas 0 and 1, at its meeting in January 1987, to prepare an analysis of research activities that would be necessary to allow estimation of (i) total biomass, (ii) distribution of that biomass between the two subareas, and (iii) advice on target level for removals. With regard to part (i) of the request, it was agreed that an extensive survey of the shrimp grounds should be carried out, which would include the area of the Greenland trial fishery north of $71^{\circ} \mathrm{N}$, Disko Bay, the previously stratified areas from $66^{\circ} \mathrm{N}$ to $69^{\circ} 30^{\prime} \mathrm{N}$, and areas south between $62^{\circ} \mathrm{N}$ and $66^{\circ} \mathrm{N}$. Although it is not certain whether the shrimp concentrations in all of the se areas are part of the same stock, it was agreed that coverage should include all exploited offshore grounds so that the necessary sampling data can be collected to determine relationships between the various concentrations and to establish stock boundaries.

Details of the topography and area of these grounds were not available at this meeting. However, from previous stratification schemes, it was estimated that approximately 100 strata would provide sufficient coverage of the above-mentioned areas. Allowing for an average of four sets per stratum and eight sets per day, 50 sea days would be needed for the survey, which should be carried out during the June-July period to avoid problems with ice and poor weather and to sample the prespawning shrimp before sternal spines are lost. A large offshore stern trawler would be necessary to undertake the work, and the shrimp trawl should be the most recently developed highlift type. The latest technology in navigation and monitoring fishing performance would also be essential. Nine scientific staff would be needed to sort the catches, obtain samples and collect data for both shrimp and other by-catch species. Additional resources would be needed for analysis of the collected data.

It was noted that part ($i \mathrm{i}$) of the request could be answered quite readily when the results from part (i) are available by simple calculations for each subarea. Advice on target levels for removals (part iii of the request) would not be forthcoming until several years of trawl survey data become available.

3. Acknowl edgements

There being no further business, the Chairman thanked the participants for their interest and cooperation throughout the course of the meeting and expressed the Comnittee's appreciation to the Secretariat for assistance.

PART B

Report of Scientific Council

June 1987 Meeting

CONTENTS

Page

1. Fishery Science (App. I) 25
2. General Fishery Trends 25
3. Assessment of Finfish and Invertebrate Stocks 25
4. Response to Questions by the Fisheries Commission 27
5. Environmental Research 27
6. Ageing Techniques 27
7. Gear and Selectivity 27
8. Review of Scientific Papers 27
9. Other Matters 27
II. Research Coordination (App. II) 28
10. Fishery Statistics 28
11. Biological Sampling 28
12. Biological Surveys 28
13. Other Matters 29
[11. Publications (App. III) 29
14. Review of Scientific Publications 29
15. Editorial Matters Concerning Publications 29
16. Promotion and Distribution of Publications 29
17. Papers for Possible Publication 29
18. Other Matters 30
IV. Rules of Procedure 30
19. Implementation of Amended Rules 30
20. Formulation of Rules Common to the Three Main Components of NAFO 30
V. Collaboration With Other Organizations 30
21. Combined Assessment of Cod Stocks off West and East Greenland 30
22. Proposal for Joint ICES/NAFO Working Group on Seals 30
23. Thirteenth Session of the CWP, February 1987 30
VI. Future Scientific Meetings 30
24. Annual Meeting and Special Session in September 1987 30
25. Scientific Council Meeting, June 1988 30
26. Annual Meeting and Special Session in September 1988 31
27. Scientific Council Meeting, June 1989 31
VII. Election of officers 31
28. Officers for 1987-89 31
VIII. Other Matters 31
29. STACPUB Membership 31
30. Provisional Report of Jamuary 1987 Meeting 31
31. Position of Assistant Executive Secretary 32
32. Agenda for September 1987 Meeting 32
IX. Adjournment 32
Appendix I. Report of Standing Committee on Fishery Science (STACFIS) 33
I. Fishery Trends 33
33. Introduction 33
34. General Trends for the Northwest Atlantic 34
35. Fishery Trends by Subarea 34
II. Stock Assessments 35
36. Cod in Subarea 1 35
37. Cod in Division 3 M 42
38. Cod in Divisions 3 N and 30 43
39. Redfish in Subarea 1 48
40. Redfish in Division $3 M$ 49
41. Redfish in Divisions 3 L and 3 N 50
42. Silver Hake in Divisions $4 V, 4 W$ and $4 X$ 51
43. American Plaice in Division 3 M 55
44. American Plaice in Divisions $3 \mathrm{~L}, 3 \mathrm{~N}$ and 30 56
45. Witch Flounder in Divisions 3 N and 30 64
46. Yellowtail Flounder in Divisions $3 \mathrm{~L}, 3 \mathrm{~N}$ and 30 65
47. Greenland Halibut in Subareas 0 and 1 68
48. Greenland Halibut in Subarea 2 and Divisions 3 K and 3L 69
49. Roundnose Grenadier in Subareas 0 and 1 70
50. Roundnose Grenadier in Subareas 2 and 3 71
51. Wolffish in Subarea 1 72
52. Capelin in Divisions $3 \mathrm{~L}, 3 \mathrm{~N}$ and 30 73
53. Squid in Subareas 3 and 4 75
54. Shrimp in Subareas 0 and 1 and in Demmark Strait 75
55. Response to Fisheries Commission Request 76
56. Cod in Divisions $2 J, 3 K$ and $3 L$ 76
IV. Environmental Research 76
57. Introduction 76
58. Review of Environmental Studies in 1986 76
59. Overview of Environmental Conditions in 1986 76
V. Ageing Techniques and Validation Studies 77
60. Ageing Studies of Silver Hake 77
61. Analysis of Inconsistency in Silver Hake Catch-at-age 77
62. Age Determination of Atlantic Wolffish 78
VI. Gear and Selectivity Studies 78
63. Trawl Escapement and Selectivity Problems 78
VII. Review of Scientific Papers 78
64. Fishery Ecology of Silver Hake on the Scotian Shelf 78
65. Understanding Marine Fish Communities 78
66. Natural Mortality of Greenland Halibut 78
67. Ichthyoplankton Survey on Flemish Cap in April-May 1986 78
68. Vertical Distribution of Parasitic Fauna in Deepwater Fishes 78
69. Haddock Spawning Area Closures, 1970-87 79
VIII. Other Matters 79
70. Progress Report on Contributions for the Special Session in September 1987 79
71. Progress Report on Special Session in September 1988 79
72. Proposed Theme for Special Session in September 1989 79
73. Arrangements for Conducting Stock Assessments 79
74. Acknowledgements 79
Annex 1. Report of Subcommittee on Environmental Research 81
75. Marine Environmental Data Service (MEDS) Report for 1986/87 81
76. Review of Environmental Studies in 1986 81
77. Overview of Environmental Conditions in 1986 83
78. Marine Enviromment and Ecosystems Subcommittee (MEES) 83
79. Remote-Sensing Activities 84
80. Environmentally-related Aspects of the Special Session in September 1987 84
81. Revision of List of NAFO Standard Oceanographic Sections and Stations 84
82. National Representatives 84
83. Other Matters 84
84. Acknowledgements 85
oendix II. Report of Standing Committee on Research Coordination (STACREC) 87
I. Statistics and Sampling 87
85. Fishery Statistics 87
86. Biological Sampling 88
87. Biological Surveys 88
88. Review of Survey Activities in 1986 88
89. Survey Plans for 1987 and Early 1988 88
90. Review of Stratification Schemes 88
91. Coordination of Surveys in 1987 and 1988 88
92. Survey Design Procedures 88
III. Other Matters 89
93. Review of Scientific Observer Program 89
94. List of Fishing Vessels for 1986 91
95. Tagging Activities Reported for 1986 91
96. Review of Relevant Documents 91
97. Conversion Factors 91
98. Program of Research 91
99. Acknowledgements 91
ndix lll. Report of Standing Committee on Publications (STACPUB) 93
100. Review of STACPUB Membership 93
101. Review of Scientific Publications Since June 1986 93
102. Editorial Matters Regarding Scientific Publications 93
103. Promotion and Distribution of Scientific Publications 94
104. Papers for Possible Publication 95
105. Other Matters 95

REPORT OF SCIENTIFIC COUNCIL

June 1987 Meeting

Chairman: J. Messtorff Rapporteur: V. M. Hodder

The Scientific Council, with its Standing Committees on Fishery Science (STACF1S), Research Coordination (STACREC) and Publications (STACPUB) met at the Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada, during 3-17 June 1987, to consider and report on various matters 1 isted in its agenda (see Part D, this volume). In addition to matters of general scientific interest, the Council considered the requirements of the Fisheries Commission and the requests of coastal Contracting Parties (Canada and Denmark on behalf of Greenland) for scientific advice on management in 1988 of certain fish and invertebrate stocks in Subareas 0 to 4. The Council noted the request of the Fisheries Commission (as recommended by its Working Group on Conversion Factors) for scientific evaluation of a Canadian study on conversion factors and referred the matter to STACREC for consideration. The Executive Comittee met briefly prior to the opening session of the Council and recommended a plan of work which was adopted at the opening session.

Representatives attended the various sessions of the Council and its Committees, including the Environmental Subcommittee, from Canada, Cuba, Denmark (Greenland), European Economic Community (EEC), Japan, and Union of Soviet Socialist Republics (USSR), and observers were present from the United States of America (USA) (see Part D, this volume). The Executive Secretary informed the Council that he held proxy votes of abstention for five Contracting Parties (Bulgaria, Iceland, Norway, Poland and Romania) in case the need arose for a formal vote.

The reports of the Standing Committees, as adopted by the Council on 17 June 1987, are given in Appendix 1 (STACFIS), Appendix 11 (STACREC), and Appendix 111 (STACPUB). Lists of research (SCR) and summary (SCS) documents are given in Part D of this volume. Brief summaries of the committee reports and other matters considered by the Council follow in Sections 1 to VIll.

1. FISHERY SCIENCE (APP. 1)

1. General Fishery Trends

From provisional statistics for 1985 and 1986, the nominal catch of all fish and invertebrate species in the Northwest Atlantic (Subareas 0 to 6) increased (6.7%) from 2.70 million (metric) tons in 1985 to 2.88 million tons in 1986 (see Appendix 1 , Table 1). For the same years, the 'groundfish" catch increased by 9% to 1.33 million tons, the "pelagic fish" catch decreased by 15% to 518,000 tons, the "other finfish" catch increased by 59% to 154,000 tons, and the "invertebrates" catch increased by 13% to 876,000 tons. With respect to the nominal catches by subarea, increases from 1985 to 1986 were recorded for Subarea 1 (82,000 to 89,000 tons), Subarea 2 (41,000 to 50,000 tons), Subarea $3(608,000$ to 764,000 tons), and Subarea 4 (766,000 to 781,000 tons), and there was little or no change in the catch from Subarea 0 (3,000 tons), Subarea 5 (399,000 to 397,000 tons) and Subarea 6 (803,000 to 800,000 tons).

2. Assessment of Finfish and Invertebrate Stocks

The Council noted that STACFIS has reviewed the status of certain stocks in Subareas 0 to 4, as requested by Canada, Denmark (Greenland) and the Fisheries Commission, and has advised on catch levels corresponding to reference levels of fishing mortality of $\mathrm{F}_{0,1}$ or two-thirds of the fishing effort associated with the maximum sustainable yield. Advice on other levels of fishing mortality was provided for certain stocks, as requested specifically by the fisheries Commission. Management advice, based on the reference levels, could not be provided for several stocks due to insufficient data. For the capelin stocks, different management criteria were used which were consistent with those of recent years. No data were avallable to provide advice on the squid stock. In cases where specific total allowable catches (TACs) were advised, these are listed in the last column of Table l. Details of the stock assessments are given in the Report of STACFIS at Appendix I. Some general observations are as follows:
a) The cod stock in Subarea 1 has declined drastically in recent years, but there is evidence that the 1984 year-class is very strong and the 1985 year-class is the third highest since 1973, although considerably lower than those of 1973 and 1984 . The 1986 year-class is believed to be poor. Management options at various levels of fishing mortality are presented, as well as yield-per-recruit considerations (see relevant section of Appendix 1 for details).

Table 1. Summary of recent catches (1981-86) and TACs (1981-87) for stocks reviewed at the June 1987 Meeting of STACFIS, with advised TACs for 1988.

Species	Stock area	Nominal catches (000 tons)						TACs (000 tons)							
		1981	1982	1983	1984	$1985{ }^{1}$	19861.	1981	1982	1983	1984	1985	1986	1987	1988
Cod	1	53	56	63	33	15	7	50	62	62	68	28.3	12.5	1.25	()2
	3M	14	13	10	13	14	15	12.7	12.4	12.4	13	13	13	13	$(0)^{3}$
	3NO	24	32	32	27	41	50	26	17	17	26	33	33	33	()2
Redfish	1	6	8	8	6	2	5	...	\cdots	.	\ldots	..	\cdots	\ldots	(...) ${ }^{4}$
	3M	14	15	20	20	20	29	20	20	20	20	20	20	20	(20)
	3LN	24	22	20	15	21	42	25	25	25	25	25	25	25	(25)
Silver hake	4VWX	45	60	36	74	76	83	80	80	80	100	100	100	100	(167)
A. plaice	3M	1	1	2	1	2	4	2	2	2	2	2	2	2	(2) ${ }^{2}$
	3LNO	50	50	38	38	51	56	55	55	55	55	49	55	48	()2
Witch flo.	3NO	2	4	4	3	9	9	5	5	5	5	5	5	5	(5)
Yellowtail	3LNO	15	12	9	15	27	23	21	23	19	17	15	15	15	(15)
G. halibut	0+1	10	9	9	7	9	9	25	25	25	25	25	25	25	(25)
	$2+3 \mathrm{KL}$	31	26	28	25	17	15	55^{5}	55^{5}	55^{5}	55^{5}	75	100	100	(100)
R. grenadier	0+1	+	$+$	+	+	+	+	8	8	8	8	8	8	8	(8)
	$2+3$	7	4	4	4	5	7	27	27	11	11	11	11	11	(11)
Wolffishes	1	4	4	3	2	2	2	...	\cdots	\cdots	5-6	5-6	5-6	5-6	(5-6)
Capelin	3LNO	24	27	25	33	26	48	30^{6}	30^{6}	60^{5}	38^{6}	60^{6}	130^{6}	2937	$(100)^{7}$
Squid-Il1ex	$3+4$	33	13	+	1	1	+	150	150	150	150	150	150	150	(150)
Shrimp	0+1	46	44	47	43	53	63	35	35	35	35	42	36	42	()8

1 Provisional statistics.
2 See STACFIS report for options.
3 No directed fishery.
4 No firm assessment of stock
5 TACs pertain to Div. $2 J+3 K L$.
${ }_{7}$ Advised TACs pertain to Div. 3L only.
Advised TACS include 10,000 tons for Div. 3NO and remainder for Div. 3L.
${ }^{8}$ Deferred to Scptember 1988 Meeting.
b) For the cod stock in Div. 3M, the biomass (age 3+) continues to be at a very low level (probably less than 30,000 tons) relative to the target biomass of 85,000 tons which was set by the Fisheries Commission. This target biomass is unlikely to be reached in the near future, because the year-classes of cod older than the 1980 year-class are at very low levels and the fishery exploits incoming year-classes at too early an age. To achieve the target level of biomass as quickly as possible, cessation of fishing is advised.
c) Analytical assessment of the cod stock in Div. $3 N 0$ indicated a catch of 40,000 tons at Fo. 1 in 1988, if the catch in 1987 is equal to the TAC of 33,000 tons. If the catch in 1987 is 50,000 tons (as in 1986), the catch at $\mathrm{F}_{0} .1$ in 1988 would be 37,000 tons. The Council noted that an updated yield-per-recruit analysis will be considered at the September 1987 Meeting, prior to the meeting of the Fisheries Commission, and any changes in the predicted catches for 1988 will depend on the results of the updated analysis.
d) For American plaice in Div. 3LNO, the advised TAC at $F_{0}, 1$ is 33,000 tons in 1988 , compared to 48,000 tons for 1987 . The projected 1988 TAC is the lowest that has been advised since the stock came under quota regulation. The Council was concerned about the magnitude of the decline in population size, as indicated by the present assessment. Since the decline may reflect changes in availability rather than abundance, other management options were provided for consideration.
e) For witch flounder in Div. 3NO, both the 1985 and 1986 catches were nearly twice the TAC of 5,000 tons, with most of the increase being taken in Div. 3N. However, the lack of data prevented STACFIS from assessing the status of the stock component in Div. 3 N , and there was no basis for advising a change in the current TAC of 5,000 tons for Div. 3NO. The Council was concerned that the stock would unlikely sustain such high catch levels without declining in abundance.
f) For yellowtail flounder in Div. 3LNO, the catches in both 1985 and 1986 were about twice the TAC level of 15,000 tons. It is unlikely that the stock can sustain such high catches without declining in abundance, but it is belleved that the stock could rebuild if the catch level returns to the present TAC of 15,000 tons.
g) For capelin in Div. 3L, the advised TAC for 1988 is 90,000 tons, which is about one-third of the TAC that was advised for 1987. This is largely the result of the passing through the fishery of the very strong 1983 year-class. The stock in Div. 3NO is considered to have re-
covered sufficiently to sustain a fishery which is similar to that advised for 1987, and a TAC of 10,000 tons is advised for 1988.
h) The first analytical assessment of the silver hake stock in Div. 4VWX for several years indicated that, if the 1987 TAC of 100,000 tons is fully utilized, the projected TAC at $\mathrm{F}_{0} .1$ for 1988 is 148,000 tons. If the 1987 catch is similar to the 1986 catch of 83,000 tons, the projected TAC at $F_{0.1}$ would be 167,000 tons.
i) No change in TAC was advised for redfish in Div. $3 M$ and $3 L N$, American plaice in Div. $3 M$, witch flounder in Div. 3NO, yellowtail flounder in Div. 3LNO, Greenland halibut in Subareas $0+1$ and Div. $2 \mathrm{GHJ}+3 \mathrm{KL}$, roundnose grenadier in Subareas $0+1$ and $2+3$, and short-finned squid in Subareas $3+4$.
j) No firm assessments of the stocks of redfish and wolffish in Subarea 1 were possible due to the lack of adequate data.
k) Advice for management in 1988 of the shrimp stocks in Subareas $0+1$ and in Denmark Strait could not be provided at this meeting. It was agreed that the status of these stocks be considered at the September 1987 Meeting.
3. Response to Questions by the Fisheries Commission

The Council concurred with the information provided by STACFIS in response to specific questions regarding discrimination of the cod stock components in Div. $2 \mathrm{~J}+3 \mathrm{KL}$ and the proportion of biomass outside the 200 -mile fishery zone in Div. 3L of the Regulatory Area.

4. Environmental Research

The Council noted that the Environmental Subcommittee (M. Stein, Chairman) had met on 9 June 1987 and had considered 16 research documents which dealt with a variety of environmental topics. The full report of the Subcommittee is Annex 1 to the Report of STACFIS (Appendix 1).

5. Ageing Techniques

The Council noted the opinions of national experts that there has been insufficient progress to warrant a second workshop on the ageing of shrimp at this time. It was agreed, however, that a meeting of some experts to evaluate West Greenland shrimp samples would be profitable in advance of such a workshop. The Council was pleased that ageing studies were being carried out on Atlantic wolffish from West Greenland waters and encouraged the continuation of the work. It was further noted that age validation studies are continuing on silver hake.

6. Gear and Selectivity

The Councll welcomed the initiative of STACFIS to have Dr. H. Bohl (Federal Republic of Germany) compile information on trawl escapement and selectivity problems relevant to the recent request of the Fisheries Commission.
7. Review of Scientific Papers

The Council noted that six research papers, which were not considered adequately during the stock assessments, were reviewed by STACFIS.

8. Other Matters

a) Special session in September 1987

The Council noted that about 28 papers were expected for the special session during 9-11 September 1987 on "Biology and Ecology of Demersal Resources of the North Atlantic Continental Slopes, with Emphasis on Greenland Halibut and Grenadiers", which will be convened by W.R. Bowering (Canada).
b) Special session in September 1988

The Council concurred with the nomination of J. C. Rice (Canada) as organizer and convener of the special session in September 1988 on "Impact of Changes in Environmental Conditions in the North Atlantic on the Distribution, Availability and Abundance of Marine Species, with Particular Emphasis on the Labrador and Grand Bank Regions in the Early 1980's ${ }^{\prime \prime}$.
c) Topics deferred for consideration in September 1987
i) Reanalysis of yield-per-recruit for cod in Div. 3NO.
ii) Necessity of a midterm meeting in early 1988 to assess the shrimp stocks in Davis Strait and Denmark Strait.
iii) Outline of topics for special session in September 1988 (to be provided by J. C. Rice).
iv) Proposed theme for special session in September 1989.

II. RESEARCH COORDINATION (APP. II)

1. Fishery Statistics
a) CWP activities relevant to NAFO

The Council noted that STACREC had reviewed the report of the 13 th session of the CWP (Coordinating Working Party on Atlantic Fishery Statistics), which was held at FAO, Rome, Italy, during 11-18 February 1987. The report was presented by D. G. Cross (EUROSTAT) who is Deputy Secretary of the CWP. Among the recommendations was one which dealt with the problem of discrepancies between databases of the various international organizations and the ways to minimize the differences. NAFO was represented at the 13 th session by J. C. E. Cardoso (Executive Secretary) and by D. B. Atkinson (Canada).
b) NAFO statistical considerations

The Council was pleased to note that there had been continued improvement by national statistical officers in the timely submission of STATLANT 21 A reports, which enabled the Secretariat to prepare the provisional inventory of nominal catches (SCS Doc. 87/20) during the present meeting. However, similar improvement was not noted in the submission of the more detailed STATLANT $21 B$ reports. The work of the Council and the timely publication of Statistical Bulletin continue to be adversely affected by the late and incomplete submission of these reports by some Contracting Parties. The Council endorsed the recommendation of STACREC that the document on the Council's requirements for fishery statistics (SCS Doc. 87/19) be brought to the attention of all Contracting Parties.

The Council also noted that its recommendation at the June 1986 Meeting had not resulted in improvement on the submission of data from non-member countries which fish in the Regulatory Area and endorsed the recommendation of STACREC that the Fisheries Commission and General Council take note that fishing by non-member countries in the Regulatory Area has become a significant factor in the exploitation of the resources there but that statistics on many of these activities are not available to the Scientific Council. This has an adverse effect on the ability of the Scientific Council to provide advice, and the General Council and Fisheries Comission are requested to make further efforts to resolve this problem.

The Council noted that its earlier proposals on effort prorating and statistical boundary changes in the Gulf of Maine-Georges Bank region have been implemented. The Council was informed that the description of the western end of the boundary between Div. 45 and 4 T in the Gulf of St. Lawrence was unsatisfactory, and endorsed the proposal of STACREC that, if the General Council wishes to resolve the issue of the boundary between Div. $4 S$ and $4 T$, the coordinates of Pte. des Monts should be established and the boundaxy should be allowed to "run in an easterly direction along a rhumb line to a point at $49^{\circ} 25^{\prime} N, 64^{\circ} 40^{\prime} \mathrm{W} . \mathrm{I}^{\prime \prime}$.
2. Biological Sampling

The Council endorsed the proposal of STACREC that the Secretariat contact the scientists who are responsible for the submission of sampling data to insure that previous lists of 1979-84 data are verified prior to their collation into a single volume for publication. Outstanding data for 1985 and 1986 should also be included in the request.
3. Biological Surveys
a) Stratification schemes

The Council was informed that two new stratification schemes had been developed: one for Div. $2 G$ and $2 H$, and the other for Subarea 0 and adjacent parts of Subarea 1 . Since these schemes were designed with priority on surveying deepwater species, the Council agreed that analyses should be undertaken to evaluate the schemes with regard to the distribution of all groundfish species in the region.
b) Survey design procedures

The Council noted that the ad hoc Working Group had begun its work at this meeting with plans for analyses of the available data to be considered at meetings in September 1987 and June 1988.
4. Other Matters
a) List of fishing vessels

The Council noted that some Contracting Parties were remissive in updating their lists to the status of 1986 and asked the Secretariat to again attempt to obtain the outstanding data.
b) Conversion factors

The Council noted the request of the Fisheries Commission for comment on a paper which summarized a recent study on conversion factors for salted cod. Mr. R. Wells (Canada) agreed to make arrangements for presentation of the results of the study in September 1987.

The Council emphasized that, when the Fisheries Commission establishes working groups (such as the one on conversion factors) to study matters requiring scientific advice, benefit would be gained by having a representative of the Scientific Council present at meetings of such a group. The Council agreed to bring this matter to the attention of the fisheries Commission.
c) Scientific observer program

Details of the current scientific observer program were developed by the Scientific Council in 1980. The history of the program predates 1975, when ICNAF adopted a similar scheme, but it was not implemented for logistical reasons until NAFO agreed that the scheme should be implemented on a bilateral basis.

In 1980, the Council noted that the level of sampling on an aggregated basis appeared to exceed the minimum levels established in 1974, but, in fact, there were major discrepancies in many stock, vessel class, country, and quarter-of-year categories. It was considered that these deficiencies reflected, in many cases, the difficulties of assigning national observers to the fishing fleets on a year-long basis. In developing the observer program, the Council described the data to be collected, the general format of data records, and the methods of data exchange, but the fisheries to be covered were not identified. The Council considered that this was a matter to be resolved in discussions between the bilateral parties to each agreement.

The Council was concerned about the decline in coverage during 1983-86 from 145 to 34 observer days and that reports were presented only by Canada. It was indicated that a much higher level of international support is required.

III. PUBLICATIONS (APP. III)

1. Review of Scientific Publications

The Council noted that only one issue of the Journal (Vol. 7, No. 1) was possible in 1986, due to the low level of manuscript submissions, and that the second part of the volume would be published in 1987. The Council's Studies (No. 10 and 11) and Reports (for 1986) were published as planned, but the Statistical Bulletin (Vol. 34) was not available until December 1986 due to delays in the acquisition of some national statistics for 1984.
2. Editorial Matters Concerning Publications

The Council was pleased to learn that Dr. J. M. Colebrook was appointed Associate Editor for Biological Oceanography earlier in the year, but was saddened that this was necessary because of the untimely death of Dr. G. A. Robinson. The Council accepted STACPUB's proposal to continue the present situation of not having a senior editor but to rely on Associate Editors for full scientific editing of Journal papers.

In view of the impending retirement of the Assistant Executive Secretary, the Executive Secretary is requested to take into account the Council's wishes that the replacement should be qualified to assume the editorial responsibilities for the Studies and Journal publication series, currently being discharged by Mr. Hodder, and that these duties be a part of the job responsibilities.
3. Promotion and Distribution of Publications

The Council encouraged STACPUB and the Secretariat to pursue further the initiatives that are associated with invitational papers, clarification of editorial policy regarding review papers, and advertizing of the Journal.
4. Papers for Possible Publication

The Council noted that positive response from authors, whose papers were nominated by STACPUB for possible pubilation, averaged 65% during 1980-84 but declined to 47% in 1985 and remained at that
low level in 1986. Selection of papers from the 1987 SCR documents, presented at the January and June meetings, resulted in 11 papers being identified by STACPUB as appropriate for the Journal or Studies.

5. Other Matters

a) The Council agreed that a proposal to microfiche the NAFO documents should be considered as soon as income from the sale of ICNAF microfiche approaches the production cost.
b) The Council noted STACPUB's appreciation to the Assistant Executive Secretary (V. M. Hodder) for his role in fostering the Journal and Studies.

IV. RULES OF PROCEDURE

1. Implementation of Amended Rules

The Council's Rules of Procedure were amended at the Annual Meeting in September 1986 to allow for the existence of a quorum whenever formal voting is necessary (SCS Doc. 86/28). Regarding implementation of the amended Rules, the Executive Secretary reported that he had received five proxy votes of abstention (Bulgaria, Iceland, Norway, Poland and Romania), if the need should arise for a quorum and a formal vote at this meeting.
2. Formulation of Rules Common to the Three Main Components of NAFO

The Executive Secretary noted that discussions were initiated by the General Council at the 1986 Annual Meeting (GC Doc. 86/4) but had not yet been finalized. If and when such common rules are developed and approved by the General Council, they would then be presented to the Scientific Council and the Fisheries Commission for consideration.

v. COLLABORATION WITH OTHER ORGANIZATIONS

1. Combined Assessment of Cod Stocks off West and East Greenland

The Council noted that the ICES Working Group on Cod off East Greenland met in early 1987 and undertook a combined assessment of the East and West Greenland cod stocks (without management advice for the West Greenland stock). Relevant sections of the report of the lCES Working Group were extracted (SCR DOC. 87/55) and used as the basis for developing management advice for Subarea 1 cod at this meeting. Because this procedure will be continued routinely in future years, its inclusion in future agenda was considered unnecessary.
2. Proposal for Joint ICES/NAFO Working Group on Seals

The Council reviewed the long-standing invitation from lCES that there be a joint ICES/NAFO working group on seals. It was noted that consideration of a number of possible topics concerning seals would involve information from both the NAFO and ICES areas and that a joint working group would be an appropriate forum for such consideration. The Council was, however, of the opinion that, before accepting the invitation of ICES, it would be desirable to explore the mechanism for referring topics to the working group, particularly questions that might relate predominantly to the NAFO Area and/or to areas of coastal state jurisdiction.
3. Thirteenth Session of CWP, February 1987

The Council was informed that the CWP (Coordinating Working Party on Atlantic Fishery Statistics) met in February 1987 at FAO, Rome, Italy, and that the Executive Secretary (J. C. E. Cardoso) and the nominated country representative (D. B. Atkinson, Canada) attended on behalf of NAFO. Matters of relevance to NAFO were dealt with by STACREC (see Appendix 11).

VI. Future sCientific meetings

1. Annual Meeting and Special Session in September 1987

The Scientific Council will meet in conjunction with the Annual Meeting of Nafo during 14-18 September 1987 at the Lord Nelson Hotel, Halifax, Nova Scotia, Canada. That meeting will be preceded on 9-11 September 1987, also at the Lord Nel son Hotel, by the special session on 'Biology and Ecology of Demersal Resources of the North Atlantic Continental Slopes, with Emphasis on Greenland Halibut and Grenadiers'.
2. Scientific Council Meeting, June 1988
mental Subcomittee, will meet at the Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada, during 1-16 June 1988.
3. Annual Meeting and Special Session in September 1988

The Scientific Council, considering that the Annual Meeting is scheduled for 6-10 September 1988, reaffirmed its earlier tentative decision that the special session be held on 12-14 September 1988. The theme for that session is "Impact of Changes in Environmental Conditions in the North Atlantic on Distribution, Availability and Abundance of Marine Species, with Particular Emphasis on the Labrador and Grand Bank Regions during the Early 1980's'.
4. Scientific Council Meeting, June 1989

Considering the need for the Secretariat to arrange for meeting facilities at the Bedford Institute of Oceanography well in advance of scientific meetings, the Council tentatively agreed to meet during 7-21 June 1989.

VII. ELECTION OF OFFICERS

1. Officers for 1987-89

The Chairman appointed a small ad hoc nominating group (R. G. Halliday, V. A. Rikhter and A. Schumacher) to solicit the views of representatives of the Contracting Parties at this meeting regarding potential candidates for the offices open for election. The nominating group proposed that the following slate of candidates be put forward for election to the respective offices:

Chairman of Scientific Council
Vice-chairman of Scientific Council
Chairman of STACFIS
Chaiman of STACREC
Chairman of STACPUB

```
J. S. Beckett (Canada)
Sv. Aa. Horsted (Denmark-Greenland)
A. Maucorps (EEC)
A. Vazquez (EEC)
The Vice-chairman of the Scientific
Council becomes ex officio
Chairman of this Committee)
```

There being no further nominations, the Chairman noted that the six Contracting Parties present (Canada, Cuba, Denmark (Greenland), EEC, Japan and USSR) and the five proxies held by the Executive Secretary (Bulgaria, Iceland, Norway, Poland and Romania) constituted a quorum in accordance with the Rules of Procedure. The Chairman proceeded with the roll-call, which resulted in the above slate of officers being elected unanimously to take office at the end of the Annual Meeting in September 1987.

ViII. OTHER MATTERS

1. STACPUB Membership

The Council, noting the resignation of A. T. Pinhorn (Canada) from STACPUB, expressed its appreciation to him for serving the Committee continuously since June 1979. It was unanimously agreed that V. A. Rikhter (USSR) be appointed as a replacement. Current membership is as follows: J. S. Beckett (Chairman), R. G. Halliday (Canada), Sv. Aa. Horsted (Denmark-Greenland), S. Kawahara (Japan), M. G. Larraneta (EEC) and V. A. Rikhter (USSR).
2. Provisional Report of January 1987 Meeting (SCS Doc. 87/01)

The Council formally approved, with minor amendments, the summary report of its Special Meeting on Shrimp, held at Copenhagen, Denmark, during 28 January-02 February 1987.

The question of the need for future special meetings on shrimp, however, was discussed further, and the Council expressed regret that progress in determining reliable abundance and recruitment estimates of shrimp was proving to be difficult, and that the previously-used indices (commercial catch rates and photographic survey results) were now regarded as being less useful. It has become increasingly clear that only general guidance on potential shrimp yields is possible at present. Under these circumstances, the special meetings of the Council in January do not seem to allow more precise advice to be provided than would be possible in the previous June. Discussion centered on whether advice for shrimp management in the coming year should, in future, be provided at the June meeting of STACFIS, as for other species, or at a special meeting. The Council's clients would no doubt be pleased to receive the more timely advice in June. Also, this would allow shrimp biologists more time to analyze the previous year's data before the meeting and provide for more interaction with other participants in the Council meetings. Expenses of the Secretariat would be reduced. However, there are two outstanding concerns: one is how best to effect the transition to provision of advice in June, and the other is to ensure that the Scientific

Council would respond in a timely fashion if there should be a sudden significant downward trend in stock size and catch or an evident risk of that occurring.

With regard to the transition, advice could be provided at the September 1987 Meeting of the Council for the 1988 fishing season and at the June 1988 Meeting for the 1989 fishing season, and so on. Alternatively, one more special meeting could be held in January 1988 to provide advice for both 1988 and 1989, after which advice would be provided at June meetings. The Council prefers the first alternative, if it should prove to be practical, and therefore recommends that national representatives of the Scientific Council ensure that all views, relevant to provision of management advice for shrimp in Subareas $0+1$ and in Denmark Strait for 1988, are made available to the September 1987 Meeting. The Council would prefer that the shrimp experts attend that meeting, but, in any case, the representatives should come prepared to deal with this item. Only if agreement cannot be reached on advice for 1988 will the Council make provision for a special meeting on shrimp in January 1988.

The second concern about assessing the stocks in June is that events in the current fishing season cannot be adequately taken into account when formulating advice for the next season. Shrimp is a short-lived species, and the fisheries depend heavily on recruiting year-classes. Recruitment failure could result in a rapid decline in stock abundance. A rapid curtailment of the fishery may be the necessary response to such an event if future resource productivity is to be protected. In actual fact, it is questionable how quickly biologists can detect a recruitment failure, when the limitations of present abundance indices are considered. However, the shrimp resources in the NAFO Area lie within coastal state jurisdiction, and these states have full authority to curtail fishing at any time. Such action need not be contingent upon advice from the Scientific Council. If the advice of the Council is required, however, the Chairman has the authority to convene a special meeting at any time upon the request of a coastal state (Article $\mid x-3$ of the NAFO Convention). It does not appear, therefore, that this concern in itself provides sufficient justification for continuing the January special meetings.

The Council may reconsider the situation, if there is sufficient improvement in methods and data to allow more precise advice to be given before the start of the fishing period, for which the TAC is set (calendar year at present). The Council will, therefore, discuss the likelihood of such improvement of data at its meeting in September 1987. It would also be relevant to know whether advice in June for the coming year could be managed by provisional TACs and quotas which could be adjusted, if the information during the year points to a need for such an adjustment.

3. Position of Assistant Executive Secretary

The Council discussed briefly the impending retirement of the Assistant Executive Secretary. The Chairman and Vice-chairman were requested to meet with the Executive Secretary to offer the services of the Scientific Council in developing an updated job description for the position and in preselection procedures. It was noted that the General Council and Fisheries Commission should also be involved.
4. Agenda for September 1987 Meeting

The Council discussed and tentatively agreed on the provisional agenda for its meeting in September 1987.

IX. ADJOURNMENT

There being no further business, the Chairman expressed his appreciation to the Chairmen of the Standing Committees (W. R. Bowering, R. Dominguez and J. S. Beckett) and the Environmental Subcommittee (M. Stein), the Convener of the Working Group on Survey Design Procedures (W. B. Brodie), the rapporteurs and all other participants for their cooperation and contribution to the success of the meeting, and the Secretariat staff for their usual efficient work in organizing and servicing the meeting.

The Chairman, on behalf of all members of the Council, especially addressed the Assistant Executive Secretary (V. M. Hodder) who will be retiring later in 1987 after serving ICNAF and NAFO for 16 years. He expressed sincere thanks to Mr. Hodder for the inestimable and eminent contribution that he has made to the Council's work since its institution in 1979, noting also his contribution to the Council's predecessor (ICNAF's Standing Committee on Research and Statistics) from 1971 to 1979, and wished Mr. Hodder a long and happy retirement.

The Committee met at the Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada, during 3-16 June 1987, to consider and report on various matters that were referred to it by the Scientific Council, particularly with regard to the provision of scientific advice on the management of certain finfish and invertebrate stocks in Subareas 0 to 4 (see Part D, this volume, for agenda). Representatives attended from Canada, Cuba, Denmark (Greenland), EEC, Japan and USSR, and observers were present from USA.

Discussions on all matters except environmental research took place within the Committee as a whole during the present meeting, and various scientists, designated by the chairman of STACFIS, assisted in the initial preparation of draft reports on the various topics that were considered by the Committee (Sections l-III, V-VIIl below). The report of the Subcommittee on Environmental Research (Chairman: M. Stein) is summarized in Section IV below and given in detail in Annex 1.

I. FISHERY TRENDS

i. Introduction

For the second year in succession, sufficient STATLANT 21 A reports were available for the Secretariat to compile provisional nominal catches for the preceding year. Provisional data for 1986 are tabulated in SCS DoC. 87/20. The available data from France were not compatible with the STATLANT requirements and, therefore, could not be inciuded. in the computer-generated tabulations of the summary document. However, for the subarea tabulations in Table 1, French data for Div. $2 J+3 K L$ and Div. $3 P n+4 R S$ were included under Subareas 3 and 4 respectively. Much of the 1985 data in Table 1 are based on final STATLANT 218 statistics, but the 1986 data are from provisional STATLANT 21A reports to the Secretariat since 15 April 1987.

Table 1. Provisional nominal catches (000 tons) by subarea for 1985 and 1986 . (+ indicates less then 500 tons.)

2. General Trends for the Northwest Atlantic

The provisional overall catch (round fresh weight) of all finfish and invertebrates was 2.88 mil1 ion (metric) tons in 1986, a 6.7% increase over the 1985 catch of 2.70 milli ion tons. The total "groundfish" catch, which represented 46% of the overall catch in 1986, was 9% greater than in 1985 (1.22 and 1.33 million tons in 1985 and 1986 respectively), with significant increases being noted for haddock (8%), redfish (34%), silver hake (5%), pollock (17%) and flounders (17%). The total "pelagic fish" catch, which represented 1.8% of the overall catch in 1986, decreased significantly (15\%) from 610,000 tons in 1985 to 518,000 tons in 1986, due to decreased catches of mackerel (13\%) and menhaden (26\%). The total "other finfish" catch, which represented about 5\% of the overall catch in 1986, increased by 59% from 97,000 tons in 1985 to 154,000 tons in 1986, due largely to an increase (61%) for capelin. The total catch of "invertebrates", which represented 30% of the overall catch in 1986, increased (13\%) from 774,000 tons in 1985 to 876,000 tons in 1986, due mainly to increased catches of scallops (18%), other molluscs (102%), shrimp (16%) and crabs (36\%).
3. Fishery Trends by Subarea
a) Subarea 0

The total nominal catches of all species in 1985 and 1986 were about 3,000 tons and consisted mainly of shrimp.
b) Subarea 1

The total catch of all species increased (9\%) from 82,000 tons in 1985 to 89,000 tons in 1986, due mainly to an increase for shrimp (18%), which represented 67% of the overall catch in 1986. The cod catch continued its decline from 15,000 tons in 1985 to only 7,000 tons in 1986. Greenland halibut has moved into second place with a catch of 9,000 tons.
c) Subarea 2

The total nominal catch of all species increased (22\%) from 41,000 tons in 1985 to 50,000 tons in 1986, due mainly to a doubling of the cod catch (12,000 to 25,000 tons) despite a 41% decrease in capelin from 17,000 to 10,000 tons. Greenland halibut occupied third place at 8,000 tons.
d) Subarea 3

The total nominal catch of all species increased (26\%) from 608,000 tons in 1985 to 764,000 tons in 1986, continuing the rise from 533,000 tons in 1984. Increases were noted for cod (8%), redfish (44%), flounders (38%) and other finfish (including capelin) (116%). In 1986, cod represented 49% of the overall catch in this subarea followed by redfish (15\%), American plaice (9\%) and capelin (9\%).
e) Subarea 4

The total nominal catch of all species increased slightly (2\%) from 766,000 tons in 1985 to 781,000 tons in 1986. Increased catches were noted for haddock (22%), redfish (15\%), silver hake (11%), flounder (20%) and lobster (16%), and small decreases were recorded for cod (4%) and herring (7%) . Cod (27%) and herring (22%) were the most significant components of the overall catch in the subarea, followed by silver hake (11\%), redfish (6%) and pollock (6%).

f) Subarea 5

The total nominal catch of all species changed very slightly from 399,000 tons in 1985 to 397,000 tons, following a deciine from 427,000 tons in 1984. The most significant changes in catches from 1985 to 1986 were increases for pollock (29\%), herring (23\%), scallops (25\%) being offset by decreases for cod (27%), haddock (19%) and flounders (11\%). In 1986, "invertebrate" species made up about 47% of the total catch (44% in 1985), followed by "groundfish" at 36% (40% in 1985) and "pelagic fish" at 16% (14% in 1985).
g) Subarea 6

The total nominal catch of all species was essentially the same in 1986 (800,000 tons) as in 1985 (803,000 tons). Significant changes in catches from 1985 to 1986 were increases for "other molluscs" (179\%) and crabs (117\%) and decreases for mackerel (24\%), menhaden (26\%) and squids (18\%). Invertebrate and pelagic species comprised 63% and 31% respectively of the overall catch in 1986 (1985 values were 54% and 41% respectively).

II. STOCK ASSESSMENTS

1. Cod in Subarea 1 (SCR Doc. $87 / 28,30,31,32,55,70 ; \operatorname{SCS} \operatorname{Doc} .87 / 5,14)$
a) Introduction

The fishery for cod in Subarea 1 is partly an offshore fishery, undertaken mainly by large trawlers with bottom otter trawls, and partly a coastal and fjord fishery in which the major part of the catch is usually taken by poundnets. Longlines, gillnets and handlines are operated both inshore and offshore.

Due to the special stock situation in 1986, not least the expectation of many small cod (1984 year-class) in catches by poundnet and to some degree also by trawl, special fishery regulations were made in 1986 by Greenland. Besides setting an overall TAC of 12,500 tons, a ban was introduced on the directed trawl fishery as well as on the poundnet fishery, with possibilities of exemptions for poundnets in cases where catches could be expected to consist mainly of large fish.

The composition of the 1986 catch by gear differed greatly from that of previous years. However, only trawler landings are recorded by gear. Trawlers accounted for only 16% of the total Subarea 1 cod catch in 1986, and cod was a by-catch in the fishery for redfish. The proportion of poundnet-caught cod is not known precisely, but it is estimated to be less than that for trawlers. Catches by trawlers were taken in Div. 1E and $1 F$ exclusively, whereas catches by other gears were more evenly distributed in Div. 18 to 1 F although relatively low in Div. iC. Catches and TACs in recent years are listed in Table 2.

Table 2. Cod in Subarea 1: catches and TACS for the entire area and catch-per-unit effort for Greenland trawlers (500-999 GRT) in Div, 1D and $1 E$.

	1977°	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
Trawlers	46	53	57	16	14	29	42	20	7^{1}	1^{1}	
Other vessels	27	20	42	38	39	27	21	13	8^{1}	6^{1}	
Total (000 tons)	73	73^{2}	99^{2}	54^{2}	53	56	63	33	15^{1}	7^{1}	
TAC (000 tons)	31^{3}	-4	-4	20^{3}	50	62	62	68	28.5	12.5	12.5
CPUE (tons/hr)	1.29	33.3	2.38	1.24	3.26	2.21	1.36	0.99	0.7		

1 Provisional data.
${ }_{2}$ Estimates used for assessments.
3 Quota for offshore fishery only.
4 Catches limited to Greenlandic fishery and to bycatches.
Since a directed trawl fishery was not allowed in 1986 , the catch-per-unit-effort series could not be extended to include 1986. During the $1955-68$ period, catches fluctuated between 234,000 and 451,000 tons (1962). Catches declined gradually after 1968 to a low of 33,000 tons in 1976, after a number of years with recruitment failure. Recruitment of the very abundant 1973 year-class in $1976-77$ resulted in increased catches up to 1979 . During $1980-$ 83, catches fluctuated between 53,000 and 63,000 tons but decreased thereafter by about 50% each year of a low level of only 6,600 tons in 1986 , the lowest catch on record since ICNAF began compiling statistics.
b) Commercial fishery data
i) Age composition

The commercial Greenland catch was rather poorly sampled in 1986, especially in terms of spatial coverage, but the samples covered catches by all gear types. Nevertheless, since catch statistics are not reported by gears other than trawl, the figures for catch-in-numbers by age-group are very rough estimates. However, there is no doubt that the 1979 year-class continued its role as the most important year-class in the landings. This year-class made up some 40% by number and about 50% by weight of the 1986 nominal catch.
ii) Weight-at-age data

In the $1979-85$ period, mean weight-at-age decreased, but the 1986 samples seem to show that the mean weight-at-age figures were higher in 1986 than in 1985 . With the continued role of the 1979 year-class as the dominating one, the overall mean fish weight in the landings, therefore, also increased in 1986 , being 2.34 kg . The
restrictions on the trawl and the poundnet fishery have most likely also influenced the overall mean weight, because these gears, especially poundnets, tend to catch smaller fish than the other gears.
i) Stock size

Stratified-random bottom-trawl surveys off West Greenland have been conducted in late autumn since 1982 by research vessels from the Federal Republic of Germany. Cod biomass and abundance estimates for the total survey area off West Greenland (19,864 nm^{2} in 1982 and 1983, and $20,133 \mathrm{~nm}^{2}$ after inclusion of stratum 4 in 1984) are given in Table 3. The confidence intervals are given at the 95% level of significance.

Table 3. Cod in Subarea 1: estimates of biomass and abundance (with 95% confidence limits) and mean weights from autumn research vessel surveys off West Greenland, 1982-86.

Year	Number of valid sets	Biomass (tons)	Abundance $(' 000)$	$\overline{\mathrm{w}}$ (kg)
1982	98	$179,934 \pm 37.0 \%$	$109,039 \pm 36.1 \%$	1.65
1983	142	$98,843 \pm 28.5 \%$	$59,362 \pm 26.5 \%$	1.67
1984	158	$24,945 \pm 39.7 \%$	$16,104 \pm 39.1 \%$	1.55
1985	114	$35,213 \pm 68.7 \%$	$55,886 \pm 34.7 \%$	0.63
1986	142	$76,220 \pm 30.8 \%$	$134,716 \pm 31.8 \%$	0.57

The surveys in 1982, 1983 and 1985 were carried out in November-December and those in 1984 and 1986 were undertaken in October-November. The R / V Walther Hervig, was used for all surveys except in 1984 when, for technical reasons, it was replaced by the R / V Anton Dohrn. However, experience from a $13-y e a r ~ t i m e ~ s e r i e s ~ o f ~ b o t t o m ~ t r a w l ~ s u r v e y s ~ i n ~ D i v . ~$ 2 J (Labrador) has confirmed that the fishing power of both vessels does not differ significantly if equal standard survey gears as well as towing speeds are used. .' From 1982 to 1984, the survey results reveal a drastic decline in cod biomass and abundance for all divisions. Confirmation of the reduced stock size in 1983 and 1984 was also obtained from continuous echo-sounder recordings throughout the survey area and from the trends in commercial catch and effort (Fig. 1). The survey results obtained at the end of 1985 and 1986 indicate a stabilization of the biomass (age 4+) at about the low level of 1984. The total stock biomass has increased since 1984 by a factor of 3 because of the good 1984 year-class and, to a lesser extent, the 1985 year-class.
ii) Age composition

According to the 1986 trawl survey results, the year-classes which predominated among the harvestable age-groups (4 and older) were the 1981 year-class (59% by number) followed by the 1979 year-class (24\%). However, with respect to the total age distribution in the survey catches, about 80% (by number) were small cod of the 1984 year-class. This year-class seemed to be most abundant in Div. 18 and 1C. Also, 1-year-old cod were caught (8%), whereas, in contrast to the 2 previous years, no $0-g r o u p$ cod were recorded in the survey catches of 1986.

An inshore gillnet survey, carried out by Greenland scientists in July-August 1986 in Div. 1B, 1D and 1F, also showed the 1984 year-class as a widely distributed and abundant year-class. The highest abundance of this year-class was observed in Div. 1B. The 1985 year-class was also observed but showed its highest abundance in Div. $1 F$ and was generally less abundant than the 1984 year-class (17\%).
iii) Maturity-at-age

Data from the 1986 groundfish survey were used to calculate the maturity ogive, which is different from the one previously used and also confirmed by 1985 data. It shows an increase in the maturation rate for age-groups 5-8. The observed increase in growth of the respective age-groups is interpreted as supporting evidence for this development because maturation is more related to fish length than to age (see Table 6 for 1986 maturity rates).
iv) Environmental data

The winter of 1985-86 was relatively mild at West Greenland, and the surface layer of the West Greenland waters was, therefore, not cooled as much as normal. Surface

Fig. 1. Cod in Subarea 1: trends in total and age $4+$ survey biomass, CPUE of Greenland trawlers, and inshore catches, 1982-86. (CPUE index not continued in 1986 due to restrictions on commercial fisheries.)
temperatures were 5 lightly above normal throughout the year. The mid-June temperature over the top of the Fylla Bank was $2.18^{\circ} \mathrm{C}$.

The deeper layers (150-600 m) west of the fishing banks showed temperatures well above normal, indicating a strong influence of the lrminger Current component in 1986.

Assessment results (SCR Doc. $87 / 55,70$)
The results of the most recent stock assessment are presented in Table 4. The stock in numbers-at-age at the end of 1986 has been calculated from the abundance estimate of the October-November survey by applying $2 / 12$ of the natural mortality and deducting the NovemberDecember catch in numbers-at-age. Total mortality (Z) was calculated from this estimate and the corresponding one from the 1985 survey for each age-group. The total mortality estimates were apportioned to natural mortality $(M=0.2)$, fishing mortality (F) and the emigration coefficient (E).

The average fishing mortality in 1986 for age 6 and older was estimated to be 0.36 , which is only about 52% of that for the previous year (0.69). This reduction in F corresponds to the reduction in catch in 1986.

For the younger age-groups (3-5), the emigration coefficients as well as the Z-values are negative. This can be interpreted as additional recruitment to the stock covered by the survey. The estimated emigration coefficients for ages 6-8 are higher than the value of 0.05 traditionally used in catch projections which were derived from earlier tagging experiments at a time when mature cod were more evenly distributed in all divisions of Subarea 1 . In recent years, nearly the whole stock of mature cod has been found in the southernmost divisions. It has been shown from earlier tagging experiments that cod tagged in the southern area migrate out of the area to a much larger extent than cod in the northern part of the area. The combined estimate for age 6 and older cod in 1986 is 0.24 , and this value was used to calculate the number of emigrants to East Greenland and Iceland in 1987 and 1988 in the projection.

The emigration coefficients, referred to above, are associated with about 1.7 million fish of age 6 and older emigrating in 1986. This order of magnitude is less than half the estimate

Table 4. Cod in Subarea 1: assessment table for 1986 ($Z=$ total mortality, $F=$ fishing mortality, $M=$ natural mortality, and $E=$ emigration coefficient; coefficients in parentheses are unweighted means).

$\begin{aligned} & \text { Age } \\ & (\mathrm{yr}) \end{aligned}$	$\begin{aligned} & \text { Year- } \\ & \text { class } \end{aligned}$	Surveystock	$\begin{aligned} & \text { Nov-Dec } \\ & \text { catch } \end{aligned}$	Stock (000)		$\begin{gathered} \text { Catch } \\ 1986 \end{gathered}$	Mortality coefficients				Losses ${ }^{\text {- due to }}$	
				1 Jan	31 Dec		z	F	M	E	M	E
				(A)	(B)	(C)	(D)	(E)	(F)	(6)	(H)	(I)
3	1983	3,667	4	1,001	3,543	11	-1.264	0.005	0.2	-1.469	402	-2,955
4	1982	574	16	618	539	112	0.137	0.194	0.2	-0.257	116	- 149
5	1981	7,621	107	7,137	7,266	701	-0.018	0.097	0.2	-0.315	1,440	-2,270
6	1980	920	57	2,360	834	317	1.040	0.216	0.2	0.624	293	916
7	1979	3,088	199	5,845	2,791	1,185	0.739	0.287	0.2	0.252	826	1,043
8	1978	104	2	281	99	12	1.043	0.069	0.2	0.774	35	135
$9+$	<1978	516	74	628	426	459	0.388	0.882	0.2	-0.694	104	- 361
Total	$3+$			17,870	15,498	2,797	(0.295)	(0.250)	0.2	(-0.155)	3,216	-3,641
Total	6+			9,114	4,150	1,973	(0.803)	(0.364)	0.2	(0.239)	1,258	1,733

Col. (B) : Survey stock in October 1986 reduced by
Col. (G): $\quad E=Z-(F+M)$.
natural mortality and Nov-Dec catch.
Col. (H): M loss $=(\mathrm{A}) \times \mathrm{M} / \mathrm{Z}(1-\exp (-Z)$.
Co1. (I): E loss $=(A)-(B)-(C)-(H)$.
Col. (D): $2=2 n[(A) /(B)]$.
from the assessment of the East Greenland stock which indicates that about 4.9 million cod immigrated to that stock from West Greenland. Part of the explanation for this difference is the variability in survey results, but the fact that the nearshore area where large cod are known to exist cannot be covered by the survey may also play a role.

Historically, there was a declining spawning stock biomass from the high level at the beginning of the 1960's to the very low level in the mid-1970's. This trend was reversed after 1976 when the very abundant 1973 year-class reached spawning size. However, the slight recovery of the spawning stock was terminated due to exploitation and emigration, particularly during 1983 and 1984. The results of the more recent assessments based on groundfish surveys are given in Table 5.

Table 5. Subarea 1 cod: trends in spawning stock biomass, fishing mortality, and catch, 1983-86.

Year	Jan 1 SSB $(000$ tons $)$	F (ages 6-9)	Catch $(000$ tons)
1983	110	0.46	58
1984	55	0.54	31
1985	15	0.69	15
1986	22	0.36	7
1987	26		

It was pointed out (SCR Doc. $87 / 30$) that one source of error in using the offshore trawl survey estimates is the fact that the survey does not include the area within the 3 nm coastal zone adjacent to the survey area. The proportion of the stock present in this zone is therefore not included in the estimates. The respective area is measured to be equivalent to about 40% of the offshore survey area. Longline surveys in four selected small nearshore areas demonstrated that small as well as large cod are present in the coastal zone. However, the CPUE estimates from these surveys cannot directly be compared with the results of the offshore trawl survey due to the different gears used.

Based on the assumption that cod density is the same in both the offshore and coastal areas, an additional assessment was carried out with the area extended by about 40%. Compared to the original assessment, the results show a slight decrease in total mortality and a decrease in fishing mortality by about 30%. The emigration rate increased by 37%. As a result of both the increased emigration rate and the higher initial stock size, the estimated number of emigrants of age 6 and older increased by about 77% to about 3 million cod. This approximates the corresponding estimate from the East Greenland assessment.

In evaluating the extended-area assessment, the basic assumption of equal density has to be remembered as well as the fact that the length distributions from the inshore and offshore surveys are fundamentally different. About 95% of the trawl catches are smaller than 35 cm , whereas 90% of the longline catches consist of fish above 55 cm . On these grounds, the original assessment was accepted as basis for management advice, keeping in mind that the results have to be considered as minimum estimates.

Recruitment prospects

Year-class of 1983. Although survey data indicate a higher abundance at age 3 for this yearclass than that observed for the 1981 year-class, the 1983 year-class is still considered to be small.

Year-class of 1984. The 1986 survey results confirmed the 1984 year-class as being the strongest since the 1973 year-class. Survey abundance estimates increased from 37 miliion fish in 1985 to 108 million fish in 1986 . The year-class was also observed to be highly abundant in inshore areas during 1985 and 1986. This year-class was not fully recruited to the survey gear and, therefore, the abundance estimate from the survey cannot be used directly for the projection. On these grounds, the conventional estimate for a good yearclass of 200 million cod at age 3 , which was derived from historical data, has been used.

Year-class of 1985. The observed abundance index of 0 -group cod off East Greenland from the lcelandic 0-group survey in August 1985 was the third highest since 1973 but considerably lower than values for 1973 and 1984. The catches of 0 -group cod in the bottom-trawl survey off West Greenland in November-December 1985 were four times higher than in 1984 . The survey abundance estimate at age 1 in 1986 was, however, only one-third of the age 1 abundance estimate of the 1984 year-class. From inshore young cod surveys, the size of the 1985 yearclass was estimated to be approximately 17% of the 1984 year-class. On that basis, the 1985 year-class was estimated to be 50 million cod at age 3 in 1988.

Year-class of 1986. The abundance index from the lcelandic 0 -group survey off East Greenland in August 1986 was extremely low. No 0-group cod were observed in the bottom-trawl survey catches off East and West Greenland in the autumn of 1986.
f) Projections of catch and stock size for 1987-90

The parameters which were used to project catch and biomass of the cod stock (age 3+), as well as the spawning stock biomass ($S S B$), are given in Table 6 . The numbers by age-group at the beginning of 1987 were derived from results of the 1986 groundfish trawl survey. The relative fishing mortalities at ages 3 and 4 were estimated from a catch-curve analysis of the 1973 year-class, which simulates a situation similar to the present one when a strong year-class recruits to a depleted stock.

Table 6. Cod in Subarea 1: stock size at beginning of 1987 and other parameters used in projections of stock size and catch.

Age (yr)	Stock size I Jan 1987 (000)	Relative M^{1}	Relative F^{2}	Mean weight (kg)	Percent mature
3	200,000	1.0	0.216	0.65	-
4	3,543	1.0	0.721	1.04	3
5	539	1.0	1.0	1.86	27
6	7,266	2.2	1.0	2.09	81
7	834	2.2	1.0	2.71	98
8	2,791	2.2	1.0	3.16	100
9	99	2.2	1.0	4.59	100
$10+$	426	2.2	1.0	4.71	100

1 Mean emigration coefficient for ages $6+(0.24)$ is incorporated in the relative M values.
2 Estimates of discards at age 3 (2/3) and age $4(1 / 10)$ are incorporated in the relative F values.

Projections were carried out for three different catch levels in 1987: (i) 12;500 tons corresponding to the TAC set by Greenland; (ii) 6,250 tons corresponding to half the TAC and close to the 1986 catch; and ($\mathrm{i} i \mathrm{i}$) 18,750 tons (i.e. 50% higher than the TAC) to illustrate the consequences of a higher catch.

Management options were selected to cover the range from $F=0.2$ to $F_{\text {max }}=0.62$. Fig. 2 illustrates the projected spawning stock biomass at the beginning of 1989 , implied by catches in 1988 corresponding to fishing mortalities between 0 and 0.8 and assuming a catch of 12,500 tons in 1987 . The results of the projections are given in Table 7. They show that, with continued fishing at the $F_{0.1}$ level (0.34) in 1988 and 1989 , spawning stock biomass would increase at the beginning of 1990 to levels between 100,000 tons and 120,000 tons, depending on the exploitation of the stock in 1987.

Fig. 2. Cod in Subarea l: calculated yield in 1988 and spawning stock biomass (SSB) at beginning of 1989 for various levels of fishing mortality in 1988.

Table 7. Cod in Subarea 1: projections of age 3+ biomass and spawning stock biomass (SSB) at beginning of year and catch during the year for different management strategies (biomass and catch are in thousands of tons).

Year	Parameter	1987 catct $=6,250$ tons				1987 catch $=12,500$ tons				1987 catch $=18,750$ tons			
		$\begin{aligned} & \mathrm{F}=0.20 \\ & \left(\approx_{87}\right) \end{aligned}$	$\begin{aligned} & F=0.34 \\ & \left(F_{0.1}\right) * \end{aligned}$	$F=0.40$	$\begin{aligned} & \mathrm{F}=0.62 \\ & \left(\mathrm{~F}_{\max }\right) \end{aligned}$	$\bar{F}=0.20$	$\begin{aligned} & \bar{F}=0.34 \\ & \left(F_{0.1}\right) * \end{aligned}$	$\begin{aligned} & \mathrm{F}=0.42 \\ & \left(\sim \mathrm{~F}_{87}\right) \end{aligned}$	$\begin{aligned} & \mathrm{F}=0.62 \\ & \left(\mathrm{~F}_{\max }\right) \end{aligned}$	F=0.20	$\begin{aligned} & \mathrm{F}=0.34 \\ & \left(\mathrm{~F}_{0.1}\right) \star \end{aligned}$	$F=0.40$	$\begin{aligned} & \mathrm{F}-0.62 \\ & \left(\mathrm{~F}_{\max }\right) \end{aligned}$
1987	B (3+)	163	163	163	163	163	163	163	163	163	163	163	163
	SSB	26	26	26	26	26.	26	26	26	26	26	26	26
	F(6-9)	0.192	0.192	0.192	0.192	0.415	0.415	0.415	0.415	0.675	0.675	0.675	0.675
	Catch	6.25	6.25	6.25	6.25	12.5	12.5	12.5	12.5	18.75	18.75	18.75	18.75
1988	B (3+)	221	221	221	221	209	209	209	209	196	196	196	196
	SSB	27	27	27	27	22	22	22	22	18	18	18	18
	F (6-9)	0.20	0.34	0.40	0.62	0.20	0.34	0.415	0.62	0.20	0.34	0.40	0.62
	Catch	22	36	41	59	21	33	40	55.	19	31	35	51
1989	B (3+)	276	253	244	213	264	242	231	204	250	230	222	195
	SSB	72	65	62	52	66	60	56	48	61	55	52	44
	F (6-9)	0.20	0.34	0.40	0.62	0.20	0.34	0.415	0.62	0.20	0.34	0.40	0.62
	Catch	41	60	66	80	39	57	64	76	37	54	59	72
1990	SSB	151	120	108	76	143	114	100	72	135	107	97	68

* $\mathrm{F}_{86} \approx \mathrm{~F}_{0.1}$

Yield-per-recruit curves (Fig, 3) illustrate the effects of increasing the age at which exploitation starts from age 3 to ages 4 and 5 . It can be seen that considerable gains in yield from the 1984 year-class can be achieved by not exploiting this year-class heavily in 1987. Depending on the level of fishing mortality, the gains in yield-per-recruit are of the order of 20% to 40% if exploitation is delayed by one year.
g) Expected distribution of the 1984 and 1985 year-classes in 1988 and 1989

In its request for advice last year, Denmark (on behalf of Greenland) requested that the expected spatial distribution of the 1984 and 1985 year-classes in 1987 and 1988 be described. STACFIS, in 1986, offered the following advice:
i) In the offshore area, the 1984 year-class could be expected to be abundant in all divisions from Div. 1B (southern part) to Div. 1F, probably gradually concentrating in Div. $1 C$ and 10 in the first years of its exploitable phase (from 1988). The 1985 yearclass was thought to have a more southerly distribution. The 1986 observations seem to point to the same advice.
ii) In the inshore area, the 1984 year-class was expected to be abundant in all divisions from Div. 1B to $1 F$. No advice was given on the expected inshore distribution of the

Fig. 3. Cod in Subarea 1: yield-per-recruit curves for first exploitation occurring at ages 3,4 and 5.

1985 year-class. The inshore gillnet survey seems to point to the year-class as becoming most important in the southern divisions (Div. 1F; Div. $1 E$ was not covered by the survey).
h) Information on size composition of catches in 1987-88

In its request for advice last year, Denmark (on behalf of Greenland) also requested that the expected length and weight distributions of the catches in 1987 and 1988 should be given, if possible, by gear types (SCS Doc. 86/12).

STACFIS at that time advised that more than half the cod of the 1984 year-class in the offshore area could be expected to be below 40 cm in 1987 and that a portion of the individuals would still be below that size in 1988. For the inshore area, STACFIS advised that even higher proportions would be expected to be small fish (below 40 cm) although big enough to be retained in poundnets. Also, in 1988, a considerable number of individuals of the 1984 yearclass were not expected to have achieved a length of 40 cm .

Data collected in 1986 do not lead to a revision of that advice, although mean weight-at-age seems to be increasing recently (see Section l.b). In the assessment and for the projections, STACFIS has used partial recruitment values of 22% for 3 -year-old cod and 72% for $4-$ year-old cod (the 1984 year-class in 1988).

Management considerations
It now seems evident that the 1984 year-class offers a chance to improve the stock situation for cod at West Greenland and also to improve the fishery. More good year-classes will have to follow rather soon if these improvements are to be maintained. In the present situation, management considerations have to concentrate on the use of the incoming recruits rather than
on very imprecise catch projections. STACFIS advises that the potential benefits from the new recruits of the 1984 year-class will be improved both in terms of stock size and in terms of yield over the 1988-90 period as a whole if exploitation of the 1984 year-class is kept at a minimum in 1987 and 1988.

Of the catches projected for 1987 , the 1984 year-class accounts for about 80% by number (including expected discards). The corresponding figures for the 1984 and 1985 year-classes in 1988 are 85% and 9% respectively. The possible great amount of discarding in 1987 and 1988 , likely to occur especially in poundnet catches, are not included in the projected yields and this should also be part of the management considerations aimed at keeping discarding at a low level.
2. Cod in Division 3M (SCR Doc. 87/19; SCS Doc. 87/13, 15, 18)
a) Introduction

Nominal catches in the 1963-1980 period ranged from 20,000 to 58,000 tons with an average of 32,000 tons. Stock biomass at the end of this period had declined and the TAC for 1980 was reduced substantially in order to allow rebuilding. Recent catches and TACs (000 tons) are as follows:

	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
TAC	25	40	40	13	12.7	12.4^{1}	12.4^{1}	13	13	13	13
Catch	27	33	30	10	14	13	10	13	14^{2}	15^{2}	

1 Excludes expected catches by Spain.
2 Provisional data.
b) Input data
i) Commercial fishery data

Samples of age compositions from the commercial fishery in 1986, provided by Spain and Portugal, showed that cod of ages up to 6 years made up the bulk of the catches. The 1984 year-class (as 2-year-olds) accounted for $20-30 \%$ of the total in samples from Portuguese otter trawlers. observations of gonads in June-August 1986 indicated that cod were maturing to spawn at smaller sizes than had been reported previously. Catch rates in 1986 in the Spanish pair-trawl fishery were at the 1983 level and somewhat below those of 1984 and 1985.
ii) Research survey data

Catches of cod in 1986 by USSR research otter trawl (codend with small-mesh liner) were composed mainly of age-groups 2-5 years. The 1984 year-class accounted for 47% of the total. Age 6 and older cod made up about 2% of the total.

From the USSR ichthyoplankton survey in April-May 1986 over the standard grid of stations, cod eggs in 1986 (232 eggs) were much more numerous than in 1985 (37 eggs) but nevertheless were at a low level of abundance. Largest concentrations were at the extreme western stations over depths greater than $1,000 \mathrm{~m}$.
c) Estimation of parameters

Cohort analysis was not attempted because of perceived inadequacies in the database for the 1980's (NAFO Sci. Coun. Rep., 1986, page 51).
d) Assessment results

From the following table, it is evident that biomass estimates from USSR surveys in 1983-86 were fairly stable but abundance estimates dropped sharply from 1984 to 1985:

	1983	1984	1985	1986
Abundance (millions)	65	61	37	37
Biomass (000 tons)	23	31	28	26

STACFIS noted that the average biomass (age $3+$) was in the range of $30,000-35,000$ tons in 1978-80 (NAFO Sci. Coun. Rep., 1984, page 41) in contrast to about 200,000 tons in the 1960 65 period. There is no evidence to indicate that the current average biomass has increased beyond the level of $30,000-35,000$ tons.

e) Catch projections

From the results of research-vessel surveys and samples of the commercial fishery, the 1984 year-class may be stronger than average. In any case, this year-class will be predominant in the stock and the fishery in 1987 and 1988.

STACFIS has already expressed its concern about the early exploitation of the 1980, 1981 and 1982 year-classes. The 1984 year-class has al ready been expioited in 1986 and will have been exploited for 2 years by the beginning of 1988 . If fishing is continued at current fishing effort levels, the yield from this year-class will be considerably less than the potential yield. STACFIS notes that the management strategy of the fisheries Cormission is not to increase the TAC beyond 12,965 .tons until a target biomass (age $3+$) of 85,000 tons has been reached. An increase in biomass from the current level to 85,000 tons is unlikely to be reached in the near future, because the year-classes of cod older than the 1980 year-class are now at a low level of abundance and the fishery exploits incoming year-classes at too early an age. To protect the remaining spawning stock biomass and to allow the present yearclasses, particularly the 1984 year-class, to contribute towards rebuilding the target biomass, STACFIS advises that a cessation of fishing would be the most appropriate management action.
3. Cod in Divisions 3 N and 30 (SCR Doc. 87/43, 53; SCS DoC. 87/13, 15, 18)
a) Introduction

Nominal catches declined from a high of 227,000 tons in 1967 to a low of 15,000 tons in 1978. Catches increased from 27,000 tons in 1984 to approximately 51,000 tons in 1986, the highest level since 1974, with approximately 85% of the 1986 catch being taken in Div. 3 N . Canadian catches were similar in 1985 and 1986, while catches by Spain and Portugal increased substantially over the same period. Recent TACs and catches (000 tons) are as follows:

	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
TAC	30	15	25	26	26	17^{1}	17^{1}	26	33	33	33
Catch	18	15	28	20	24	32	32	27	39^{2}	51^{2}	

1 Excludes expected catch by Spain.
2 Provisional data, including 4,700 tons estimated for non-members in 1985.
b) Input data
i) Commercial fishery data

Catch and effort data were avallable from ICNAF and NAFO Statistical Bulletins for the 1959-84 period along with provisional data for 1985. Catch and effort data for the Canadian fishery in 1986 were provided by the Canadian Department of Fisheries and Oceans. Catch-rate indices for otter trawls and pair trawls were derived separately from a multiplicative model by using data for the 1977-86 and 1977-85 periods respectively. Pair-trawl catch-rates, derived from official Spanish statistics for the 198286 period, indicated the same trend for overlapping years as the pair-trawl index estimated from the multiplicative analysis. The 1986 index, reported by Spain, was adjusted by the ratio of catch rates in both series for these overlapping years and appended to the 1977-85 pair-trawl catch-rate series. Catch and effort data for years since 1977 were considered to be better estimated and more reliable than those for earlier years.

In the time period under consideration, the two fisheries (Canadian otter-trawl and Spanish pair-trawl) have generally occurred in separate areas. The Canadian otter-trawl fleet has fished mainly inside the Canadian $200-\mathrm{mile}$ fishery zone, while the Spanish pairtrawl fleet has fished outside the zone. Catch-rate indices for the two gears were combined after weighting each to an estimate of the geographical area inside (80\%) and outside (20%) the zone. The combined index showed a general increase in catch rates from 1977 to 1984 with declines in both 1985 and 1986.
ii) Research surveys

Stratified-random research surveys were conducted by Canada during 1971-87, with the exception of 1983. To account for incomplete coverage in certain years, estimates of
abundance for non-sampled strata were obtained by using a multiplicative model. These estimates showed considerable variation over the survey period with no consistent trend up to 1983. Biomass and abundance for 1984 to 1986 were high relative to the earlier period, with preliminary estimates indicating a substantial biomass increase in 1987. The Canadian survey in 1986 indicated that the $1980-82$ year-classes were most abundant and that the 1983 year-class was poorly represented. Surveys by the USSR have been conducted on a stratified-random basis since 1983. Abundance estimates in this period showed an increase from 1983 to 1985 with a decline to the 1984 level in 1986. Biomass estimates showed a similar pattern, but with the decline from 1985 to 1986 being less pronounced. The pattern of relative abundance of the $1980-83$ year-classes in the USSR surveys was similar to that observed by the Canadian surveys.

Analysis of Canadian survey data over the 1971-86 period for biomass and abundance distribution relative to the Canadian 200 -mile fishery zone indicated that cod were much more abundant inside the zone than outside in 1986 than had been observed previously. It was concluded that the possibility exists that increased commercial catches, particularly of the magnitude observed from 1985 to 1986, may have produced the changes in cod abundance, as measured by the surveys. Other factors such as migration and areal distribution of cod may also influence the survey results.
iii) Catch-at-age data.

Biological sampling data from the Canadian otter-trawl and Spanish pair-trawl fisheries were used to estimate the age composition and mean weight-at-age of the commercial catch in 1986. Average weights-at-age for the pair-trawl catch were larger at all ages than those from Canadian otter-trawl sampling. A sum of products check, using the combined average weights-at-age, indicated that the calculated catch was 91% of the reported catch. The 1980-82 year-classes were most abundant in the total catch-at-age.
c) Estimation of parameters
i) Partial recruitment

The partial recruitment vector for 1986 was estimated by iteration as an average over the 1981-84 period. The values are as follows:

| Age (years) | 3 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Partial recruitment | 0.06 | 0.24 | 0.54 | 0.76 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

ii) Cohort analysis

Catch and average weight-at-age data from the commercial fishery over the 1959-86 period were used in cohort analyses. Natural mortality was assumed to be 0.20 , fishing mortality for the oldest age-group (12) was set at the level for fully-recruited ages (7-10), and input partial-recruitment vector was as shown above.
iii) Fishing mortality in 1986

Average exploitable biomass values from cohort analyses over a range of fully-recruited fishing mortalities in 1986 were compared with the combined otter-trawl and pair-trawl catch-rate index by using a least-squares regression relationship, but the relationship was not significant. It was considered that the catch-rate index did not adequately reflect stock biomass and that this deficiency might be related in part to the method of determining directed fishing effort for the Canadian fishery. STACFIS recommends that alternate methods of determining Canadian directed fishing effort be investigated before the next assessment of this stock.

The relationships between Canadian survey abundance at ages $6+$ and cohort numbers at ages $6+$ for the 1977-86 period over a range of fully-recruited F-values were significant, and calibration, in terms of placing the intercept near the origin, indicated a fully-recruited F in 1986 of 0.20 . Survey data for 1984 were not included in the relationship. Age 6+ abundance, estimated from this survey, was higher than the others in the series and was not reflected by a correspondingly high cohort abundance. The age structure from the survey was also not consistent with those from surveys in 1982 and 1985.

Data from the USSR surveys prior to 1983 were not available in a format comparable to data for the recent period. STACFIS agreed that inclusion of USSR survey data would be very useful, and recommends that comparable survey indices covering as much of the time series as possible be provided.

Trends in nominal catch and fishing mortality for ages 7-10 in the 1959-86 period are shown in Fig 4.

Fig. 4. Cod in Div. 3NO: trends in nominal catch and fishing mortality (ages 7-10), 1959-86.

iv) Recruitment

With an average partial-recruitment vector, cohort abundances of age $3 \operatorname{cod}$ ($F_{86}=0.20$) in 1984-86 (1981-83 year-classes) were estimated to be 106,82 and 14 million respectively. From a significant relationship $\left(r^{2}=0.84\right)$ between Canadian survey mean numbe-r-per-tow at age 3 and cohort abundance at age 3 (average over the year) for the 1977-82 period, cohort abundances at age 3 for these year-classes were predicted at 33,29 and 20 million fish respectively. The partial-recruitment vector used for 1986 was adjusted to reconcile predicted year-class strengths. The best estimates for these year-classes were 62,37 and 21 million respectively. The size of the 1981 year-class at 62 million , instead of 33 million from the recruitment relationship described above, is consistent with this year-class being fully exploited at age 5. A value lower than 62 million would have implied that the 1981 year-class was being exploited more intensively at age 5 in 1986 than the older and larger cod, given the terminal F estimated. Adjusted partial recruitment was used in the final cohort anałysis as well as in the catch projections. Spawning stock biomass and age 3 recruits for the corresponding year-class abundance, as estimated from cohort analysis, are shown in Fig. 5.
v) Yield-per-recruit analysis

For previous assessments of this stock, the values of $F_{0.1}$ and $F_{\max }$ reference levels were estimated to be 0.18 and 0.22 respectively. Because the results of yield-perrecruit analysis depend to a large extent on mean weight-at-age data, and because estimates of these weights for older cod were not available for the current analysis, STACFIS concluded that reference fishing mortality levels ($\mathrm{F}_{0.1}=0.18, \mathrm{~F}_{\mathrm{max}}=0.22$) which were used in previous assessments would be appropriate for this assessment.

Catch projections

The parameters which were used to project stock sizes and catches are given in Table 8. The partial-recruitment vector was that for 1986 (as adjusted) from the cohort analysis. Mean weight-at-age values were averages of commercial weight-at-age data from 1984-86. The size of the 1984 and 1985 year-classes were set at the 1977-86 geometric mean of 35 miliion fish. The TAC for 1987 is 33,000 tons, but there is no reason to expect that the 1987 catch will be less than that of 1986, about 50,000 tons. Stock sizes were projected with both of these 1987 catch options and the resulting yields are given in Table 9. At Fo. $1=0.18$, the yield in 1987 is projected to be 39,635 tons, representing an increase of about 20% over the current 1987 TAC. Projections of catch for 1988 and spawning stock biomass at the beginning of 1989 over a range of fishing mortalities, with catches in 1987 assumed to be 33,000 and 50,000 tons, are presented in Fig. 6A and 6B respectively.

Fig. 5. Cod in Div. 3NO: trends in spawning stock biomass and abundance of age 3 recruits from cohort analysis for 1959-86.

Table 8. Cod in Div. 3NO: parameters used in projections of stock biomass and catch.

Age(yr)	$\begin{gathered} \text { Stock size } \\ \text { I Jan } 1987 \\ (000) \end{gathered}$	Mean weight (kg)		Percent mature	```Partial recruit- ment```
		Annual	Start of year		
3	35,000	0.55	0.41	0	0.04
4	17,430	1.00	0.74	4	0.55
5	21,992	1.51	1.23	22	1.00
6	25,924	2.16	1.81	64	1.00
7	17,718	3.26	2.65	94	1.00
8	6,120	4.71	3.92	99	1.00
9	3,904	6.78	5.65	100	1.00
10	2,310	8.43	7.56	100	1.00
11	1,594	9.33	8.87	100	1.00
12	1,541	11.21	10.23	100	1.00

Table 9. Cod in Div. 3NO: catch projections for two options of catch in 1987.

$\begin{aligned} & 1987 \text { catch } \\ & \text { (tons) } \end{aligned}$	F_{87}	Projected 1988 catch (tons)		
		$\mathrm{F}_{0.1}=0.18$	$\mathrm{F}_{86}=0.20$	$\mathrm{F}_{\text {max }}=0.22$
33,000	0.15	40,370	44,450	48,450
50,000	0.23	37,390	41,170	44,880

Fig. 6. Cod in Div. 3NO: projection of catch for 1988 and spawning stock biomass at the beginning of 1989 for a range of fishing mortality, with assumed catches in 1987 of (A) 33,000 tons and (B) 50,000 tons.
c) Research recommendations

For cod in Div. 3 NO, STACFIS recommends
(i) that alternate methods of determining directed fishing effort for the Canadian otter. trowl fishery be considered for the next assessment of this stock;
ii) that, in light of the different survey methodologies employed by the USSR in 1983-86 compared to two earlier periods, the results from the three time periods be calibrated, if possible, and a single series from at least 1977 to the present be made available at the september 1987 Meeting; and
iii) that estimates of mean weight-at-age for older ages (13-20) for a recent time period be derived from results of research vessel surveys and be included in a reanalysis of yield-per-recruit, with results to be presented at the September 1987 Meeting.

a) Introduction

Landings of redfish were totally dominated by golden redfish (Sebastes marinus). The overall nominal catch in 1986 was at the same level as that for 1985, which was the lowest in the last 10 years. There were indications that landings in 1977 were overestimated in the official statistics. The decrease since 1984 was due to a reduction in the mixed redfish-cod fishery by trawlers from the Federal Republic of Germany. Since 1984, the redfish catch has been taken mainly by Japanese trawlers in a joint-venture charter arrangement with the Greenland Home Rule Trawler Company. The Japanese fishery is a directed redfish fishery. Recent catches (000 tons) are as follows:

	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
Catch	14	31	8	9	8	6	8	7	6	3	3^{1}

1 Provisional data.
Small S. mentella (beaked redfish)were quite abundant as by-catch in the shrimp fishery, mainly in Div. 1A and 1B. By-catch estimates of small S. mentella were 970 and 936 tons in 1985 and 1986 respectively. The by-catches were discarded.
b) Input data
i) Commercial fishery data

Directed fishing effort data from the commercial redfish fishery are available only from 1984 onwards for Japanese trawlers. Effort data for the Federal Republic of Germany trawlers are difficult to evaluate, due to high and variable amounts of cod in the catches. Samples of age and length distributions from the Greenland commercial fishery in 1982, 1983, 1985 and 1986 are available. Catches were dominated by fish of ages 1420.
ii) Research vessel surveys

A Canadian random-stratified bottom-trawl survey was carried out in August-September 1986 west of the West Greenland fishing banks at depths of 200-1,250 m. Golden redfish (S. marinus) were taken in small numbers in depths of $200-500 \mathrm{~m}$ with size range of $15-61$ cm and a tendency for larger fish to be from deeper water. The trawlable biomass was calculated to be about 2,000 tons, but a major part of the stock is believed to reside in the bank areas which were not covered by the survey.

Beaked redfish (S. mentella) were widely distributed throughout the survey area with larger catches from depths of $500-600 \mathrm{~m}$. The trawlable biomass in the surveyed area was calculated to about 8,000 tons. The fish ranged from 6 to 45 cm in length, the majority being 8-11 cm. There was an increase in size with depth and a decrease in size with increasing latitude. This supports the hypothesis of the area between $66^{\circ} \mathrm{N}$ and $70^{\circ} \mathrm{N}$ being a nursery area.

A Greenland research shrimp-trawl survey has been carried out in the northern part of Subarea 1 since 1976. Length distributions of S. mentella from each year were utilized with age compositions for 1982-85, pooled together in a standard age-length key, to construct age distributions of the catch by year. The bulk of the fish was below 8 years, further supporting the hypothesis of the northern part of Subarea 1 being a nursery area for S. mentella.

c) Catch projections

The S. marinus stock was assessed at the ICNAF Meeting in June 1979 (ICNAF Redbook, 1979, page 74), at which time a general production analysis indicated a maximum sustainable yield (MSY) at a level of about 10,000 tons with an equilibrium catch at $2 / 3$ MSY effort of about 9,000 tons. Although some new information is available, the data are not sufficient for a new assessment. Therefore, STACFIS presently has no basis on which to advise if a catch of 9,000 tons in 1988 will correspond to $2 / 3$ MSY effort.
d) Recommendations
i) Since the surveys by the Federal Republic of Germany and Canada in 1986 together covered the most important offshore areas of Subarea 1, STACFIS recommends that the biomass estimates of redfish from the Canadian research survey off the banks and the Federal Republic of Germany research survey on the banks should be combined for the June 1988 Meeting, and further data from others also should be made available.
ii) Noting the importance of commercial sampling data for redfish, STACFIS recommends that analysis of sampling data for S. mentella from commercial catches by the Federal Republic of Germany in recent years should be made available in June 1988.
5. Redfish in Division 3M (SCR Doc. 87/20, 37; SCS Doc. 87/13, 15, 18)
a) Introduction

Catches from this stock have ranged between 13,000 and 27,000 tons from 1975 to the present. The USSR has been the predominant force in this fishery in recent years. The 1986 catch was about 7,000 tons greater than those in 1984 and 1985 due to the increased catches by EEC countries. The present TAC of 20,000 tons has been achieved each year since 1983. Recent
TACs and catches (000 tons) are as follows:

| | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TAC | 16 | 16 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| Catch | 20 | 17 | 20 | 16 | 14 | 15 | 20 | 20 | 20^{1} | 27^{1} | |

1 Provisional data.
b) Input data

Catch and effort data, extracted from ICNAF and NAFO Statistical Bulletins for the 1959-84 period, were combined with provisional data for 1985 and utilized in a multiplicative model to derive a standardized catch-rate series (Fig. 7). There was a general decline from 1961 to 1967, followed by a sharp increase to the highest value on record in 1970. Since then, catch rates declined until 1979 and then increased moderately to 1982, after which there has been a gradual decline.

Fig. 7. Redfish in Div. 3M: commercial catch rates as derived by a multiplicative model for the 1959-85 period (1985 is preliminary).

Commercial length frequencies for 1986 were available for the Portuguese fishery (SCS Doc. 87/18) and for the USSR fishery through sampling by Canadian observers (SCR Doc. 87/37). Research length frequencies for $1980-86$ (SCR Doc. 87/20), as well as percentage age compositions, based on ageing by scales (SCS Doc. 87/15) in 1986, were available from USSR surveys. These indicate that the year-classes of the early 1980 's are relatively strong, which is consistent with previous reports (NAFO Sci. Coun. Rep., 1986, page 58).
c) Estimation of parameters

A virtual population analysis (VPA), utilizing natural mortality that varied with age, was
presented (SCR Doc. 87/20). It was noted that calibration of the UPA was not documented in accordance with STACFIS guidelines and was difficult to follow. In addition, the points raised previously (NAFO Sci. Coun. Rep., 1986, page 85), concerning the use of variable M, have not been addressed. As a result, STACFIS was unable to evaluate the VPA results.

The standardized catch-rate series was regressed (least squares) on effort (unlagged and lagged 6, 8 and 10 years) (SCR Doc. 87/37). The unlagged relationship was not significant, but the relationships with lagged effort values were all significant. Equilibrium general production analyses, derived from relationships of CPUE on lagged effort, were quite similar and indicated an equilibrium yield at $2 / 3$ MSY effort in the range of 15,000 tons and an MSY of 17,000 tons. It has been pointed out that regressions of CPUE on the lagged series of efforts were highly dependent on the 1970 and 1971 points (NAFO Sci. Coun. Rep., 1986, page 58). This same situation exists with the inclusion of the 1985 data and, therefore, the results are to be considered with caution. The catch and standardized effort from the multiplicative model were employed in a non-equilibrium version (Schaefer form) of a general production model (SCR Doc. 87/37). The results of this approach are as follows:

Parameter	$\mathrm{f}(\mathrm{MSY})$	$2 / 3 \mathrm{f}$ (MSY)
Fishing effort (hr)	18,504	12,336
CPUE (tons/hr)	1.138	1.517
Yield (tons)	21,053	18,714

The exploitable biomass was estimated from the model to be about 300,000 tons at the beginning of 1987.
d) Catch projections

Length frequencies from the commercial fishery indicate a wide range of lengths with the majority of redfish in the $20-30 \mathrm{~cm}$ range. A length composition from the USSR research survey in 1986 revealed that the catches were dominated by small (20-23 cm) and large fish ($30-37 \mathrm{~cm}$). These small redfish represent the year-ciasses of the early 1980 's, which should recruit to the fishery in the next few years and provide increased catch rates. The nonequilibrium model indicated yields for 1987 and 1988 at $2 / 3 \mathrm{f}($ MSY $)$ and $f(M S Y)$ as follows:

Year	$\mathrm{f}(\mathrm{MSY})$	$2 / 3 \mathrm{f}(\mathrm{MSY})$
1987	27,766	18,786
1988	27,003	18,778

In view of the advised caution concerning results from the equilibrium general production analysis because of the 1970 and 1971 points, and because more confidence was put on the results of the non-equilibrium general production analysis, STACFIS therefore advises that the TAC for 1988 should remain at 20,000 tons.
e) Future research

STACFIS expressed concern that potentially useful data are not being utilized because its guidelines concerning VPA presentations are not being followed, and recommends that the STACFIS guidelines for presentation of VPA analyses be followed closely for future assessments so that the analyses can be fully utilized.
6. Redfish in Divisions 3L and 3N (SCR Doc. 87/20, 58; SCS Doc. 87/13. 15, 18)
a) Introduction

Historical nominal catches from this stock have ranged from a low of 8,100 tons in 1964 to a high of 44,600 tons in 1959. The average catch over the $1959-86$ period is just over 21,000 tons. The proportion taken from Div. 3 N has been about 60% of the total. Provisional statistics for 1986 indicate a catch of 42,000 tons, about 20,000 tons over the 1985 catch of 20,500 tons, due mainly to increased catches by EEC countries (primarily Portugal). Recent TACs and catches (000 tons) are as follows:

	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
TAC	16	16	18	25	25	25	25	25	25	25	25
Catch	17	12	14	16	24	22	20	15	20^{1}	42^{1}	

[^3]b) Input-data

Catch and effort data, obtained from ICNAF and NAFO Statistical Bulletins for the 1959-84 period, were combined with preliminary NAFO data for 1985 and preliminary Canadian data for 1986 (no Canadian data for Div. 3 N in 1986) and were utilized in a multiplicative model to derive a standardized catch-rate series (SCR DOC. 87/58). Catch and effort data were also analyzed separately for Div. 3 L and Div. 3 N due to questions raised previously concerning the variability of catch rates for the combined data (NAFO Sci. Coun. Rep., 1986, page 59). The catch-rate series for Div. 3 LN combined shows a great deal of fluctuation. The series derived from treating the data for each division separately also show a considerable amount of interannual variability. It was noted that the trends during some years were in opposite directions with respect to each division and that this constitutes a violation of the assumption of a constant relationship in the multiplicative model. In recent years, there was a general increasing trend in Div. 3L and a decreasing trend in Div. 3 N .

Commercial length frequencies for 1986 were available from the Canadian and German Democratic Republic fisheries in Div. 3L (SCR Doc. 87/58) and the Portuguese fishery in Div. 3L and Div. 3N (SCS Doc. 87/18). A commercial length frequency for Div. 3NO combined was available from the Spanish fishery (SCS Doc. 87/13).

Population age compositions were available for Div. $3 L$ and $3 N$ separately from a USSR research survey in 1986 (SCS Doc. 87/15). In addition, a series of research length frequencies from USSR surveys in Div. 3 N for $1980-86$ were presented (SCR Doc. 87/20). These data indicate that year-classes of the early 1980's are relatively strong in Div. 3 N
c) Estimation of parameters

A virtual population analysis (VPA) of catch-at-age data, utilizing age-variable natural mortality (M), was available (SCR Doc. 87/20). It was noted that calibration methods were not documented in accordance with STACFIS guidelines. It was also pointed out that previous discussion on the use of variable M resulted in a consensus by STACFIS that simulation techniques were required before utilizing this in VPA (NAFO Sci. Coun. Rep., 1986, page 85). Because this problem had not been addressed for this meeting, STACFIS was unable to evaluate the results from the VPA.

The relationships between CPUE and effort were examined for each division separately. The 1974 point was considered to be anomalous in both series and was therefore not included in the analyses. Least squares regressions of CPUE on effort (unlagged and lagged 6, 8 and 10 years) resulted in significant relationships with unlagged effort and effort lagged 6 and 8 years for Div. 3 N but only with effort lagged 8 years for Div. 3L. Utilizing the results from the relationship with effort lagged 8 years in general production analyses for each division gave estimates of equilibrium yield at $2 / 3$ MSY effort of 8,600 tons for Div. 3L and 15,700 tons for Div. 3 N . It was noted that the ratio of the estimated equilibrium yields ($35: 65$) is similar to the long-term ratio of catches in the two divisions ($36: 64$).
d) Catch projections

Length frequencies from the 1986 commercial fishery in Div. 3 L indicate $30-\mathrm{cm}$ and longer fish were dominant in the catch, whereas fish less than 30 cm were dominant in Div. 3 N . This phenomenon had been noted previously (NAFO Sci. Coun. Rep., 1986, page 59). The USSR research length frequencies from Div. 3 N showed that the year-classes of the early 1980's were relatively strong, but this was not shown by the survey data in Div. 3L. Catch rates seem to be stable or increasing slightly in Div. 3L. Recent catch rates in Div. 3 N have declined somewhat, but this should be offset over the next few years by increased recruitment of the relatively strong year-classes of the early 1980's. Combined results of the general production analysis for Div. 3L and Div. 3 N indicate an equilibrium yield at $2 / 3 \mathrm{MSY}$ effort of 24,300 tons. Based on available information, STACFIS advises that the TAC should remain at 25,000 tons for 1988.
e) Future research

STACFIS again noted the problem of evaluating assessments (as for redfish in Div. 3M) when guidelines were not followed, and recommends that its guidelines be followed when presenting the results of VPA so that the analyses can be fully evaluated. STACF15 al so noted that some commercial data were available for Div. 3No combined but could not be used, and recommends that in the future comercial data be presented for Div. 3 N and 30 separately.
7. Silver Hake in Divisions $4 V, 4 W$ and 4 X (SCR Doc. 87/11, 21, 42, 56; SCS Doc. 87/15)
a) Introduction

The silver hake fishery is conducted by large otter trawlers with small-meshed bottom trawls.

Prior to 1977, the fishery was not restricted by season or area. Since 1977, the fishery has been restricted to the April-November period and to the area seaward of the small-mesh-gearline (SMGL). Nominal catches of silver hake since 1970 ranged from a maximum of 300,000 tons in 1973 to a minimum of 36,000 tons in 1983. Since 1977, catches have generally increased from 37,000 tons in 1977 to 82,000 tons in 1986. Recent catches and TACs (000 tons) are as follows:

| | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TAC | 70 | 80 | 70 | 90 | 80 | 80 | 80 | 100 | 100 | 100 | 100 |
| Catch | 37 | 48 | 51 | 45 | 43 | 60 | 36 | 74 | 77^{1} | 82^{1} | |

${ }^{1}$ Provisional data.

Prior to 1982, almost all the catch was taken by the USSR. In 1986, as in recent years, the majority of the catch was taken by USSR (66,500 tons), with Cuba harvesting most of the remainder (16,000 tons). The fishery was, as usual, mostly in May, June and July. The catches fell short of the TAC in recent years because of Canadian allocations to countries which did not fish for silver hake. The USSR and Cuba have taken more than 99 and 90% of their respective allocations in each of the last 3 years.
b) Input data
i) Commercial fishery data

Following the recommendation of STACFIS in 1986, the 1970-85 catch and effort data from the ICNAF and NAFO series were used, with the 1986 Canadian International Observer Program (IOP) data for 1986, in a multiplicative model. Because the catch rates in the Cuban fishery increased from 1978 to 1982 as a result of improved expertise and equipment, only the USSR data were used in the 1986 assessment (SCR Doc. 86/85). However, it is now believed that the effects of these improvements in the fishery, which may have affected Cuban catch rates prior to 1982, have not been evident since then. The Cuban catches prior to 1982 were minimal, but they now account for 20% of the total, and Cuban catch and effort data for 1982-86 were used in calculating the standardized catch rates for this assessment, as follows:

Year	CPUE	Year	CPUE	Year	CPUE	Year	CPUE
1970	2.855	1975	1.822	1980	1.492	1985	3.295
1971	2.049	1976	2.641	1981	1.797	1986	4.307
1972	2.271	1977	2.375	1982	4.774		
1973	2.990	1978	1.937	1983	2.396		
1974	2.026	1979	2.066	1984	3.786		

The catch rates have generally increased from 1980 to 1986, with the exception of 1982. The catch rate in 1982 was much higher than in adjacent years and is the highest in the series. The 1986 catch rate is only slightly less than that of 1982. It was considered unlikely, that the drastic change in catch rate in 1982 was representative solely of a change in biomass.

The age composition of the catches in 1970-85 were taken from the previous assessment (SCR Doc. 86/62), with adjustments to reflect revisions in the reported nominal catches in 1984 and 1985. The changes were generally small and involved changes in the catch by month rather than total tonnage. The age composition in 1986 was calculated from the IOP sampling. Observers sampled 36,000 tons (43%) of the total catch of 83,000 tons. More than 250,000 length measurements and 1,900 otoliths were taken. Extensive sampling and ageing was also conducted by USSR and Cuban samplers. The results of this effort have not been used in this assessment due to discrepencies in age and length composition. Accordingly, STACFIS urges that effort be made to incorporate all sources of data in future assessments. This is contingent upon resolving the discrepencies in ageing referred to in the Section "Ageing Techniques ...". The 1986 age composition in the catch was dominated by the 1983 year-class at age 3 (36% by number). The 1984 yearclass at age 2 (14%) was below average strength, but the 1985 year-class at age 1 (26\%) was the largest proportion of 1 -year-olds in the catch since 1972.
ii) Research vessel indices

Results of the Canadian research vessel surveys in July were used to estimate numbers and biomass of silver hake from 1972 to 1986. The abundance in numbers for 1986 was
second highest in the series, after 1984. The biomass increased slightly over 1985, while the numbers nearly doubled. The abundance at age from the survey indicated that the 1985 year-class is the largest at'age 1 in the entire series. It is 73% of the estimate by numbers and 48% of the biomass estimate. The previously-strong 1983 yearclass fell to only 20% of the biomass which is at or below the average since 1977. The research-vessel indices for 1982 to 1986 have been higher, on average, than in the period prior to 1982. The change in research vessel, which occurred in 1982, was adjusted for by the use of a conversion factor, but some effect of this change may still be present. It should also be noted that the conversion factor which was applied was a general one which would not take into account age-specific differences in catchability. Thus, abundance estimates of age 1 , for example, may not be directly comparable between the 1972-81 and 1982-86 periods. Correlations between the numbers and biomass indices from the July surveys and the standardized USSR CPUE values were examined and significant correlations were found.

Joint USSR-Canada juvenile silver hake surveys have been conducted in a consistent manner since 1981. Two methods of calculating the survey index of abundance were used by the USSR and Canadian scientists in the past. A standardized method of calculating the index was agreed upon last year (NAFO Sci. Coun. Rep., 1986, page 121) and was used to calculate the following series:

Year-class	1981	1982	1983	1984	1985	1986
Number per tow	579	9	232	43	285	231

Results from the juvenile surveys indicate that the 1986 year-class is similar in size to the 1983 and. 1985 year-classes.
iii) Commercial fishery observations

In 1986, as in the previous year, extremely dense and stable aggregations of silver hake were observed on the Scotian Shelf slope (SCR Doc. 87/21). The by-catches of pollock, hakes (Urophycis sp.) and mackerel were high relative to earlier years, similar to 1985, although still within the allowable rate.

There was one paper which examined several factors influencing the recruitment of silver hake (SCR Doc. 87/11). The conclusions that the St. Lawrence River loading and the abundance of mackerel are the two major factors regulating silver hake recruitment and that cannibalism is not a factor could not be substantiated by the documentation available. The authors were not present to provide any further information on the work.
c) Estimation of parameters
i) Partial recruitment

The partiat-recruitment values of ages 1 and 2 were calculated from the ratio of F on ages 1 and 2 to average F on ages 3 and 4 , and an iterative procedure with the VPA was used until there was no change in the resultant partial-recruitment vector (see Table 10).

The partial-recruitment values, used to calculate exploitable biomass, was based on annual vectors which were also calculated as the ratio of F on ages 1 and 2 to average F on the fully recruited ages (3-9).
ii) Natural mortality

A paper was presented (SCR Doc. 87/42) which included a VPA using age-specific estimates of natural mortality, similar to those presented in the last 2 years (SCR Doc. 85/36 and 86/60). As in the last 2 years, there was insufficient documentation to evaluate the natural mortality estimates. Although the natural mortality may vary with age, a constant value of 0.4 was used, as in previous assessments.
iii) VPA calibration

Two different means of calibrating the VPA (cohort model) were examined. The exploitable biomass from VPA was regressed on the standardized CPUE and the research vessel survey numbers at age $4+$ were regressed on the VPA numbers at age $4+$. No significant regressions were obtained when calibrations using research vessel numbers at age $4+$ with VPA numbers at age $4+$ were examined. Thus, the standardized catch-rate series was used to calibrate the VPA. A view was expressed that the catch and effort data from the
period prior to 1977 were unreliable. There were also doubts about whether the 1982 catch rate could reflect a change in biomass. These issues could not be resolved and calibrations based on three subsets of the time series were considered. Because the 1982 point and the 1970-76 points were mutually incompatible, a calibration using all years was not attempted. The three series that were considered were 1970-86 excluding 1982, 1977-86, and 1977-86 excluding 1982. Unweighted linear regressions were used to evaluate the relationships between the various indices being considered. The regressions of exploitable biomass on CPUE were non-significant for all levels of terminal F when 1982 was included in the dataset. The regressions were evaluated on the magnitude of the intercept as the criterion of selecting the highest r^{2} (coefficient of determination) was unreliable, because the recent years were all at the high end of the CPUE range. The regressions, excluding only the 1982 point, had the smallest intercept at terminal $F=0.25$. Excluding $1970-76$ as well as 1982 indicated terminal $F=0.35$. Because there was no documentation to allow evaluation of the basis for excluding the 1970-76 data, the terminal F indicated by all years except 1982 (i.e. $F=0.25$) was selected as terminal F in 1986.

The conclusion that terminal F was 0.25 implies that there has been a decrease in fishing effort from the late 1970's to the present. This is consistent with standardized fishing effort, as estimated from the multiplicative model, but the magnitude of this change was not evaluated with respect to the expected proportionality between fishing mortality and fishing effort. It was concluded that a more thorough investigation of the relationship between F and fishing effort is required before firm conclusions can be reached.

iv) Yield-per-recruit

The Thompson and Bell yield-per-recruit curve was calculated by using the most recent partial-recruitment vector, natural mortality of 0.4 , and mean weight-at-age data from the commercial fishery during 1977-86. The Fo. 1 level of fishing mortality is 0.474 , and the yield-per-recruit would be 0.063 kg at the level of F. These parameters are unchanged from the previous assessment (SCR Doc. 86/62).
d)

Prognosis and catch projections
The input parameters for the catch projections are given in Table 10.
Table 10. Silver hake in Div. 4 VWX : parameters used for catch projections.

Age (yr)	1987 stock size (000)	Mean W (kg)	Partial recruitment
1	$2,526,686$	0.067	0.08
2	$1,593,140$	0.154	0.58
3	354,663	0.199	1.00
4	489,281	0.239	1.00
5	195,717	0.275	1.00
6	83,710	0.331	1.00
7	29,830	0.425	1.00
8	6,111	0.562	1.00
9	2,471	0.678	1.00

The population vector at age for 1986 was generated from the VPA at $F_{t}=0.25$ except for the recruitment at age 1 . The 1986 number at age 1 in the VPA was almost double the largest recruitment seen previously (1971 year-class). Since the juvenile surveys have indicated that the 1983, 1985 and 1986 year-classes were similar in size as 0 -group fish, it was assumed for projection purposes that the 1985 and 1986 year-classes were in fact equal to the 1983 year-class at age 1. The high juvenile survey estimate for the 1981 year-class and the low estimate for the 1982 year-class were not consistent with year-class sizes calculated from the VPA. However, the July survey estimates of these and the 1983 and 1984 year-classes were more consistent with VPA numbers, and the juvenile estimates from the 1981 and 1982 year-classes were discounted. Recruitment in 1988 was assumed to be equal to the geometric mean of the recruitment from 1970 to 1984 (1.4 billion). The mean weight-at-age values were averaged over 1984-86. The partial-recruitment vector was the same as used in the current assessment.

Projections to estimate the $\mathrm{F}_{0.1}$ catch in 1988 , using the above input parameters, were made under three different scenarios: the Fo 1 catch is taken in 1987, the TAC is taken in 1987, and the 1987 catch is equal to that of $i 986$ (Table 11). STACFIS advises that the yield at $F_{0.1}$ in 1988 will be 167,000 tons.

Table 11. Silver hake in Div. 4VWX: predicted yields at F0.1 in 1988 based on three catch scenarios for 1987.

Catch scenario for 1987	1987 parameters		$\begin{aligned} & 1988 \text { catch } \\ & \text { at } \mathrm{F}_{0.1} \end{aligned}$
	Catch	F	
Catch at F0. 3	143,928	0.474	147,540
Equal to TAC	100,000	0.310	161,560
Equal to 1986 catch	83,000	0.252	167,010

e) Future research

The utility of the research-vessel surveys conducted by Canada in July, March and October has not been fully investigated. The estimates of stock size from surveys are highly variable, but there appears to be useful correlation between the survey estimates and the commercial catch-rate series. STACFIS recommends that means of incorporating survey estimates into the current assessment methods be investigated.

The radical changes in the conduct of the fishery at the time of extension of fisheries jurisdiction, which involved area and season of fishing, mesh size used, data collection and reporting methods, has made comparison of commercial fishery data series collected prior to, and after, this event difficult. This situation has contributed to the difficulties of STACFIS in assessing silver hake abundance for a number of years. The present assessment is heavily dependent on an assumed equivalence in catch reporting in the two periods.

While every effort should be made to investigate this issue, STACFIS recognized that new evidence concerning pre-1977 data is unlikely to be forthcoming at this late date. It is likely that only accumulation of new data which describe accurately present relationships between, say, CPUE and VPA biomass will allow resolution of the question whether or not these are different from those prior to 1977. STACFIS recommends that consideration be given to ariteria upon which such a decision might be based, noting that one aspect of this which bears investigation is whether relationships between F and effort can be satisfactorily derived between the two periods to validate effort standardization; it shoutd also be investigated whether the F versus effort relationships can provide inferences concerning terminal E in VPA.

The reliability of post-1976 catch rates as abundance indicators has consistently been questioned, and research on the influence of abiotic and biotic factors on silver hake behaviour and distribution has previously been identified as a high priority (NAFO Sci. Coun. Rep., 1985, page 64). STACFIS noted that a cooperative program between Canada and the USSR to address this question is planned and encouraged its implementation.

Other issues worthy of attention, given the importance of recruiting year-classes to this fishery and high variability in stock abundance, are the stock-recruitment relationship and factors influencing year-class size. STACFIS reiterates its recommendations of last year (NAFO Sci. Coun. Rep., 1986, pages $85-86$) concerning research required to support assessments by using variable M at age.
8. American Plaice in Division 3M (SCS Doc. $87 / 13,15,18$)
a) Introduction

From 1974, when TAC regulation was introduced, to 1985 , catches from this stock ranged from 600 to 1,900 tons. The 1986 nominal catch increased by about 120% over the 1985 level to approximately 3,800 tons. Until 1986, USSR vessels took most of the catch in recent years, but Spain and Portugal caught about 1,000 and 1,700 tons respectively in 1986, up from levels of $200-300$ tons in 1985. The USSR catch was about 1,000 tons in both years. Recent TACs and nominal catches (000 tons) are as follows:

	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
TAC	2	4	2	2	2	2	2	2	2	2	2
Catch	2	1	1	1	1	1	2	1	2^{1}	4^{1}	

[^4]b) Input data

Research vessel surveys by USSR indicated an increase in biomass in 1986 of about 2.5 times and abundance of about 1.5 times the relatively stable level of the $1983-85$ period. There were no data available from commercial vessels to determine if a similar increase in CPUE occurred from 1985 to 1986.

c) Catch projections

It was noted that an increase in biomass of 2.5 times in one year was unlikely to occur, given the apparent stability of this stock in the past, unless a significant increase in recruitment had occurred. While the USSR surveys did indicate increased abundance, it was thought that this increase did not correspond to an apparent increase of 2.5 times in the biomass. Given the variability associated with surveys, and that the 1986 value was the only one in a 4 -year series which indicated a change in biomass, STACFIS concluded that there were insufficient data to advise a change in the TAC for this stock. STACFIS therefore advises that the 1988 TAC remain at the present level of 2,000 tons.
9. American Plaice in Divisions $3 \mathrm{~L}, 3 \mathrm{~N}$ and 30 (SCR Doc. $87 / 40,43,47$; SCS Doc. 13, 15)
a) Introduction

This stock has been exploited consistently since the early 1950's, with the largest nominal catch (94,000 tons) in 1967. USSR vessels took significant catches during 1965-76, while Canada took over 90% of the catch during 1976-82. Starting in 1982, other nations, notably South Korea, Panama, Cayman Islands, USA, Spain and Portugal have increased their involvement in the fishery. This resulted in a catch by non-Canadian vessels of about 27,500 tons in 1986, the second highest value in the 27-year series, and an increase of about 90% over 1985. About 6,200 tons of the total in 1986 was estimated to have been taken by non-member countries, 4,500 tons of which has not yet been reported to NAFO and for which Canadian surveillance estimates of catch were used. Spain and Portugal reported increases in the catch in 1986 of about 6,400 and 9,240 tons respectively, while the Canadian catch in 1986 declined by about 6,800 tons from 1985. Overall, the 1985 and 1986 catches of 55,000 and 61,000 tons respectively were the highest since 1972 and exceeded the TAC by about 6,000 tons in each year. Most of the recent increase in catch has been in Div. 3 N by vessels fishing outside the Canadian 200-mile fishery zone. Recent TACs and nominal catches (000 tons) are as follows:

| | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TAC | 47 | 47 | 47 | 47 | 55 | 55 | 55 | 55 | 49 | 55 | 48 |
| Catch | 44 | 50 | 49 | 49 | 50 | 51^{1} | 39^{1} | 39^{1} | 55^{2} | 61^{2} | |

[^5]b) Input data
i) Commercial fishery

Catch and effort data from the commercial fishery during 1956-86 were analyzed by using a multiplicative model to obtain a catch-rate index. Data from Canadian (N) trawlers (tonnage classes 4 and 5), with directed effort for American plaice in Div. 3L and 3 N , were used in the model, which standardized the catch rates with respect to gear, tonnage, class, month and division. The data for March 1985 in Div. 3L were excluded from the analyses, because the catch rate at that time (about 4.3 tons $/ \mathrm{hr}$) was far outside the range of the rest of the data. The reasons for this very high value are not known, but they were probably related to factors other than stock abundance. In any case, the effect of this point on the overall (yearly) index was minimal, although there was an effect on the monthly component. A comparison of this catch-rate series with the one used previously for this stock revealed that the two indices were very similar from 1967 to 1986 and showed similar trends from 1960 to 1966. Catch rates declined from about 1.0 tons/hr in the mid-1960's to a low of 0.45 tons/hr in the 1974-78 period. Catch rates subsequently increased to a 17 -year high of almost 0.7 tons $/ \mathrm{hr}$ in 1985, but declined 30% to 0.48 tons/hr in 1986 (Fig. 8).

The age composition and weight-at-age data for the 1986 fishery were derived from two sources: length and age samples of the landings of Canadian trawlers fishing in Div. 3L and 3 N (SCR Doc. 87/40); and length samples of the landings of Spanish freezer trawlers fishing in Div. 3 N and 30 (SCS Doc. 87/13).

Fig. 8. American plaice in Div. 3LN: commercial catch rate index for 1956-86.
Because of apparent differences in the ageing of American plaice otoliths between Spanish and Canadian age-readers, it was decided to use age-length keys from the more experienced Canadian age-readers in calculating numbers caught at age in the Spanish fishery. Since the length frequencies from the Spanish catches indicated the presence of many more small fish than were found in the Canadian catch, it was decided to use an age-length key from the Canadian research vessel survey in Div. 3 N in 1986 to break down the Spanish length frequencies. The numbers-at-age from the Spanish fishery were adjusted to the total non-Canadian catch in Div. 3 N (22,089 tons). It was noted that the catch composition by age-group in Div. 3L in 1986 was reasonable, without including sampling data from countries other than Canada. Spanish and Canadian length frequencies from Div. 3L were more similar than those from Div. 3 N , and Canada took about 83% of the catch in Div. 3L, compared to only 27% in Div. 3 N . Examination of length frequency data from Spanish catches in Div. 3 N in 1985 indicated that a recalculation of the catch age composition for 1985 was not warranted for this assessment.

In light of the significant portion of the catch taken by non-Canadian vessels in recent years, STACFIS recommends that any available data from these catches be incorporated into the catch numbers-at-age calculations, both in the historic data as well as on future occasions. It was also noted that there wàs a Portuguese catch of over 9,000 tons from this. stock in 1986 and that age and length frequency data from this segment of the fishery would be an asset in the assessment. STACFIS recommends an exchange between the appropriate Laboratories with the aim of resolving the differences in ageing of American plaice otoliths between Spanish and Canadian readers.

At the request of STACFIS in 1986, a review of information on discarding for this stock was carried out. The discard rate during 1981-85 (reported in SCR Doc. 86/95) was constant around 5\%, although preliminary estimates from the same database indicated that the rate may have doubled in 1986 over 1985. No estimates of discarding by lengthgroups or age-groups have been available since an increase from 1980 to 1982 in the discard rate of fish aged 6-10 was indicated (SCR Doc. 83/27). Data from the Canadian offshore trawler fishery were used in both cases. Although no data were available, STACFIS was informed that the discard rate in the Spanish fishery was lower in 1986 than in 1985, possibly explaining the substantial increase in the catch of smaller fish in 1986. In any case, STACFIS could not evaluate the effects of discarding on the assessment of this stock and noted that the age compositions continue to reflect landings rather than total removals.

The catch-at-age vector for 1986 in Div. 3 LN was considerably different from that for the 1985 fishery, mainly because the catch from the Spanish fishery in 1986 contained large numbers of small American plaice. Ages 5-9 accounted for about 47% of the catch numbers in 1986, compared to only 28% for the same age-groups in 1985 . The catch projection by STACFIS in 1986 indicated that ages $6-9$ would contribute about 32% of the numbers-at-age in the 1986 catch. The average weight-at-age values in 1986 were similar to those of previous years, with the exception of those at ages 6-8, which were considerably lower. In view of the decrease in the discard rate in the Spanish fishery, and the fact that most of the catch of American plaice at these ages was in the Spanish fishery, the differences in the mean weights at these younger ages (6-8) were acceptable.

Research vessel surveys

Data from Canadian spring surveys in Div. 3L, 3 N and 30 (SCR Doc. 87/40) indicate a decline in biomass from 312,000 tons in 1985 to 266,000 tons in 1986 for the 3 divisions combined. Preliminary estimates from the 1987 survey, just completed, place the biomass at 306,000 tons. A comparison of the 1985 and 1986 total population numbers from selected strata in Div. 3 L and 3 N indicated a decline of about 50% from the relatively stable population sizes in the 1977-82 period (Fig. 9). The strata chosen in this analysis were those common to the surveys in most years and have been used in recent assessments in the calculation of the research-vessel survey abundance index for this stock. No comparable estimates are available for 1983-84. USSR surveys (SCS Doc. 87/15) indicate that the 1985 and 1986 biomass estimates in Div. 3LNO, 326,000 and 349,000 tons respectively, were down considerably from the 1984 (642,000 tons) and 1983 (534,000 tons) estimates, although it was noted that the 1984, 1985 and 1986 surveys were conducted by different vessels. Canadian surveys in the fall in Div. 3L, where most of the biomass of this stock is located, also indicate a decline from 1984 to 1986 , with the 1986 biomass being less than half of the 1984 estimate and about two-thirds of the 1985 value.

Fig. 9. American plaice in Div. 3LN: abundance index from surveys in Div. 3L (data missing for 1973, 1983 and 1984) and Div. 3 N (data missing for 1975,1976 and 1983).

Noting an anomalously low biomass estimate in the 1986 winter survey in Div. 3L, STACFIS encouraged further analysis on the distribution of American plaice with respect to temperature and depth (NAfO Sci. Coun. Rep., 1986, page 65). Analysis of eight Canadian surveys in Div. 3L which were conducted at various times in 1984-86 did not reveal any trends in the distribution of biomass by depth and season. In general, the surveys in 1984-86 showed that about 80% of the American plaice biomass in Div. 3 L was located in depths less than 183 m . However, an exploratory survey in April 1987 located a large concentration of American plaice in depths slightly over 500 m on the northeastern slope in Div. 3L in depths outside those normally covered by the spring surveys. Catches of American plaice of the magnitude observed in this area were not common in any area of the Grand Bank, as determined from analysis of almost 12,000 fishing sets from Canadian surveys since 1948. Examination of the same database also showed that catches of the size taken in the April 1987 survey had not been observed previously in depths greater than 280 m on the Grand Bank. Biological sampling of the large catches indicated that the concentration was probably not of a spawning or feeding nature. Examination of water temperatures from 1970 to 1986 at hydrographic station 27 in Div. 3L (off St. John's) revealed a significant positive relationship between the mean temperatures in the bottom 25 m and the mean weight-per-tow of American plaice in selected strata of the Canadian surveys in Div. 3L. The relationship, an unweighted least squares linear regression, was better when the survey datum for year $i+1$ was plotted against the mean temperature in year i. STACFIS noted that 1984 and 1985 produced very low water
temperatures in Div. 3L, similar to those of 1973-74, and that the survey results in 1985-86 and 1974-75 in Div. 3L represented four of the five lowest points in the 13-year series. It was pointed out that a detailed analysis of the effects of temperature on the distribution of American plaice is underway and the results should be presented to STACFIS in the near future.

Catches from the line transects, bisected by the Canadian $200-\mathrm{mile}$ fishery zone, from a survey conducted in April 1986 on the Tail of the Bank, indicated American plaice to be significantly more abundant within the zone (SCR Doc. $87 / 43$). These results were in agreement with the stratified-random survey conducted in the area shortly afterwards. However, in contrast, the mean number-per-tow, in all four of the 3 -year periods examined from 1971-82, was greater for sets in the stratified-random surveys outside the 200-mile zone, compared to the sets inside, with the differences being statistically significant in the 1974-76 and 1977-79 periods. In 1984-86, however, the mean number-per-tow from sets inside the 200 -mile zone was greater than from sets outside the zone although the difference was not statistically significant. For the mean weight-per-tow, catches were greater inside the zone in the 1971-73 and 1974-76 periods, although not significantly so, and catches were greater outside the zone in the 1977-79 and 1980-82 periods, with the former period showing a significant difference. In 1984-86, the mean weight-per-tow was significantly higher in the sets inside the zone. As well, a trend was noted in the surveys from 1982, 1984, 1985 and 1986, as indicated in the following table:

		h ra	ins	de an	sid	of	ile	ne ${ }^{1}$
		882		$\overline{8} 4$		985		986
Parameter	In	Out	In	Out	In	Out	In	Out
Mean number per tow	50.6	94.1	46.4	65.5	74.6	67.5	37.5	22.0
Mean weight (kg) per tow	31.0	30.2	58.5	35.3	53.3	30.8	32.8	9.8

1 No comparable survey in 1983.
STACFIS noted that commercial catches from the area outside the 200 -mile fishery zone increased over the 1982-86 period, particularly from 1985 to 1986 . However, it was noted that unusual distributions of American plaice had been observed in some surveys in 1986-87 and that the above results may have been influenced by changes in the distribution of American plaice in the Tail-of-the-Bank area.

Canadian surveys for juvenile flatfish, using a stratified-random design in depths shallower than 100 m on the Grand Bank, were conducted in 1985 and 1986. Both surveys indicated large numbers of juvenile American plaice (ages 1-4) in stratum 360 in Div. 3 N , the area of which is about 93% outside the Canadian 200 -mile fishery zone. As a result of several large catches in this stratum in 1986, it was estimated that about 75% of the population at ages 1-4 in the survey area was contained in this stratum. These concentrations of juvenile American plaice, which were mixed with the adult population to some degree, may indicate a nursery area for the southern Grand Bank American plaice population. Concern was expressed that should this be the case, the mixing of the adults and juveniles in this area would make the younger American plaice more vulnerable to exploitation by the fishery on the Tail of the Bank.
c) Estimation of parameters (for Div. 3LN only)
i) Partial recruitment

In the 1986 assessment of this stock, long-term (1960-78) average partial recruitment values were used as input for cohort analysis and for catch projections. However, a comparison of the actual catch composition by age-group (numbers) in 1986 with that projected in the 1986 assessment revealed a substantial difference, with more young fish in the catch than was predicted. Therefore, a different partial-recruitment vector was calculated for the 1986 catch, based on averaging the fishing mortalities for 1973-77 in a cohort analysis. These years were chosen because the average catches in Div. 3 L and $3 N$ were about equal in this period, and the pattern of percent catch composition by agegroup was similar to that observed in 1986. The revised partial-recruitment values in Table 12 are somewhat higher at ages 6-12 than the long-term average values. It was noted that changes in partial recruitment are not uncommon for this stock, and that recent changes may have resulted from changes in the country composition and location of the fishery.
ii) Natural mortality

The value of $M=0.2$ in the present assessment was the same as that used in recent assessments of this stock.

The value of terminal fishing mortality $\left(F_{t}\right)$ in 1986 was determined on the basis of two unweighted least-squares regressions: (a) average annual exploitable biomass from cohort analysis against the CPUE series in Div. 3 L and 3 N as obtained from the multiplicative analysis, and (b) age $9+$ population numbers from cohort analysis against age $9+$ population numbers from selected strata from Canadian research vessel surveys in Div. 3L and 3 N .

In the first case, the average annual exploitable biomass was calculated by multiplying the average annual biomass estimates at age in the cohort analysis by the partialrecruitment vector noted previously (1973-77 average). In comparing the results of cohort analysis at levels of F_{t} equal to $0.45,0.50,0.55$ and 0.60 , it was noted that the sum of the 1986 and 1985 residuals, as well as the sum of the squares of these residuals, were lowest at $F_{t}=0.50$. The correlation coefficient decreased as F_{t} increased, indicating a lower value of F_{t}, but the differences were not significant over the range of F_{t} used. However, the intercept of the relationship moved closer to the origin over the range of F_{t}, indicating a slightly higher value of F_{t}. STACFIS again noted that trends in the pattern of residuals existed in this relationship. A plot of the catchability coefficient, calculated from the values in this relationship, indicated several trends over time, but STACFIS did not evaluate the potential effect of these trends on the calibration and used the relationship between average annual exploitable biomass and CPUE as it stood. However, STACFIS did note that the $1965-67$ points may have been influential in determining the relationship. In view of the deficiencies in catch-reporting of flatfish as in years prior to 1977, particularly prior to 1973 when catches were reported as unspecified flounders, STACFIS agreed that the effect of the points prior to 1977 in determining the relationship of average exploitable biomass and CPUE should be investigated.

In the second case, the regressions were not significant at $F_{t}=0.45$ and 0.50 , but were significant at $F_{t}=0.55$ and 0.60 . The correlation coefficient increased over the range of F_{t} used, and the sum of squares of the 1986 and 1985 residuals decreased over the range of F_{t}. However, the 1986 residual was close to zero at $F_{t}=0.55$. Based on these analyses, STACFIS decided that terminal F in 1986 for this stock was in the range of $0.5-0.6$ and chose the midpoint (0.55) for the assessment.
iv) Yield-per-recruit

Based on long-term average weights and partial-recruitment values, an analysis that was conducted several years ago indicated $\mathrm{F}_{0.1}=0.26$ and $\mathrm{F}_{\text {max }}>3.0$ for this stock. This very high value for $F_{\text {max }}$ is caused by the flat-topped shape of the yield-per-recruit curve and is not considered to be a realistic management strategy for this stock (Fig. 10). Recent changes in the fishery have caused the partial-recruitment values to change, indicating changes in the yield-per-recruit curve. STACFIS was unsure if these trends would continue, but recommends that these changes be investigated and that their potential effect on the calculation of reference levels of fishing mortality be fully documented.

Assessment results

The cohort analysis for Div. 3LN with $F_{t}=0.55$ showed a relatively stable population size at ages $8+$ in the 1978-82 period, declining to a 1986 level about 70% of the average in that period. The population biomass at these same ages was similar to those observed in 1974-76, when the catch rates were about the same as those in 1986. From the data available, it was bel ieved that the recruitment at age 6 in 1986 in the cohort analysis was unreasonably high, and, in view of the sensitivity of this value to slight changes in partial recruitment, it was decided to replace this with the geometric mean for the 1974-82 period from the cohort analysis at $F_{t}=0.55$. Historic trends in some population parameters are illustrated in Fig. 11 and 12.
e) Catch projections and prognosis

The parameters used in catch projections are listed in Table 12. The 1986 population was that generated from the cohort analysis at $F_{t}=0.55$, except that the recruitment estimate at age 6 was replaced by the geometric mean of the $1974-82$ values at age 6 from the same analysis. This value was also used to represent the recruitment estimate at age 6 in 1987 and 1988. The mean weights-at-age were the 1984-86 averages, and were lower at ages 6-10 and higher at ages $11+$ than those used in the 1986 projection. The partial-recruitment values were those used in the cohort analysis and their derivation was described previously.

In the projection, a catch of 44,000 tons of American plaice in Div. 3LN was assumed for 1987 (i.e. 1987 TAC minus an assumed catch of approximately 4,000 tons in Div. 30). This catch level is associated with a fishing mortality of 0.44 in 1987, which is about 70% higher than
-61.

Fig. 10. American plaice in Div. 3LNO: yield-per-recruit curve.

Fig. 11. American plaice in Div. 3LN: trends in total yield, and fishing mortality, (ages $9+$) weighted by popula-
tion.

Fig. 12. American plaice in Div. 3LN: trends in age 9+ biomass (at beginning of year) in year t and recruits at age 6 in year $t+6$.

Table 12. American plaice in Div. 3LN: parameters used in projections of biomass and yield.

Age $(y r)$	1987 stock size (000)	Mean W (kg)	Partial recruitment
6	$190,000^{1}$	0.298	0.050
7	147,716	0.356	0.127
8	121,478	0.440	0.284
9	48,811	0.541	0.465
10	32,966	0.623	0.665
11	25,784	0.747	0.833
12	21,953	0.984	1.0
13	12,698	1.303	1.0
14	7,018	1.676	1.0
15	2,918	2.161	1.0
16	1,498	2.715	1.0
17	544	3.146	1.0
18	142	4.009	1.0
19	15	4.094	1.0

1 Geometric mean recruitment (1974-84).
Fo.1. The projected catch in Div. 3 L and 3 N for 1988 at $\mathrm{F}_{0} .1$ (0.26) is 28,000 tons. Catches in Div. 30 have averaged about 4,600 tons in the last 5 years. Therefore, STACFIS advises that a catch of 33,000 tons in 1988 would correspond to fishing at $F_{0}{ }_{1}$ for the stock in Div. 3LNO. A catch in Div. 3LN in 1988 associated with the 1986 level of fishing mortality (0.55) would be 53,900 tons which would correspond to a TAC of 58,500 tons for Div. 3LNO as a whole. Yield in 1988 and spawning stock size (age $9+$ population biomass) at the start of 1989 for different levels of fishing mortality in 1988 are shown in Fig. 13.

It was noted that the catch projected at $\mathrm{F}_{0} .1$ for 1988 , including an estimate for Div. 30, was much lower than all previous estimates of the annual advised catches at $F_{0,1}$ for this stock. Commercial catch rates, which were very important in determining the population sizes in recent assessments, declined 30% from a 17 -year high in 1985 to an 8 -year low in 1986. This indicated a change in fully-recruited fishing mortality from 0.35 in 1985 (1986

Fig. 13. American plaice in Div. 3LN: projected yield in 1988 and biomass (age 9+) at beginning of 1989 for a range of fishing mortality (fully-recruited age-groups).
assessment) to 0.55 in 1986 (1987 assessment). The 1987 assessment indicates F in 1985 to be in the range of $0.4-0.5$.

Canadian research-vessel surveys in Div. 3LNO indicated relatively stable population sizes in 1985-87, which were about 50% below the 1977-82 average. Research-vessel survey data were not used for calibration of cohort analysis in 1985 and 1986 , because no survey was conducted during 1983 and a survey of only limited coverage was conducted in 1984. However, use of the research-vessel series in this assessment indicated a level of fishing mortality in 1986 similar to that indicated by the commercial catch rates.

In view of the long-term stability of the catches from this stock, as well as some of the apparent anomalies noted in the abundance indices in recent years, STACFIS was concerned that the magnitude of the decline in population size from 1985 to 1986 , indicated by this assessment, may reflect changes in availability rather than abundance. STACFIS is therefore not confident that the 1988 assessment will confirm the present conclusion, but might, in fact, support the previous view of the stock. It is evident from Table 13 that a catch in 1988 from fishing between the $F_{0} .1$ level and the $F(86)$ level would not produce a large change in the spawning stock biomass (age 9+) at the beginning of 1989 (see also Fig. 13). A delay of one year in implementing fully the implications of this new assessment may therefore be appropriate.

Table 13. American plaice in Div. 3LN: projected catch in 1988 and biomass at start of 1989, for constant catch in 1987 and various F-values in 1988.

Catch in 1987 (tons)	Fishing mortality in 1988	Catch in 1988 (tons)	Age 9+ biomass on $(000$ Jan 1989
44,000	$0.26\left(\mathrm{~F}_{0.1}\right)$	27,900	146.7
44,000	0.30	31,800	143.2
44,000	0.35	36,500	138.9
44,000	0.40	41,100	134.8
44,000	$0.55\left(\mathrm{~F}_{86}\right)$	53,900	123.3

f) Future research

With a view toward improving the assessment of the American plaice stock in Div. 3LNO, STACFIS recommends
i) that available length frequency information from non-Canadian catches be incorporated into the calcuiation of numbers and mean weights-at-age in the commercial fishery, and
ii) that information on the ageing of otoliths from this stock be exchanged between Spanish and Canadion age readers;
iii) that data from more strata be included in the analysis of Canadian surveys, with the use of a multiplicative model being investigated to achieve this goal;
iv) that the effect of recent changes in the age composition of the catch and corresponding changes in mean weight-at-age and partial-recruitment vectors on the calculation of yield-per-recruit be examined; and
v) that the effect on the calibration of cohort analysis of data prior to 1977, when some catch estimates may have been less neliable, be examined.
10. Witch Flounder in Divisions 3 N and 30 (SCR Doc. 87/24; SCS Doc. 87/13)
a) introduction

Catches of witch flounder in Div. 3 N prior to 1985 ranged from 8,000 tons in 1974 to about 2,400 tons in 1981 and 1982. Provisional data for 1985 and 1986 indicate catches of 8,700 tons and 9,100 tons respectively. The major participants in this fishery have traditionally been Canada and USSR, but a significant portion of the catch was taken by Spain and USA in 1985 and 1986. While Portugal had no catch before to 1986, it accounted for a large proportion of the catch in 1986. Most of the additional catch in 1985 and 1986 came from Div. 3 N . Recent catches and TACs (000 tons) are as follows:

| | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TAC | 10 | 10 | 7 | 7 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| Catch | 6 | 3 | 3 | 2 | 2 | 4 | 4 | 3 | 9^{1} | 9^{1} | |

l Provisional data,
b) Input data
i) Commercial fishery data

Catch and effort statistics were available from Canadian trawlers which fished the southwestern slope of the Grand Bank (Div. 30) during winter and spring from 1972 to 1986, although, for many of these years, there has been very little directed fishing effort for witch flounder. The highest catch rate of 0.72 tons/hr was recorded in 1972 . Catch rates declined to a low of about 0.20 tons/hr in 1979 but have generally increased since that time to about 0.54 tons/hr in 1985 and remained stable in 1986. No information is available for Div. 3N. Catch-at-age data from the Canadian fishery in Div. 30 indicate a relatively stable age composition since about 1983.
ii) Research vessel surveys

Research vessel surveys have been carried out in Div. 3NO since the early 1970's, but they were only conducted in depths less than 200 fath. Therefore, important depth zones for witch flounder were not surveyed. As a result, STACFIS could not evaluate the usefulness of data from these surveys as indices of abundance for witch flounder in this area.
c) Catch projections

Considering the commercial fishery data, STACFIS concluded that the witch flounder stock component in Div. 30 may have been relatively stable in recent years at some level higher than in the previous 10 years. However, due to the lack of data, STACFIS could not advise on the status of the witch flounder stock component in Div. 3 N . With the information available, STACFIS was not able to advise a change in the TAC for 1988 from the $5,000-\mathrm{ton}$ level presently in effect.

STACFIS reiterates its concern, however, about the increasing catch levels in recent years, particularly in Div. 3 N , and considers that the stock would unlikely sustain such catch levels without a decline in stock abundance.
d) Future research

STACFIS recommends that countries fishing the witch flounder stock in Div. 3NO should collect catch and effort information as well as length and age data and present them to NAFO to allow
11. Yellowtai! Flounder in Divisions 3L, $3 N$ and 30 (SCR DoC. 87/43, 44, 46, 48; SCS Doc. 87/13, 15, 18).
a) Introduction

Nominal catches increased from a few hundred tons in the early 1960 's to a peak of 39,000 tons in 1972, averaged about 13,000 tons from 1976 to 1984 , and increased to about 29,000 tons in 1985 and 1986. Canada was virtually the only nation involved in the fishery during 1976-81, but several other countries have entered the fishery since 1981, notably South Korea, Spain, Portugal, Panama, USA and Cayman Islands. An estimated catch of over 15,500 tons was taken by non-Canadian vessels in 1985 , about 62% of which was taken by non-member countries. Catches by all countries were lower in 1986 than 1985 , with the exception of Canada, with an 800 ton increase, and Portugal, which reported 5,500 tons in 1986 and 0 tons in 1985. Virtually all of the increase in catch in 1985 and 1986 came from Div. $3 N$, outside the Canadian 200-mile fishery zone. Recent TACs and catches (000 tons) are as follows:

	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
TAC	12	15	18	18	21	23	19	17	15	15	15
Catch	12	15	18	12	15	13^{1}	10^{1}	15^{1}	29^{2}	30^{2}	

1 Includes 60% of the "flounder non-specified" catch reported to NAFO by
South Korea.
2 Provisional data.
b) Input data
i) Commercial fishery

Catch rates of yellowtail fiounder by Canada (N) otter trawlers (tonnage classes 4 and 5) declined from about 0.6 tons/hr during $1969-73$ to a low of 0.33 tons/hr in 1976 (SCR 87/44) (Fig. 14). The catch rate increased to just over 0.6 tons/hr in 1980-81, was constant at a level around 0.55 tons/hr during 1982-85, and declined about 19% to 0.46 tons/hr in 1986. The USA catch of yellowtail declined from 1985 to 1986 , al though the number of fishing trips remained relatively constant.

Fig. 14. Yellowtail flounder in Div. 3LNO: commercial catch-per-unit effort, 1968-86.

The age composition and average weight-at-age data for 1986 were obtained from samples of landings of Canadian trawlers from Div. 3LNO. Examination of length frequency data from non-Canadian catches (SCS $87 / 13,18$) did not indicate that recalculation of age composition and average weight parameters was necessary at this time. It was recommended that such data be incorporated into the calculations, if possible, for future assessments.

As in 1985, the 1978 and 1979 year-classes dominated the commercial catch in 1986, comprising about 75% of the catch both by number and weight. The 1978 and 1979 yearclasses were among the strongest in the 19 -year time series at age 7 . The catches of age-groups 4 and 5 were at low levels in 1982-86, contributing less than 3% to the catch (by number) in 1986, the lowest value in the series. Although the catch at age does not indicate the presence of any strong year-classes after those of 1978 and 1979, STACFIS noted that these two year-classes did not appear to be particularly strong in the commercial catch at ages 4 and 5. The weights at age were lower in 1986 than 1985 but were similar to the values for other years in the series. The sum of the products of number at age in the catch and weight-at-age was only 2.6% higher than the nominal catch, a difference considered to be acceptable.
ii) Research vessel surveys

Stratified-random groundfish surveys. The Canadian spring surveys (SCR 87/44) indicated a relatively stable population of yellowtail flounder during 1978-82 (Fig. 15). There was no survey in 1983 when the population size showed a sharp increase between 1982 and 1984. The 1985 and 1986 estimates (as well as the preliminary estimate for 1987) of population size are slightly below the 1978-82 mean value. A preliminary estimate of the biomass in Div. 3LNO from 1987 Canadian spring survey showed a 13% decrease from the 1986 biomass estimate. However, USSR research surveys (SCS 87/15) indicated a decline in abundance during 1984-86 with a decline in biomass during 1983-86. The decline in both USSR indices was approximately 50% from 1985 to 1986 . It was also noted from recent Canadian surveys that the 1978 and 1979 year-classes were relatively strong, which was in agreement with data from commercial catches in 1985 and 1986. However, these surveys do not show the 1980 and 1981 year-classes as being strong.

Fig. 15. Yellowtail flounder in Div. 3LNO: abundance index from research vessel surveys, 1971-86 (no estimate for 1983).

STACFIS noted that Canadian survey coverage was not complete in some years and recommends that additional strata be included in the group of selected strata in Div. 3LNO, allowing an index to be calculated which would probably be more indicative of yellowtail abundance. STACFIS also noted that no attempt was made to relate survey results to environmental factors, particularly in the last 3 or 4 years, and that such work may be important for this stock, in view of its location at the northern limit of the species range. STACFIS was informed that analysis of these data was in progress and the results would be presented in the near future.

Line transect survey (Divisions 3NO, April 1986). Catches from line transects bisected by the Canadian 200-mile fishery zone boundary on the southern Grand Bank indicated
yellowtail flounder to be significantly more abundant within the zone than outside the zone in April 1986 (SCR 87/43). These results were in agreement with the results from the stratified-random trawl survey, which was conducted in the area shortly afterwards in 1986, but were clearly different from the results of the stratified~random survey in 1985. Although the 1985 survey indicated yellowtail flounder to be more abundant in the area just outside the boundary than in the area just inside the boundary, STACFIS noted that the 1985 survey was virtually the only one in the series in which this situation occurred. However, it was noted that the ratio of average catch by weight inside the boundary to average catch by weight outside the boundary was 4.2 in the 1986 transect survey and 10.4 in the 1986 stratified-random survey, compared to $0.86,1.07$ and 1.88 in the 1985, 1984 and 1982 stratified-random surveys respectively, and an average value of 2.05 in the 1971-79 surveys. It was noted that a large increase in the catch from the area outside the 200 -mile fishery zone in Div. 3 N occurred in 1985 , but the data were insufficient to determine if the differences in the mean catches on either side of the boundary (from the 1985 and 1986 surveys) could be attributed to this increase in catch or were caused by changes in the yellowtail distribution in these years.

Juvenile surveys. Canadian surveys for juvenile flatfish, using a stratified-random design in depths inside the 100 m isobath, were conducted in 1985 and 1986. The survey design is such that independent estimates can be derived from fishing sets conducted during the day and during the night. Both abundance and biomass estimates were found to be statistically higher during night sets (SCR 87/48). In addition, the 24 -hr diel study in. 1986 showed higher numbers and weights of both juveniles and adults during night catches. At the recommendation of STACFIS in 1986, a reexamination of the distribution of yellowtail flounder (ages 1-4) showed that juveniles are mainly limited to the strata in and around (to the west of) the Southeast Shoal. Estimates of average number-per-tow by age-group in 1985 and 1986 were recalculated for these strata and may be appropriate as indicators of year-class strength. STACFIS noted that the 2-year time series of juvenile surveys was insufficient to evaluate the relative strengths of recruiting year-classes, but was encouraged that reanalysis of the data resulted in new information on juvenile distribution and diel variability. Further investigation into these aspects of yellowtail flounder distribution was recommended.

Tagging results from the 1972 tagging program (SCR 87/46). Out of 998 tagged yellowtail flounder in Div. 3N, 5% tag returns were reported, mostly from the second and third quarters of 1973 and 1974. Movements of 13 tagged fish showed that 8 out of 13 ranged 4-12 miles from the tagging site while the remaining 5 were recaptured over a range of 31-86 miles. All tag recoveries were made inside the 100 m depth contour on the Grand Bank.

Assessment results
STACFIS noted that the previously-documented occurrence of very high levels of mortality at the older ages has not been resolved for this stock. Primarily.for this reason, cohort analysis was not used to form the basis of catch projections.

Catch projections

STACFIS again expressed concern that the nominal catch in 1986 was almost double the TAC, similar to the situation in 1985. It was noted that high catches, between 23,000 and 37,000 tons in 1970-75, were followed by sharp declines in stock abundance and yield. Comercial CPUE decreased by 35% from 1973 to 1974 , and declined a further 21% from 1974 to 1976. STACFIS noted that the decline in CPUE from 1973 to 1976 was reversed shortly afterward, when catches were reduced from above 22,000 tons to $8,000-15,000$ tons in 1976-78. The abundance indices for this stock were relatively stable from 1978 to 1984 , when catches averaged about 14,200 tons.

STACFIS noted that catches from this stock were negligible prior to 1965 , indicating that the stock was probably below a commercially-exploitable level until the mid-1960's. The establishment of yellowtail flounder on the Grand Bank may have been related to the severe depletion of the haddock stock in the same area, following very large catches in the late 1950's and early 1960's as postulated by T. K. Pitt (J. Fish. Res. Board, Can., Vol. 22(1970): 2261-2271). In view of this, as well as the observed decline in abundance of yellowtail flounder in the mid-1970's after several years of catches over 22,000 tons, STACFIS expressed concern that it may be possible to reduce this stock to very low levels, perhaps even to the level of the early 1960's, when there was no commercial fishery.

STACFIS noted that the strong 1978 and 1979 year-classes cannot be expected to contribute significantly to catches after 1987 and that recent research vessel surveys do not indicate anything other than average recruitment. STACFIS, therefore, reiterated that the stock cannot sustain catches around 30,000 tons. With the 1985 and 1986 catches close to this level, and the indices of abundance all showing declines either from 1985 to 1986 or 1986 to 1987, STACFIS advises that the catch from this stock in 1988 should not exceed the current TAC level of 15,000 tons.
e)

Future research
With respect to the yellowtail flounder stock in Div. 3LNO, STACFIS recommends i) that available sampling from the non-Canadian catch in 1985 and 1986 be incorporated into the calculation of age composition of the catch and average weight-at-age; ii) that the Canadian research-vessel survey data be reanalyzed to include information from more strata, with the feasibility of using a multiplicative model in this analysis being investigated; and iii) that further analysis on the distribution and abundance of juvenile yellowtail flounder be conducted, involving determining the effects of diel variability on indices of abundance from research vessel surveys on both juveniles and adults.
12. Greenland Halibut in Subareas 0 and 1 (SCR Doc. $87 / 22,33,34,35$; SCS Doc. $87 / 14,15$)
a) Introduction

Nominal catches peaked at 25,000 tons in 1975 but have been less than 10,000 tons since 1980. The provisional catch in 1986 was 8,700 tons, which is a decrease of 5% from that in 1985. The whole catch was taken by Greenland, mainly in Div. 1A (75\%). The fishery is primarily carried out as an inshore gillnet fishery, although a minor inshore longline fishery also takes place. In one of the main areas for the fishery for Greenland halibut, Jakobshavnllulissat region in Div. $1 A$, the proportion of the catch taken by gillnets was estimated to be 80%. Recent TACs and catches (000 tons) are as follows:

	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
TAC	20	20	25	25	25	25	25	25	25	25	25
Catch	13	12	19	8	10	9	9	7	9	9	

1 Provisional data.
b) Input data

i) Commercial fishery data

Some information on the commercial fishery in the Jakobshavn-llulissat region (Div. 1A) is available for 1985 and 1986 and for the spring of 1987 (SCR Doc. 87/33). A gillnet fishery off Jakobshavn-lcefiord showed length distribution of catches with a narrow range and a peak around $60-64 \mathrm{~cm}$. A longline fishery mainly in Jakobshavn-lcefiord showed length distribution of catches with a broad length range of $30-124 \mathrm{~cm}$ and no pronounced peak. The proportions of the catches of the two fisheries are very dependent on variation in ice-cover conditions. For instance, the winter of 1985/86 and the spring of 1986 were unusually warm, and the length composition of the total catch from the Jakobshavn-llulissat region in 1986 was dominated by the gillnet catches.

ii) Research data

Trawl surveys. USSR trawl surveys were conducted in Div. $O B$ during the autumn annually since 1979. The results indicate that abundance and biomass have declined substantially since 1982. This might be due to changes in hydrological conditions which occurred in the period for which the trawl surveys were made. Abundance index for 1986 increased from $3.1 \mathrm{~kg} / \mathrm{hr}$ at $200-300 \mathrm{~m}$ to $534 \mathrm{~kg} / \mathrm{hr}$ at $800-900 \mathrm{~m}$ and decreased to $241 \mathrm{~kg} / \mathrm{hr}$ at $1,000-1,100 \mathrm{~m}$.

A Canadian stratified-random trawl survey was conducted in August-September 1986, covering Subarea 0 and 1 in depths of $200-1,250 \mathrm{~m}$ from $61^{\circ} \mathrm{N}$ to $70^{\circ} \mathrm{N}$. Abundance of Greenland halibut was greatest at depths between 600 and $1,000 \mathrm{~m}$, which is consistent with the data from the USSR survey. Size of fish generally increased with depth. The estimated biomass for the investigated area was 282,000 tons, but the estimate was considered conservative because much of the area of distribution of Greenland halibut was not surveyed. Stratified mean number-per-tow by age-group indicated strong 1979 and 1985 year-classes. The catch curve from this survey indicated a total mortality (Z) of 0.64. However, this value is probably overestimated due to. the absence of old mature fish which had been shown in earlier USSR surveys to exist in depths beyond that of this survey.

Tagging. Results from tagging experiments in Godthab Fiord (Div. 1D) in 1969 and 1970 show no recaptures outside the fiord (SCR Doc. 87/34). STACFIS noted that there is no evidence of spawning within the fiord. So far, the assumed emigration from West Greenland fiords to the Davis Strait for spawning has never been confirmed by tagging experiments. This could be due to the lack of commercial fishing in the deeper parts of Davis Strait. From the longline tagging experiment, the average total mortality (Z) was esti-
mated to be 0.76. Reliable fishing mortality estimates cannot be made because no information on tagging mortality and non-reporting of recaptures are available.

Other research results. By-catches of Greenland halibut in the Greenland shrimp fishery and in Federal Republic of Germany groundfish surveys indicated that the main areas of distribution of young fish are the offshore area north of $68^{\circ} \mathrm{N}$ and in Disko Bay (SCR Doc. 87/35). High abundance of young fish are also found in some coastal areas in the southern areas of West Greenland. In light of the hydrography and the currents of the area, a drift of larvae to the West Greenland area is consistent with spawning in Davis Strait. However, the high abundance of young fish in some coastal areas could not be explained by passive transport of larvae from Davis Strait, and it was suggested (SCR Doc. $87 / 35$) that young Greenland halibut in the coastal area of the southern part of West Greenland may originate from the Iceland-East Greenland area, from where they are transported by the East Greenland current to West Greenland.

c) Catch projections

With the continued lack of adequate data to perform an analytical assessment of this stock, STACFIS has no basis to advise a change from the present TAC level of 25,000 tons.
13. Greenland Hal ibut in Subarea 2 and Divisions 3 K and 3 L (SCR Doc. 87/45; SCS Doc. 87/15)
a) Introduction

Catches of Greenland halibut during 1970-76 ranged from about 24,000 tons to 30,000 tons annually. The highest annual catch of 39,000 tons was taken in 1978. In recent years, most of the catch has been taken by Canada, particularly by inshore gillnet fishermen along the coasts of northeastern Newfoundland and southern Labrador, although Poland, USSR, German Democratic Republic and Japan still take part in the fishery. Catches have been declining since 1983, and the 1986 catch of about 12,000 tons was the lowest annual catch since 1965 , with the 1985 catch of 17,000 tons being the second lowest since 1965. Recent TACs and catches (000 tons) are as follows:

	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
TAC 2	30	30	30	35	55	55	55	55	75	100	100
Catch	32	39	34	33	31	26	28	25	17^{2}	12^{2}	

${ }_{2}$ TAC for Div. 2J+3KL on1y during 1977-84.
2 Provisional data.
b) input data
i) Commerical fishery data

Due to the nature of this fishery and the migratory behavior of Greenland halibut, it is particularly difficult to obtain CPUE data which may be an accurate reflection of total stock abundance. The only new catch rate (0.56 tons/hr) was from Canada (N) otter-trawl fishery during July-August 1986 based upon only upon a catch of 1,100 tons in the directed fishery. Nevertheless, it was consistent with a trend of declining catch rates during 1984-86 in Div. 2 J for the same time of year. Such a decline was unexpected, due to presence in the fishery of the relatively strong 1979 year-class.

The age composition of the Canadian commercial fishery is primarily comprised of 6-, 7and 8 -year-old fish, and these age-groups accounted for 80% of the 1985 and 1986 catches in numbers. This was due to the fact that the fishery is mainly by highly-selective gillnets in the more southerly range of the stock where younger fish are more abundant. Should the present fishing pattern continue, the concentration of the fishery on these age-groups is likely to continue.

ii) Research vessel surveys

Estimates of biomass from research-vessel surveys in Canada in Div. 2 J and 3 K declined from 1984 to 1985 , but the 1986 biomass estimate was similar to the 1983 and 1984 estimates. A similar trend was shown for USSR surveys in Div. 3 K for the same period. No trend was apparent from Canadian surveys in Div. 3L. The estimated minimum trawlable biomass in Div. $2 \mathrm{~J}+3 \mathrm{KL}$ for 1986 was 196,000 tons, despite the lack of complete survey coverage. This compares to an average estimate of 197,000 tons for 1983-84. These estimates are considered minimal because the deepwaters of the continental slope, where larger Greenland halibut are located, are not surveyed, and the catchability for this species could be as low as $15-20 \%$ according to experimental evidence. A large portion
of the stock area (i.e. Div. $2 G H$) has not been surveyed since 1981 when minimum trawlable biomass levels were estimated to be in the order of 200,000 tons during 1978-81.

Catch-at-age data from the Canadian surveys in Div. 2 J and 3 K indicated the 1979 yearclass to be stronger than any other in the series at age 5, and the 1974-77 year-classes were considered to be average at age 5. The 1980 year-class was about average at age 5 in the 1985 survey, but it was previously indicated to be stronger than average according to the results of modal analysis of length frequency data from the northern shrimp surveys in Div. 2 H and 2 J . The 1981 year-class was in the size range of the 1974-77 year-classes.

Age compositions from the shrimp survey of Div. 2 H and 2 J in 1984-86 showed conflicting evidence as to the relative strengths of the 1979 and younger year-classes. For example, the 1979 year-class dominated the catch from Div. $2 H$ in 1984. The 1984 yearclass clearly dominated in the 1985 survey, and the mean catch-per-tow of the 1985 yearclass in the 1986 survey was higher than any in the series. In Div. 2J, the 1982 and 1983 year-classes dominated the catch in both 1984 and 1985. In the 1986 survey, the 1985 year-class occurred in greater abundance than any in the series, similar to that shown for Div. 2H. In view of the short time series, it is still too early to relate the abundance estimates of recruiting year-classes from the shrimp surveys to those of the groundfish surveys or from VPA to establish precise recruitment indices of abundance.
c) Estimation of parameters and assessment results

Due to lack of suitable calibration procedures for VPA, estimation of fully-recruited fishing mortality could not be determined. With present catch levels and survey biomass estimates, however, STACFIS considers the overall fishing mortality on this stock to be quite low.

d) Catch projections

From the available data, STACFIS was unable to advise a TAC based on fishing at $F_{0,1}$. However, considering the low exploitation level and the high level of estimated biomass, STACFIS advises that a TAC of 100,000 tons throughout Subarea 2 and Div. 3 KL in 1988 is unlikely to exceed the fishing mortality level of $F_{0.1}$.

STACFIS noted that, with the present fishing pattern mainly in shallower depths ($<500 \mathrm{~m}$) and in the more southerly divisions (particularly Div. $2 \mathrm{~J}, 3 \mathrm{~K}$ and 3 L), a catch of 100,000 tons is not likely to be achieved. Because, older fish (age $10+$) are more abundant in depths greater than 700 m on the continental slope and in the more northerly areas (Div. 2 G and 2 H), part of the advised TAC may be fished there.
e) Future research

STACFIS recommends (i) that biomass estimates and catch-at-age data from the complete USSR series of Greenland halibut surveys be provided in a single document for the June 1988 Meeting; (ii) that the shrimp survey data on Greenland halibut be examined further in an attempt to standardize the catch-at-age between Div. $2 H$ and $2 J$ to better evaluate year-class strength; and (iii) that the lack of correspondence between survey and VPA population size and age structure be investigated as a basis for exacting improved hypotheses about VPA input parameters.
14. Roundnose Grenadier in Subareas 0 and 1 (SCR Doc. 87/39; SCS Doc. 87/15)
a) Introduction

A total catch of 31 tons was reported for 1986, a decrease from 51 tons in 1985. Catches since 1978 have been restricted to by-catches in the Greenland halibut fishery. Recent catches and TACs (000 tons) are as follows:

	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
TAC	8	8	8	8	8	8	8	8	8	8	8
Catch	3	3	6	7	2	+	+	+	+	+	

b) Input data
i) Commercial fishery data

There has been no directed fishery for roundnose grenadier in these subareas since 1978.

Therefore, no update of the catch-effort analysis, which had been presented previously (NAFO Sci. Coun. Rep., 1985, page 72), was possible.
ii) Research data

Results from a 1986 Canadian research survey in Subareas 0 and 1 (SCR Doc. 87/39) indicated that the species was not found north of about $66^{\circ} 30^{\prime} \mathrm{N}$. The fish ranged in size from 3.5 to 20.5 cm (anal fin length), with the size generally increasing with depth. They were caught at depths from about 600 m to the maximum depth fished ($1,250 \mathrm{~m}$) but were most abundant between about 800 and $1,100 \mathrm{~m}$. The total estimated trawlable biomass was determined to be about 110,000 tons, with about 90% of this being estimated in Subarea 1.

USSR research data for Subarea 0 (SCS Doc. 87/15) indicated that fish aged $7-9$ years predominated in the area in 1986. The mean length (total) of grenadiers declined from about 63 cm in 1981 to about 56 cm in 1986. This probably indicates an increase in smaller fish, because there has been only a low annual catch during this period.

c) Catch projections

STACFIS noted the continuing lack of commercial data for this stock due to continued low catches. The present TAC of 8,000 tons represents a relatively low proportion (about 7%) of the estimated minimum trawlable biomass from the 1986 survey. Because of the lack of recent commercial data, and since the 1986 survey result is a point estimate, STACFIS advises that the 1988 TAC remain at the 1987 level of 8,000 tons.
d) Future research

STACFIS noted that in the absence of a directed commercial fishery, any updates concerning the status of this stock must come from research data, The question of appropriate research in this area will be addressed by STACFIS in September 1987 in response to a specific request from Canada.
15. Roundnose Grenadier in Subareas 2 and 3 (SCR Doc. 87/39; SCS Doc. 87/15)
a) introduction

The 1986 catch of about 7,500 tons was up about 25% from the reported catch in 1985 but was only about 68% of the TAC. This increase was due to increased catches by both the German Democratic Republic and the USSR. Nominal catches, however, remain low relative to those prior to 1979. Catches and TACs (000 tons) for the recent period are as follows:

	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
TAC	35	35	35	30	27	27	11	11	11	11	11
Catch	15	21	8	2	7	4	4	4	5^{1}	7^{1}	

1 Provisional data.
b) Input data
i) Commercial fishery data

Catch and effort data were available from the ICNAF/NAFO database for the 1967-85 period. In addition, data were available for the 1978-86 period from the Canadian Observer Program. The two data sets were analysed separately using a multiplicative model to derive standardized catch rates and effort (SCR Doc. 87/39). Catch rates have declined from the early 1970's to the present. Both series indicate relative stability in catch rates in the 1980 's.
ii) Research data

The results of a 1986 research survey in Subarea 2 and Div. $3 K$ by the USSR were presented (SCS Doc. 87/15). Catches consisted of ages 3-20 fish. Smaller fish were found in Div. 3 K than in Subarea 2 and the size of the fish caught in both areas increased with depth. It was noted that the percentage of females also increased with depth.
c) Estimation of parameters

Data were insufficient to carry out an analytical assessment of this stock. Examination of the relationships between standardized CPUE and standardized effort (unlagged and lagged 4
and 6 years) indicated that the relationships were either not significant or were significant with positive slopes. Thus general production analysis was not possible.
d) Catch projections

As has been reported previously, the low catches relative to the TACs in recent years may, in part, be due to the limitations on Greenland halibut by-catch. Catches have increased from 1984 to 1986, possibly because of a reduction of this by-catch problem due to warming water in 1986 (NAFO SCi. Coun. Rep., 1986, page 73) and movement from the area of the relatively strong 1972 and 1973 year-classes. It was noted, however, that the catch rates have not increased during this period but instead have remained relatively stable. Therefore, STACFIS has no basis to advise a change in the TAC for 1988 from the present level of 11,000 tons.

STACFIS noted that, in the past, virtual population analyses (VPA) were carried out on this stock. In recent years, however, catch-at-age data have not been made available by the countries which prosecute this fishery. STACFIS therefore recommends that those countries involved in the Greentand halibut fishery examine their databases for data on age composition of commercial catches and, if possible, prepare updated VPAs for this stock, following the designated guidelines for presentation of the results.
16. Wolffish in Subarea 1 (SCR Doc. $87 / 61$; SCS Doc. $87 / 14$)
a) Introduction

The nominal catch in West Greenland waters includes two species: Atlantic wolffish (Anarhichas lupus) and spotted wolffish (A. minor). Since 1957, the combined catch of both species has been in the range of $2,000-6,000$ tons. There is some indication that the officially-reported catches for 1977-79 were overestimated. Recent catches (000 tons) are as follows:

	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
Catch	6	6	6	17	5	4	4	3	2	2	2^{1}

${ }^{1}$ Provisional data.
b) Input data

Groundfish survey estimates by the Federal Republic of Germany indicated a decline in biomass of Atlantic wolffish from 28,000 tons in 1982 to only 7,000 tons in 1984 . In 1985 and 1986, biomass estimates remained at this low level. Abundance, however, decreased to a lesser degree, because a reduction in number of older and larger fish was partly compensated by an increasing number of younger and smaller fish. Average individual weights declined from 1.2 to 0.5 kg over the survey period.

A similar trend in biomass and abundance was observed for spotted wolffish over the same period. This species is, however, far less abundant in the survey area than Atlantic wolffish. Biomass estimates declined from 9,000 tons in 1982 to 2,000 tons in 1985 but increased again to 4,000 tons in 1986 . The respective average individual weights were $5.1 \mathrm{~kg}, 2.9 \mathrm{~kg}$ and 3.6 kg .

It seems unlikely that the offshore commercial trawl fishery, exerting a relatively low and even decreasing level of fishing effort during the same period, could have contributed significantly to the observed changes. It was noted that the surveys cover only a part of the area of distribution of both species and that spotted wolffish are generally more abundant in inshore areas.
c) Catch projections

Until more biological data and separate catch statistics for the two species become available, it will not be possible to carry out a detailed assessment. Trawl catches off West Greenland are not expected to increase significantly in the near future. The available statistics and biological information indicates no change in the previous advice, i.e. a total catch in the range of 5,000-6,000 tons corresponding to the long-term average catch.

d) Future research

Acknowledging the usefulness of recent studies, STACFIS encouraged the continuation of biological investigations on the wolffish stocks off West Greenland.
17. Capelin in Divisions $3 \mathrm{~L}, 3 \mathrm{~N}$ and 30 (SCR Doc. $87 / 18,49,50,60,69$)
a) Introduction

Nominal catches of capelin in these divisions increased from about 1,600 tons in 1971 to 166,000 tons in 1975 and declined to 12,000 tons in 1979. No offshore fishing was allowed in the region during 1979-86. Provisional statistics for 1986 indicate a total catch of 48,000 tons in the inshore fishery of Div. 3L by purse seines, beach seines and traps during June and July. Recent TACs and catches (000 tons) are as follows:

	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
Advised TAC											

For Div. 3L only in 1979-86.
2 Management measures adopted by Fisheries Commission without STAGFIS advice
(Nafo Sci. Coun. Rep., 1981, page 83).
3 Provisional data.
b)

Input data
i) Commercial fishery (SCR Doc. 87/50)

A logbook survey of the inshore capelin fishery in Div. 3L, designed to provide estimates of catch-per-unit-effort, was initiated in 1981. The catch rates of trapnets and purse seines in the following table (where catches are derived from the addition of the quantities actually landed and the quantities of discards from logbooks) show similar patterns over the 6 -year period, increasing from 1981 to 1983, declining in 1984 and increasing from 1984 to 1986 . The 1985 catch-rate estimates are probably biased upward because fishing patterns were different in 1985 (NAFO Sci. Coun. Rep., 1986, page 74). The 1986 catch rates are the highest in the series.

	1981	1982	1983	1984	1985	1986
Trapnets (tons/day)	2.9	3.1	3.4	2.9	4.6	4.6
Purse seines (tons/day)	9.4	16.4	18.8	14.3	16.4	19.0

Discarding (which includes dumping of dead capelin as well as releasing fish alive) of capelin in 1986 was lower than in 1985 due to favourable market conditions. During 1986, 'redfeed' and low percentages of females in the catch were the principal reasons for discarding. The reported by-catch of cod in trapnets in 1986 (less than 0.5% of reported logbook landings) was lower than in 1985 (1.0%).

The 1983, 1982 and 1981 year-classes accounted for $62 \%, 34 \%$ and 3% of the commercial catch (by numbers) in the 1986 inshore fishery.
ii) Research data (SCR Doc. $87 / 18,49,60,69$)

Aerial surveys of capelin in Trinity Bay and Conception Bay have been conducted in June and July since 1982 (SCR Doc. 87/49). Total surface area of schools, estimated from aerial photographs, provided an index of abundance. The trends in the school surface area index from 1982-85 were comparable to the catch-rate indices and projected biomass estimates, however, the 1986 school surface area index was biased downwards because of incomplete coverage. Bad weather in 1986 restricted flying time to less than half of the time flown in 1984 and 1985.

An acoustic survey by Canada in Div. 3N0 during 26 June-05 July 1986 provided a biomass estimate of 495,000 tons, of which 485,000 tons were estimated to be mature capelin (SCR Doc. 87/69). The 1986 estimate is the highest in the 1981-86 Canadian survey series (range of $85,000-495,000$ tons). The strong 1983 year-class dominated in the 1986 survey, accounting for 67% of the catch by numbers and 65% of the biomass.

An acoustic survey was also conducted by Canada in Div. 3L during 15 May-01 June 1987 (SCR Doc. 87/69). The total biomass was estimated to be $2,576,000$ tons, compared to an estimate of $3,697,000$ tons from a similar survey in 1986 . In the 1987 survey, the 1985 year-class accounted for 57% of the estimate by number and 25% by weight. While
accounting for 25% of the estimate by number, the 1983 year-class accounted for 52% of the estimate by weight. Results from Canadian acoustic surveys in 1985-87 indicated that the 1985 year-class was approximately one-quarter the strength of the 1983 yearclass and 1.4 times the strength of the 1984 year-class at age 2.

Results of an acoustic survey by the USSR (SCR Doc. 87/18) in Div. 3LNO during 16-27 June 1986 provided a total biomass estimate of $1,492,000$ tons (933,000 tons in Div. 3L, and 559,000 tons in Div. 3N0), compared to an estimate of $2,200,000$ tons from a comparable survey in 1985. The 1983 year-class dominated in both Div. 3L (71% by number) and Div. 3NO (75% by number).

The USSR also conducted a survey (SCR Doc. 87/18) for 0-group capelin in Div. 3LNO during 30 November-12 December 1986. The abundance of the 1986 year-class was lower than the 1984 and 1983 year-classes by factors of about 3.8 and 6 times respectively. No $0-g r o u p$ estimates of the relative size of the 1985 year-class were available.

An analysis of relative year-class strengths from Canadian offshore acoustic surveys and inshore catch rates (SCR Doc. $87 / 60$) indicated that, during the 1980 's, the 1983 yearclass was strong and the 1981 year-class was weak. The inshore catch rates by age-group indicated that the 1980 and 1982 year-classes were also strong, while the relative indices by age-group from the offshore surveys showed that these year-classes were weak. The low indices for these year-classes may have resulted from insufficient survey coverage or lack of coverage of high densities of capelin due to ice cover.
c) Estimation of parameters

Estimates of the strength of the 1984 year-class indicate that it is about $17-26 \%$ of the 1983 year-class, and the 1985 year-class is about $24-36 \%$ of the 1983 year-class. The major contributors to the mature population in Div. 3L during 1988 will be the 1984 and 1985 yearclasses, and, because these year-classes are weaker than the 1983 year-class, the spawning biomass in 1988 is expected to decline.

Spawning mortality and mean weight-at-age vectors and proportions mature were the same as used in previous assessments (Table 14). No estimates of spawning mortality at age 2 are available, and, for catch projections, the estimate of spawning mortality is 1.39. Estimates of year-class strength for immature and mature capelin were derived from the 1987 Canadian survey.

Table 14. Capelin in Div. 3L: parameters used in projections of stock size.

Age (yr)	Spawning mortality	Proportion mature	Mean W $(\mathrm{~g})$
3	1.39	0.47	21.2
4	1.69	0.87	28.4
5	2.23	0.93	31.1
6	2.23	1.00	32.4

1 Used to calculate mature biomass in 1988.
d) Catch projections

The results of the projections, using the estimates of year-class strength and parameters as outlined above, together with $M=0.30$ and a spawning date of 1 June, are given in Table 15 .

Table 15. Capelin in Div. 3L. Projections of stock size for 1988.

Age(yr)	Number of fish (millions)		
	June 1987		June
	Mature	Immature	1988
2	4,700	83,100	
3	13,800	4,700	62,500
4	37,600	900	6,000
5	9,400	-	3,700
6			700
Biom	ns) of	fish	900,000

STACFIS continues to consider an exploitation rate of 10% of the mature biomass to be appropriate for capelin, and accordingly advises a TAC of 90,000 tons for Div. 3L in 1988.

The estimates of abundance of the 1984 and 1985 year-classes were derived from acoustic surveys and therefore exhibit large variances. The large variance in the acoustic estimates resulted, in part, from the variance around target strength values, and, as previously noted (NAFO Sci. Coun. Rep., 1986, page 75), the Canadian target strength values resulted in higher estimates of year-class abundance than the target strength values used by USSR scientists.

No stock projections were made for capelin in Div. 3NO because estimates of the 1984 and 1985 year-classes for this stock were not available. During its deliberations in 1986, STACFIS noted that this fishery had been closed for several years due to low stock levels, but that the stock had recovered enough to allow a small commercial fishery. Consequently, STACFIS advised that a catch of 10,000 tons would not be detrimental to the stock, and such a precautionary TAC would represent approximately 5% of the average biomass observed since 1981. With the additional survey results from 1986, a catch of 10,000 tons would represent less than 5\% of the 1981-86 average biomass.

The acoustic surveys in Div. 3 NO during 1986 resulted in biomass estimates of approximately 500,000 tons. If the spawning stock biomass in Div. 3NO declines in the same proportion as that projected for the spawning stock in Div. 3L (projections of $1,300,000$ tons and 900,000 tons) between 1986 and 1988, then the spawning stock biomass in 1988 would be in excess of 300,000 tons. A catch of 10,000 tons in 1988, as advised for 1987, would represent less than 5% of this projected biomass. Based on these considerations, STACFIS advises that a catch of 10,000 tons from Div. 3NO in 1987 would probably not be detrimental to the stock.
18. Squid in Subareas 3 and 4
a) Introduction

Nominal catches of short-finned squid (Illex illecebrosus) in Subareas 3 and 4 peaked at 162,000 tons in 1979, declined rapidly to about 400 tons in 1983. The reported catch in 1986 was only 37 tons. Recent TACs and catches (000 tons) are as follows:

	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
TAC	25^{1}	100	120	150	150	150	150	150	150	150	150
Catch	83	94	162	70	33	13	+	1	1^{2}	$+^{2}$	

${ }_{2}$ Countries without specific allocation could catch up to 3,000 tons.
2 Provisional data.
b) Catch projections

STACFIS was unable to provide catch projections on squid in Subareas 3 and 4 for 1988. However, there was no reason to change advice that was formulated in 1980 (NAFO Sci. Coun. Rep., 1979-80, pages 39-40 and 57-59), and STACFIS advises that the TAC for 1988 should remain at 150,000 tons.
c) Future research

The lack of information on squid at this meeting reflects a reduction or elimination of squid research programs in the NAFO area. STACFIS points out that periods of high squid abundance can be expected in the future, like those that have occurred in the past. Improved knowledge of squid population dynamics will be essential, if the fishery is to be effectively managed during such periods and optimum utilization achieved. The present period of low abundance provides an opportunity to make progress in understanding the biology and dynamics of squid before an increase in abundance actually occurs. Under the present circumstances, STACFIS sees no point in making specific research recommendations, as previously, although the need for such work remains. Contracting Parties are encouraged to reconsider the wisdom of not providing support for squid at this time.
19. Shrimp in Subareas 0 and 1 and in Denmark Strait

The shrimp stock in Davis Strait and Denmark Strait were assessed and advice for the fishery in 1987 was provided by the Scientific Council at its meeting in January 1987 (SCS Doc. 87/1). At that time, the Scientific Council questioned the need for future special meetings on shrimp.

The Committee noted that requests by Denmark (Greenland) and Canada for advice regarding the 1988 fisheries had been received and agreed that consideration of these requests should await the decision of the scientific Council concerning the time when future assessments of the shrimp stocks should be conducted. (See relevant section of the preceding report of the scientific Council.)

III. RESPONSE TO THE FISHERIES COMMISSION REQUEST

1. Cod in Divisions $2 \mathrm{~J}, 3 \mathrm{~K}$ and 3 L (SCR Doc. 87/54)
a) Is there further information available on stock separation in Div. 2Jt+3KL.

A review of studies on discrimination of the various stock components of cod in Div. $2 \mathrm{~J}+3 \mathrm{KL}$ was presented at the 1986 Annual Meeting (NAFO Sci. Coun. Rep., 1986, pages 121-124). Information on genetic variation, migrations, meristics, infestation by parasites, growth rates, ages and lengths at maturity and spawning time were discussed. No new information on this topic is available, and the conclusions from previous discussions remain unchanged.
b) Is there further information on the proportion of the biomass of the cod stock in Div. $3 L$ in the Regulatory Area?

Results from Canadian research-vessel surveys in Div. 3 L in spring and in Div. $2 \mathrm{~J}, 3 \mathrm{~K}$ and 3 L in autumn during 1986 were added to previously analysed data sets. The proportion that the cod biomass in the Regulatory Area in Div. 3 L is of the biomass in the surveyed area in that division is now estimated to be 3.4% from eight spring surveys $(1977-82,85-86)$ and six autumn surveys (1981-86), compared to previous estimates of 3.5% and 3.1% respectively. Results from two winter surveys (1985 and 1986) indicate that 25.3% of the Div. $3 L$ cod biomass occurs in the Regulatory Area during this time of year.

Results of autumn surveys in Div. $2 \mathrm{~J}, 3 \mathrm{~K}$ and 3 L during 1986 indicate that the proportion of the entire stock biomass occurring in the Regulatory Area in Div. 3L for this time of year is 0.9%. This is the same percentage that was derived from results of previous autumn surveys (1981-85). From these same survey results, the average divisional breakdown of biomass differs only marginally with the inclusion of the 1986 survey data. These average divisional proportions are now estimated to be : 42% in Div. $2 \mathrm{~J}, 31 \%$ in Div. 3 K and 27% in Div .3 L . With the assumption that the relative distributions among divisions in autumn is similar to that during winter, when the maximum proportion of biomass in Div. 3 L occurs within the Regulatory Area (25%), the previously-reported conclusion remains unchanged, i.e, the maximum proportion of the entire Div. $2 J+3 \mathrm{KL}$ cod stock estimated to occur in the Regulatory Area is less than 10% in winter and less than 5%, on average, throughout the year (NAFO Sci. Coun. Rep., 1986, pages 79-80).

The relative distribution of cod biomass among divisions during 1986 was quite similar to the estimates for the 1981-83 period. During 1984 and 1985, the percentages of divisional biomass are higher than those of 1981-83 and 1986 in Div. 3L. STACFIS noted that 1984 and 1985 were years when bottom water temperatures on the shelf were lower than normal, and this may have affected cod distribution and/or availability.

IV. ENVIRONMENTAL RESEARCH

1. Introduction

The sixth meeting of the Subcommittee on Environmental Research was held at the Bedford Institute of Oceanography, Dartmouth, Nova Scotia, on 9 June 1987, with M. Stein (EEC) as Chairman. Annex 1 contains the detailed report of the meeting but a brief summary follows.
2. Review of Environmental Studies 1986

A total of 16 documents referred to environmental conditions in Subareas $0-6$ during 1986 . Studies on satellite-tracked iceflows indicate that fish larvae, reaching Cape Farewell via the East Greenland Current, do not necessarily flow into the West Greenland area. Autumn temperatures in the upper 200 m over Fylla Bank were observed to be warmer for the second consecutive year. A review of investigations over the southern Labrador and northern Newfoundland shelves indicated that $1984-86$ was a period of extremely cold conditions. A progress report was presented on an investigation into year-to-year changes in the windfield over the Gulf of Maine and Scotian Shelf. A significant difference in the meridianal winds in the Northwest Atlantic between the 1950-62 and 1970-79 periods was found.
3. Overview of Environmental Conditions in 1986 (SCR Doc. 87/62)

As a continuation of a project which began in 1983, the 1987 presentation provided an overview of (i) sea-surface temperature data from the Gulf of Maine to Labrador and southwestern Greenland, (ii) subsurface temperatures and salinities off Newfoundland and in the Bay of Fundy, (iii) wave heights and ice conditions in the Labrador Sea region, and (iv) meteorological observations of air temperature and sea-surface pressure. Offshore surface temperature data showed negative annual anomalies for the Canadian region while positive anomalies were observed south of Greenland and in
the Gulf of Maine southward. Anomalous low-pressure systems dominated the NAFO region in the winter, causing north to northwesterly winds. This pressure pattern changed throughout the seasons, and conditions in summer were near normal.

V. AGEING TECHNIQUES AND VALIDATION STUDIES

1. Ageing Studies of Silver Hake (SCR Doc. 87/52)

Results of the 1986 and 1987 silver hake otolith exchanges between Canada and USSR indicate 82\% and 70% agreement respectively. In the 1986 exchange, 61% of the differences (11 of 18) resulted from USSR ages being greater than Canadian ages. The 1987 exchange indicated a reverse trend with 80% of disagreements (24 of 30) due to USSR ages being less than Canadian ages.

A summary of 1984-87 exchange results indicates $68-85 \%$ agreement between age readers. Bias was evident in all exchanges but the direction of the bias was variable. Relative to the Canadian ages, USSR ages were higher in 1984, lower in one 1985 exchange and higher in another 1985 exchange, higher in the 1986 exchange and lower in the 1987 exchange. This may be due to the influence of strong year-classes moving through the population and the mean age of fish in exchange samples.

The variability in both the level of agreement and the direction of bias in differences has potential impact on independent estimates of catch-at-age values derived from age determinations by different age readers. It was also noted that otolith exchanges are only useful for monitoring inter-reader agreement and do not provide a means for identifying or resolving causes of different otolith interpretation. STACFIS therefore recommends that future exchanges of sitver hake otoliths be designed to allow for identification of specific reasons for differing interpretations as, well as the level of inter-reader agreement, with photographs of otoliths being the means of achieving this objective. It was agreed that the following protocol will be used as the basis for an exchange in 1987:
i) Sample collection (100 otoliths) by Canada from Div. 4W in June-July.
ii) Otolith storage in glass vials with $60: 40$ glycerin solution, black and white photographs for each otolith pair, and age interpretation to be marked directly on the photographs.
iii) Age determination to be done without knowledge of individual fish length and sex.
iv) Standard notation will be used to record age reading, i.e. underline strong annulus, overline weak, C_{2} to indicate check, $S L_{3}$ to indicate split zone, NO to indicate narrow opaque edge (typical recording would be: P2, 1, 2, SPL3, 4 NO). (See guidelines for age determination of silver hake by J. J. Hunt (1980) in J. Northw. Atl. Fish Sci., Vol. 1, p. 65-80).
v) Canada, USSR and Cuban age readers to estimate ages for sample.
vi) Otoliths with a set of photographs to be forwarded to USSR by Canada, and photographs marked with ages and the otoliths be returned to Canada from USSR; otoliths with a second set of photographs to be forwarded to Cuba, and the marked photographs and otoliths to be returned to Canada.
vii) Resuits to be analyzed and reported to interested parties by 31 December 1987.
2. Analysis of Inconsistency in Silver Hake Catch at Age (SCR Doc. 87/51)

A review of percentage catch-at-age in numbers for the 1980-86 silver hake fishery indicates substantial differences in estimates derived from Canadian and USSR sampling data. On the average, Canadian results show higher proportions at ages 1 and 2 and lower proportions for older fish, relative to the USSR derived estimates. The mean ratio for ages 1-5 (Canadian to USSR) was 2.29 , $1.22,1.01,0.66$ and 0.87 respectively in $1980-86$ data. To assess the possible influence of age determination, the USSR catch length frequency for 1985 was partitioned into catch-at-age by using the reported USSR and Canadian age-length keys. The two independent estimates of percent age composition were in good agreement for ages 1 and 2 but appeared to have reciprocal differences for ages 3 and 4 , with the USSR key generating more age 3 fish. it was noted that the Canadian key gave different results when used to partition length frequencies that were derived from USSR sampling and Canadian observer sampling.

Comparison of length frequency distributions, derived independently from Cuban, USSR and Canadian observer samples, indicated differences between data sources. Canadian observer samples showed consistently smaller lengths relative to Cuban and USSR samples. Spatial and temporal sampling distribution were assessed to be potential sources of this difference.

STACFIS concluded that both age determination and sampling were contributing factors in different
estimates of catch-at-age and recommends that studies on silver hake be continued in order to identify and resolve the extent and source of these differences.
3. Age Determination of Atlantic Wolffish (SCR Doc. 87/36)

Two methods of ageing Atlantic wolffish were compared: age determination by otoliths and vertebrae. Age determination by otoliths seems to be more precise than age determination by vertebrae, although the precision of both methods can be expected to increase with acquisition of greater experience. STACFIS discussed different ways of making the annual rings more visible and the special problems with age determination of wolffish. Ages determined from vertebrae were generally lower than ages determined from otoliths. However, the difference is not great when calculating mean length at age from the two different methods of age determination. The parameters of the von Bertalanffy growth equation were calculated and compared with earlier results of combined material from the Barents Sea and Greenland waters and with the results from the Icelandic area. Length-at-age values were generally found to be greater than given for the Barents Sea and Greenland and smaller than given for the Icelandic area. STACFIS recommends that ageing studies on Atlantic wolffish including validation be continued.

VI. GEAR AND SELECTIVITY STUDIES

1. Trawl Escapement and Selectivity Problems

In accordance with the Council's recommendation of September 1986 (NAFO Sci. Coun. Rep., 1986, page 110), Dr. J. Messtorff (EEC) reported briefly on his contact with Dr. H. J. Bohl. (gear research expert) who indicated that some information existed from earlier selectivity experiments. STACFIS proposed that Dr. Bohl be requested to compile the available information for its meeting in September 1987.

VII. REVIEW OF SCIENTIFIC PAPERS

STACFIS noted that there were several research documents which were either not presented or were not adequately considered during earlier deliberations at the present meeting. Brief summaries of these are given below.

1. Fishery Ecology of Silver Hake on the Scotian Shelf (SCR Doc. 87/11)

A study of factors regulating recruitment of the silver hake stock in Div. $4 V W X$ was presented. According to this study, cannibalism does not appear as a significant factor, at least for the range of population sizes examined. Otherwise, abundance of mackerel spawning stock and runoff of the St. Lawrence River seem to have a positive effect on the recruitment. The authors think that mackerel eggs and larvae would be food for silver hake and that St. Lawrence River runoff may increase nutrients in the silver hake habitat on the Scotian Shelf.
2. Understanding Marine Fish Communities (SCR Doc. 87/12)

This paper reviewed the literature from the point of view of historical perspectives as well as describing the results of some recent research on the subject. Some directions on future research and prospects for future investigations were provided.
3. Natural Mortality of Green!and Hal ibut (SCR Doc. 87/10)

This paper described the results of three methods of estimating natural mortality (M) for Greenland halibut in NAFO Subareas 0 and 2 and Div. 3KL. Natural mortality rates were in all cases higher for males ($0.23-0.35$) than females ($0.026-0.070$). For both sexes combined, the estimates of M ranged from 0.062 to 0.075 .
4. Ichthyoplankton Survey on Flemish Cap in April-May 1986 (SCR Doc. 87/19)

This paper gave the results of the ichthyoplankton survey which was carried out on Flemish Cap in April-May 1986. Eggs and larvae from the samples were presented quantitatively and qualitatively, and the distribution patterns for redfish larvae and cod and American plaice eggs were defined.
5. Vertical Distribution of Parasitic Fauna in Deepwater Fishes (SCR Doc. 87/41)

Eight groups of parasites (epicontinental, epipelagic, mesopelagic, mesobenthic, bathybenthic, bathypelagic, bathyalpelagic, polyzonal) are defined in accord with the vertical zones of the ocean. Most of the typical deepwater parasites are not closely related to certain depths. As for the mesopelagic, bathypelagic and bethyalpelagic fishes, the ranges of their specific deepwater parasites coincide to some extent with those of their hosts. The ranges of specific deepwater parasites in fishes, which are ecologically related to the bottom are smaller than the ranges of their hosts. The parasitic fauna of some fishes was reported to become poorer with depth at the
expense of secondary deepwater forms and polyzonal species. The number of deepwater parasite species does not decline with depth.
6. Haddock Spawning Area Closures, 1970-87 (SCR Doc. 87/13)

The seasonal closures of haddock spawning areas in Div. $4 x$ and Subarea 5 were instituted by the International Commission for Northwest Atlantic Fisheries (ICNAF) for 1970 and subsequent years, and have been retained by both Canada and USA after extensions of jurisdiction. The ostensible reason for initiating these closures was because they encompassed the spawning area and season, spawning area closures being one of a limited set of regulatory measures available under the ICNAF constitution in 1969. The objectives were to reduce catches during this period and supplement total catch limitations by spreading catches throughout the year. This was a reasonable expectation because the closures corresponded to areas and times of peak commercial catch rates. There is no basis upon which to judge whether or not spawning closures have intrinsic biological value (e.g. through improving recruitment). Nonetheless, this appears to be the basis for fishermen's support of these measures. Despite numerous changes made to the closures, those in effect now are not greatly different than those first instituted. Areas off Cape Cod and Browns Bank are slightly smaller but closed seasons are one or two months longer than in 1970 . Attempts to institute a spawning closure for Div. 4 W haddock failed.

VIII. OTHER MATTERS

1. Progress Report on Contributions for the Special Session in September 1987

There was good response to the call for papers for the special session on "Biology of Dermersal Resources of the North Atlantic Continental Slope, with Emphasis on Greenland Halibut and Grenadiers", with 28 potential contributions. Greenland halibut will be dealt with in 13 papers, 4 of which are major overviews from the North Atlantic, West Greenland, Iceland and the Barents SeaNorwegian Sea areas. Seven papers will deal with grenadier species. A few papers will deal with other deepwater species such as lanternfishes, blue hakes and Atlantic halibut. There will-be 3 papers on oceanography of the continential slopes of the Northwest Atlantic. The special session is scheduled for 3 days, which will allow ample time for presentation and discussion.
2. Progress Report on the Special Session in September 1988

Dr. J. C. Rice (Canada) was nominated as Convener and he accepted the task of organizing the September 1988 Special Session on "The Impact of Changes in Environmental Conditions in the North Atlantic on the Distribution, Availability and Abundance of Marine Species, with Particular Emphasis on the Labrador and Grand Bank Regions in the Early 1980's''. It was agreed that the convener would provide STACFIS with a proposed outline of topics for review at the September 1987 Meeting, because time was not sufficient at this meeting to expect an outline to be prepared and reviewed.
3. Proposed Theme for Special Session in September 1989

STACFIS considered as a possible general topic the "Changes in Biomass and Species composition of the Fish Populations in the Northwest Atlantic Over the Last 30 Years, and Their Possible Causes'". It was agreed that such a theme was of interest, but that it would be necessary to define the scope in order to avoid duplication with the more restricted 1988 theme. In general, the session would attempt to compare the different environmental regimes in the NAFO area (e.g. Subarea 1 , Subareas $2+3$, Subarea 4 , Subareas $5+6$) with respect to carrying capacity (production of various trophic levels) and ecosystem structure (number and type of species and species groups important in food web involving fishes), and including estimates of sustainable fish yield. it was recognized that the proposal would encompass both environmental and anthropogenic impacts on the various levels of the ecosystems in the Northwest Atlantic. STACFIS decided to give further consideration to the title and scope at the time of the Annual Meeting in September 1987, and requested the Chairman to solicit a detailed proposal in the meantime.
4. Arrangements for Conducting Stock Assessments

At the beginning of the STACFIS Meeting, it was decided that, due to a somewhat reduced workload in contrast to previous years, the Committee meet as one group to address its business. STACFIS is pleased to report that evening sessions were not required this year and that its work was finished earlier than anticipated.
5. Acknowledgements

Before adjourning the meeting, the Chairman of STACFIS thanked the participants for their support and help in making the meeting a successful one. A particular note of thanks was extended to the Chairman of the Environmental Subcommittee. Appreciation was expressed to the NAFO Secretariat for their continued excellent support.

ANNEX 1. REPORT OF THE SUBCOMMITTEE ON ENVIRONMENTAL RESEARCH

The Subcommittee met at the Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada, on 9 June 1987, to consider environment-related topics and report on various matters referred to it by STACFIS. Scientists attended from Canada, Cuba, Denmark (Greenland), EEC, Japan, USSR and USA.

The Subcommittee reviewed the following documents: SCR Doc. $87 / 06,14,15,16,17,26,27,29,31$, $62,63,64,65,66,67$ and 68.

1. Marine Environmental Data Service (MEDS) Report for 1986/87 (SCR Doc. 87/63)
a) Data collected in 1986

Approximately 9,500 oceanographic stations were occupied within the NAFO area during 1986, of which data for 4,535 were sent directiy to MEDS and data for 4,856 were received through IGOSS (Integrated Global Ocean Services System). Of the latter, approximately 1,250 were duplicates of data sent directly to MEDS. The total number of stations is about 25% lower than in 1985, but the percentage of station data received by MEDS has risen from near 50% in 1985 to over 80% in 1986. The number of stations received through IGOSS was almost twice as many as were received last year. The majority of the data consisted of BT (bathythermograph) records.
b) Historical data holdings

A total of approximately 13,000 historical data stations were received and/or processed during 1986, a seven-fold increase from the previous year. Approximately 10,000 of these were CTD stations. MEDS has also acquired the complete holdings of the US NODC (National Oceanographic Data Center) for the Canadian region which includes the NAFO area. The processing of these data will occur during the coming year.
c) Drifting-buoy data

A total of 29 drifting-buoy tracks were received by MEDS during 1986 from the GTS (Global Telecommunications System) and from the Bedford Institute of Oceanography. These represented approximately 76 months of buoy data. A diagram to show the general distribution of the drifter tracks was presented in the report. During the discussion, it was recommended that plots of the tracks of individual buoys be presented.
d) Current-meter data

A list of current-meter moorings which were deployed in the NAFO region by the Bedford Institute of Oceanography in 1986 and archived there was given in the MEDS report.
e) Environmental conditions (SCR Doc. 87/63, 65)

A review of environmental conditions was presented, based on three sources: (i) sea-surface temperature maps produced by the National Weather Service in the United States, (ii) a monthly state-of-the-ocean report issued by the Bedford Institute of Oceanography (based primarily on the US temperature maps), and (iii) an analysis of surface and subsurface data based on the data reported to MEDS and using the Levitus 1982 Atlas for the climatic means. It was noted by the author that there are some disagreements between each of the methods, due to different data sources and different base periods being used to define the normal conditions. He suggested that caution must be exercised, not only in his overview but in all such papers, and that, before an anomaly is considered significant, all potential sources of data must be examined to ensure that there is general agreement.

The Subcommittee was informed that MEDS is presently publishing a Monthly Monitor Report which lists BT, bottle and CTD station locations taken each month as well as the tracks of satellite-monitored buoys during the month for the Atlantic region $\left(20-65^{\circ} \mathrm{N}, \quad 20-80^{\circ} \mathrm{W}\right)$. Separate publications are also available for the Arctic and Pacific regions. Interested parties can obtain these publications on an regular basis by contacting MEDS.
2. Review of Environmental Studies in 1986
a) Subareas 0 and 1 (SCR Doc. 87/06, 27, 29, 31)

Results from recent studies on the variability of water masses and currents in Denmark Strait were presented. High variability in the physical properties, as well as the horizontal and vertical extent of the three primary water masses (Irminger Sea water, Labrador Sea water and

North Atlantic water), were documented for the Dohrn Bank region. It was noted that this paper (SCR Doc. 87/06) had been presented at the January STACFIS meeting on shrimp stocks in the Denmark Strait at which time it was recommended that, in order to determine if the dynamical regime of the Irminger Current system is responsible for maintaining the shrimp stock in the area, a combined biological and oceanographic sampling program would be required with station separations of less than 10 km in order to resolve the baroclinic aspects of the current. This same paper presented a drift track of a satellite-monitored buoy placed on the ice in the fall of 1984, which indicated a strong southwestward flow along East Greenland but, contrary to popular belief, shortly after passing Cape Farewell the buoy headed into the Labrador Sea rather than continuing northward along West Greenland.

A paper, based primarily on the distribution and abundance of young cod and haddock (SCR Doc. 87/31), indicated that the larvae of these two species may drift from Iceland to Greenland. It was further suggested that the recent near-collapse of the cod stock off West Greenland may be due to cessation of inflow of larvae from the Icelandic area. The drift track mentioned above indicates that larvae reaching Cape Farewell do not always flow along the west Greenland coast.

Autumn temperatures in the upper 200 m over Fyllas Bank were observed to be higher than the 1963-85 mean and above normal for the second consecutive year, following the extremely low temperatures between 1981 and 1984 (SCR Doc. 87/27). The warm conditions are believed to be a result of increased influence of the Irminger Current. A paper on the heat transport in West Greenland waters (SCR Doc. 87/29) concluded that the early 1980 's cold period arose through an air-sea heat exchange due to a very cold airmass over the region. This contrasts with the late 1960's cold period which is believed to have resulted from oceanic advective processes, i.e. through an increase of East Greenland water into West Greenland.
b) Subareas 2 and 3 (SCR Doc. $87 / 26,64,66,68$)

Results from a transect in March over St. Pierre Bank (SCR Doc. 87/26) indicate that the lower-than-normal temperatures which were observed during the last 2 years have persisted into 1986. Temperatures during 1986 in the upper 200 m were the lowest on record over the 9 years that data have been collected.

A pilot project to collect temperature data along the Flemish Cap section ($47^{\circ} \mathrm{N}$) with airborne expendable bathythermographs (AXBT) was initiated in 1987 (SCR Doc. 87/64). Although extremely successful it was noted that the high cost of the probes is, at present, a deterrent to the establishment of routine monitoring with AXBT.

The mean annual cycle and monthly anomalies of temperature and salinity for 10 standard depths at Station 27 off St. John's, Newfoundland (SCR Doc. 87/66), were calculated from historical data (1946-86). The 1986 temperatures and salinities in the depth range from 75 to 125 m show below-normal values.

A review of investigations into the temperature distributions over the southern Labrador and northern Newfoundland shelves (SCR Doc. 87/68) concentrated on the subsurface layer of cold water known as the Cold Intermediate Layer (CIL). Data from several sources, including hydrographic data along standard sections, long-term current-meter moorings over Hamilton Bank, Station 27 temperature and salinity data, and sea-ice data, were examined and all indicated the 1984-86 period as a period of extremely cold conditions. The CIL appears to have had its greatest extent in 1984. The extent of the CIL decreased in 1986 from the previous 2 years, and the magnitude of the negative temperature anomalies also decreased.
c) Subareas 4,5 and 6 (SCR Doc. $87 / 14,15,16,17$)

An analysis of warm-core Guif Stream rings in the area west of $60^{\circ} \mathrm{W}$ (SCR Doc. 87/14) showed that 10 rings were formed during 1986, two more than in 1985 and also two more than the 1974 85 mean. No rings that formed in 1985 survived in 1986, but four rings that were formed in 1986 continued into 1987. The age of the rings varied from 30 to 302 days, comparable to the long-term mean.

Water temperatures were obtained across the continental shelf and upper slope in the New York Bight region southeast of Sandy Hook, New Jersey (Div. 6A), on 14 separate occasions during 1986 (SCR Doc. 87/16) using XBTs (expendable bathythermographs). Temperatures on the bottom at mid-shelf during summer were higher than normal by about $2^{\circ} \mathrm{C}$ and higher than 1985 . At mid-shelf to outer-shelf depths, bottom temperatures during the autumn were $1^{\circ} \mathrm{C}$ higher than normal. For the second consecutive year, bottom temperatures along the upper slope remained above $12^{\circ} \mathrm{C}$ during the entire year. The position of the shelf-slope front in 1986 (SCR Doc. 87/17) generally followed the long-term mean seasonal pattern of being further shoreward in autumn-winter and more seaward in spring-summer. The mean position was approximately 15 km shoreward of the long-term average location, although the standard deviations of its position was 25% less than the 10 -year mean values.

A progress report was presented on an investigation into year-to-year changes in the windfield over the Gulf of Maine and Scotian Shelf during the spring (SCR Doc. 87/15). It was stimulated by work in the northeastern Atlantic Ocean which suggested that low-frequency changes in the wind had profound effects on phytoplankton and zooplankton around the British Isles. A significant difference in the meridonal winds in the northwest Atlantic between the 1950-62 and 1970-79 periods was found. Biological data is presently being sought to compare to the wind data.
3. Overview of Environmental Conditions in 1986 (SCR Doc. 87/62)

The overview paper was based on several long-term oceanographic and meteorological data sets as well as a summary of data and results from available research documents and research reports. Highlights not covered in Section 2 above are listed below:
a) Coastal sea-surface temperature data at Halifax, Nova Scotia, and Boothbay Harbor, Maine, showed near-normal and slightly below-normal annual anomalies relative to the 1951-80 mean respectively.
b) Offshore surface temperature data from ships of opportunity showed negative annual anomalies over the Scotian Shelf and most of the Grand Bank and in the slope water region, while positive anomalies were observed in the Gulf of Maine and southward. This continues the pattern which began last year and is a reversal of the warm-in-the-north and cold-in-the-south trends which were prevalent in the late 1970's and early 1980's.
c) Subsurface temperatures at Station 27 off St. John's, Newfoundland (Div. 3L), were below the long-term mean for the fifth consecutive year, but the anomalies were smaller in magnitude than in past years and were positive during the last 2 months of the year. This implies a possible end to the extremely cold conditions in the subsurface waters of the region.
d) At Prince 5 off St. Andrews, New Brunswick (Div. 4x), salinities and temperatures were generally above the 1951-80 normal but the magnitude of the anomalies was small.
e) Significant height and frequency of large waves in the Labrador Sea were above normal in 1986. On the Grand Bank and Scotian Shelf, significant wave height was above normal but the frequency of large waves was near normal.
f) Sea ice appeared early and was of longer duration than normal in both the Gulf of St. Lawrence and off northeastern Newfoundland. The ice also was present later than normal in the Gulf but the last ice occurred slightly earlier than normal off Newfoundland.
g) The number of icebergs crossing $48^{\circ} \mathrm{N}$ latitude was 204 , a 5 -fold reduction from last year, and the lowest number of icebergs recorded since installing the SLAR (side-looking airborne radar).
h) Annual air temperatures were below normal throughout all of eastern Canada during 1986, primarily due to negative anomalies in the last 4 months of the year. The maximum anomalies were in Labrador and Baffin Island with values of over $-1^{\circ} \mathrm{C}$.
i) An anomalous low-pressure system dominated the NAFO region in the winter, causing north to northwesterly winds. In spring, a high-pressure anomaly occupied the area, which implies anomalous southerly winds to the southern NAFO region (Subareas 3-6). While summer conditions were near normal, autumn pressure patterns indicated north to northwesterly winds, caused by a high over northern Quebec and a strong low northeast of Iceland.
4. Marine Environment and Ecosystems Subcommittee (MEES) (SCR Doc. 87/67)

MEES is a subcommittee of the Canadian Atlantic Fisheries Scientific Advisory Committee (CAFSAC). Its mandate is to examine environmental and ecosystem issues relevant to fisheries and to provide advice to Canadian fisheries managers. MEES Chairman (J. Rice) provided a summary of a meeting that was held in November 1986, involving 5 sessions: (i) use of bioeconomics in setting quotas; (ii) studies of juveniles of Canadian Atlantic fish stocks; (iii) a proposal for a Scotian Shelf nodelling project; (iv) a meeting of the MEES core membership to discuss areas of future activity by the Subcomittee; and (v) reports by certain working groups. The last included work on a reanalysis of environment-fish correlations of W. H Sutcliffe and associates. Catch data for 9-14 years were considered for the stock that were analyzed in the earlier work. The predictive power of the earlier relationships was generally found to be weak. Overall, the mean deviations of the predicted catch based on environmental regressions were similar to predictions based on the longterm means, but they were higher than deviations in predictions from lagged catch data. Environ-mentally-based predictions of landings for invertebrate stocks were generally more accurate than those for fish stocks. Many difficulties with the analysis was attributed to the use of catch data which were not corrected for effort. Plans are underway for the next MEES meeting, where halistic ecosystem modelling, capelin management strategies, and relationships between oceanographic and catch data will be discussed.
5. Remote-sensing Activities

A brief report on remote-sensing activities of the Marine Climatology Investigation Group of the National Marine Fisheries Service at the Northeast Fisheries Center in Narragansett, Rhode Island, was presented by M. Ingham. He informed the Subcommittee that sea-surface temperature charts with isotherm contours are being published weekly for the shelf area from the southern Scotian Shelf to Chesapeake Bay. He also reported on an application of remote sensing, whereby the same group monitors the water masses (shelf water, slope water, Gulf Stream, Gulf Stream rings) that are present at a deep waste-disposal site off the continental shelf south of Hudson Canyon.
6. Envi ronmentally-related Aspects of the Special Session in September 1987

The Chairman of the Subcommittee noted that four environmentally-related papers would be presented at the special session in September 1987.

7. Revision of List of NAFO Standard Oceanographic Sections and Stations

In recent years, it has been noted that the depths of stations on the standard NAFO sections, as given in the published List of Standard Oceanographic Sections and Stations (ICNAF Selected Papers, No. 3, pages 109-117, 1979), do not correspond with on-site measured values. In some cases near the continental slopes, the depths can vary greatly, and it is unclear whether one should seek the designated depth or the position. The Subcommittee decided that the positions should be maintained and that a study of the actual depths at the standard stations be undertaken. It was generally agreed that the approximate depths at the station sites should be published but they should be used only as a guide. The Chairman (M. Stein) agreed to update the depths of the stations with the intention to present a revised list of stations for consideration at the June 1988 Meeting.
8. National Representatives.

The Subcommittee was not aware of changes in the names of national representatives who are responsible for submitting oceanographic data to MEDS. The present representatives are: R. Keeley (Canada), R. J. Dominguez (Cuba), E. Buch (Denmark), H. Hecht (Federal Republic of Germany), Mr. Francois (France), W. Thiele (German Democratic Republic), S. Kawahara (Japan), R. Leinbo (Norway), A. J. Paciorkowski (Poland), K. Hughes (USA), G. I. Luka (USSR) and P. Edwards (United Kingdom).
9. Other Matters
a) Status of the ad hoc Working Group on the Flemish Cap Project

In light of the special session on recruitment in September 1986, which examined recent advances in understanding recruitment mechanisms from results of the Flemish Cap and Georges Bank Projects, and with no plans for sampling in the near future, the Convener of the Working Group on the Flemish Cap (J. Anderson) proposed that the Group be disbanded. The Subcommittee agreed with the proposal and recommends that the Working Group be discontinued, with the proviso that the Flemish Cap Project be maintained on the Council's agenda for 1988 in order to keep the Subcommittee informed of the analyses which are still outstanding and also to promote the reporting of the results of such work to STACFIS.
b) Mean temperature and salinity conditions on the Grand Bank and Scotian Shelf

The Subcommittee was informed of two recent Canadian technical reports containing monthly mean temperatures and salinities at 16 standard depths between 0 and $1,000 \mathrm{~m}$ for 38 and 35 subareas in the Grand Bank and Scotian Shelf regions respectively. The data consist of all of the MEDS bottle holdings between 1910 and 1982. Copies are available from the authors (K. Drinkwater and R. Trites, Bedford Institute of Oceanography, Dartmouth, N.S., Canada).
c) Retirement of J. Colton

It was announced that Dr. J. B. Colton will be retiring this month. Dr. Colton, a prominent American oceanographer, has worked for many years on the relationship between the physicalchemical environment and biological processes. A note wishing him well in his retirement was sent on behalf of the Scientific Council.
d) Sea-surface temperature maps

At the June 1986 Meeting, the Subcommittee was informed that the oceanographic analysis charts of sea-surface temperature (SST), which are published triweekly by the National Weather Service (NWS) of NOAA, had decreased the areal coverage of the NAFO region such as to eliminate the Flemish Cap, northern Grand Bank and northern Newfoundland Shelf. The Scientific Council agreed at that time that the Chairman should write to NWS indicating the useful-
ness of the charts to NAFO scientists and request that the areal coverage revert back to the original boundaries. The letter was drafted, but through some misunderstanding was not sent. The letter will be updated and sent before the end of the present Scientific Council Meeting.
10. Acknowl edgements

The Chairman, noting that there was no further business, thanked the participants for their contributions and cooperation. The Chairman of the Scientific Council (J. Messtorff) thanked the Chairman for conducting the meeting of the Subcommittee very efficiently.
(.).

APPENDIX II. REPORT OF STANDING COMMITTEE ON RESEARCH COORDINATION (STACREC)

Chairman: R. Dominguez

Rapporteurs: D. Cross, D. Power
The Committee met at the Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada, on 12 June 1987 to consider and report on various matters referred to it by the Scientific Council (see Part D, this volume, for agenda) dealing mainly with fishery statistics, biological sampling and biological surveys. Representatives attended from Canada, Cuba, Denmark (Greenland), EEC, Japan and USSR, and an observer attended from USA.

1. STATISTICS AND SAMPLING

1. Fishery Statistics

a) CWP activities relevant to NAFO (SCS DoC. 87/10)

The Committee noted the report of the 13th Session of the CWP, which was held in Rome on 1118 February 1987. Mr. D. Cross, in his capacity as Deputy Secretary of the CWP, reviewed this report and drew the Comittee's attention to matters of particular interest to NAFO, namely, THE CWP's acceptance of the statistical boundary changes in NAFO Subareas 4 and 5, the minor modification to the definition of nationality, the discussion on discard statistics, the detection of discrepancies between the databases of the different international agencies, and the compilation of a handbook of fishery statistics.

The Committee noted the CWP recommendation that more frequent meetings of small groups of agencies be held to deal with the problem of discrepancies between databases and that budgetary provision be made for this. In NAFO's case, these budgetary implications would be minimal because the discussions related to discrepancies in statistics for the Northwest Atlantic would almost certainly be held at NAFO Headquarters, the site of the most complete statistics for the area.
b) Progress report on Secretariat activities in 1986/87 (SCS Doc. 87/06)

The Committee noted with pleasure that there had been continued improvement by national statistical offices in respecting the deadline for the submission of STATLANT $21 A$ reports and that, as a result, the Secretariat was able to prepare a provisional inventory of nominal catches (SCS Doc. 87/20) for only the second time in recent years. However, the Committee regretted that a similar improvement has yet to be recorded for STATLANT 21B data. The work of the Scientific Council and the publication of the Statistical Bulletin continued to be adversely affected by late and/or incomplete submission of these STATLANT $21 B$ reports by some Contracting Parties. The Committee therefore welcomed the Secretariat's preparation of SCS Doc. $87 / 19$, which outlines the obligations of Contracting Parties in the submission of catch and fishing effort statistics. STACREC therefore recommends that SCS DOC. $87 / 19$ on the Scientific Council's requiremente for fishery statistics be brought to the attention of the Contracting Parties..

The Committee regretted that a recommendation from the June 1986 Meeting had not resulted in an improvement in the submission of data from several non-member countries which fish in the Regulatory Area. STACREC accordingly advises the Scientific Council to recommend that the Fisheries Comnission and the General Council take note that fishing by non-member countries in the Regutatory Area has become a significant factor in the exploitation of the resources of the area, but the statistics on many of these activities are not available to the Scientific Councit. This has a serious adverse effect on the abitity of the Scientific Councit to provide advice, and the General Council and Fisheries Comission are requested to make further efforts to resolve this problem.
c) Review of STATLANT 21A and 21B forms

The Committee noted that last year's recommendations concerning effort-prorating and the statistical boundaries within Subdiv. 5Ze (the latter having been approved by the General Council at its 8 th Annual Meeting in September 1986) were being taken into account by FAO in the printing of STATLANT 21 A and $21 B$ forms for 1986 . The notes for completion of these forms were being revised and.improved (particularly with regard to the instructions on effortprorating). There were no further proposals for changes at this time.
d) Proposed new boundary changes in Subarea 4

It has been found that the description of the boundary of Div, 45 as found in the Convention on Future Multilateral Cooperation in the Northwest Atlantic is unsatisfactory because Pte. des Monts, from which a line should be drawn "due east to a point at $49^{\circ} 25^{\prime N}$ latitude, $64^{\circ} 40^{\prime} \mathrm{W}$ longitude', is in fact south of latitude $49^{\circ} 25^{\prime} \mathrm{N}$. Since the current Canadian statis-
tical system uses the Pte, des Monts as the reference, there would be no disruption of statistical series if the description of the boundary were modified to take account of the coordinates of Pte. des Monts. Accordingly, STACREC advises the Scientific Council to recommend that if the General Council wishes to resolve the issue of the boundary between Div. $4 S$ and 4T, the coordinates of Pte. des Monts should be established and the boundary should be allowed to "run in an easterly direction along a rhumb line to a point at $49^{\circ} 25^{\prime} N$, $64^{\circ} 40^{\prime} \mathrm{W} . \mathrm{I}^{\prime \prime}$.
2. Biological Sampling (SCS Doc. 87/11)
a) Progress report on activities in 1986/87

An inventory of sampling data for 1985 was considered to be incomplete. It was noted that the Secretariat plans to compile a volume (for 1979-84) of an inventory of sampling, similar to that published under the ICNAF regime for 1967-78, as the first of such volumes under the NAFO regime, and to this end, STACREC recommends that the Secretariat contact those responsible for the submission of sampling data to ensure that previous lists for 1979-84 are verified prior to publication and to submit any outstanding data for 1985.
b) Forms and deadlines for submission of data

The Committee again considered SCS Doc. $86 / 23$ which outlines the procedures for reporting of sampling data and which also contains examples of forms presently utilized for submission of age-length tables and length frequencies. No changes in reporting procedures were proposed.

11. BIOLOGICAL SURVEYS

1. Review of Survey Activity in 1986

An inventory of surveys conducted in 1986, as reported by Canada, Denmark (Greenland), Federal Republic of Germany, France, USSR and USA, was compiled by the NAFO Secretariat (Table 1).
2. Survey Plans for 1987 and Early 1988

An inventory of surveys planned for 1987 and early 1988, provided by Canada, Denmark (Greenland), Federal Republic of Germany, France, USSR and USA, was compiled by the NAFO Secretariat (Table 2).
3. Review of Stratification Schemes (SCR Doc. 87/23, 25)

Papers were presented on proposed stratification schemes for NAFO Div. $2 G$ and $2 H$ (SCR Doc. 87/23) and NAFO Subareas 0 and 1 (SCR Doc. 87/25). There was discussion about the practical problems incurred in utilizing a stratification scheme for both single and multispecies surveys. It was noted that the stratification schemes were designed with priority on surveying for deepwater species and may not be appropriate for other species such as cod. Further analyses should be conducted to reevaluate these schemes with respect to distribution of species in these areas. Results of these analyses should be made available at the June 1988 Meeting. STACREC welcomed the progress which had been made in developing these stratification schemes and looked forward to resolution of outstanding issues so that the schemes could be adopted as part of the standard NAFO system (see NAFO Sci. Coun. Studies, No. 2) .
4. Coordination of Surveys in 1987 and 1988

There were no proposals for consideration of survey coordination. Such coordination is most often done on a bilateral basis.
5. Survey Design Procedures

STACREC noted that the ad hoc Working Group, which was set up to evaluate material that had been submitted to the June 1986 Meeting, relevant to conducting bottom-trawl groundfish surveys in order to derive more precise indices for assessment purposes than those presently available, met for the first time on 12 June 1987, with J. Messtorff (EEC), V. A. Rikhter (USSR), J. Bertrand (EEC), D. Power (Canada) and W. Brodie (Canada) in attendance. The meeting was convened by W. Brodie. Documents which outlined survey procedures, as requested by STACREC at an earlier date (NAFO Sci. Coun. Rep., 1985, pages 95, 104), were examined. These documents were SCR Doc. 86/66 by USSR and three working papers which were submitted by scientists from France, Canada and the Federal Republic of Germany at the June 1986 Meeting. It was noted that the series of French surveys in Subdiv. 3Ps, as well as the Federal Republic of Germany surveys in Div. 2J, were comparable over virtually all years. Differences in the Canadian and USSR surveys over time were briefly discussed.

STACREC noted that further work could not be carried out by this group at this meeting due to time constraints. The Convener agreed to prepare summaries of the available data for examination by

Table 1. Inventory of biological surveys conducted in the Nafo Area during 1986.

$\begin{aligned} & \text { Sub- } \\ & \text { area } \end{aligned}$	Div.	Country	Months	Type of survey	No. of sets	Subarea	Div.	Country	Months	Type of survey No	No. of sets
STRATIFIED-RANDOM SURVEYS							KL	CAN-S	6	Cod (acoustic)	\cdots
							L		2,6,8,10,11	Crab	92
E. Gr	reenl.	DEU'	9-10	Groundfish (OTB)	160			"	5-6	Capelin (acoustic)	-
$0+1$		CAN-	8-9	Groundfish	235			"	4-11	Oceanography ${ }^{\text {Cod tagging (acoustic) }}$	-
	$A B C$	GRL	7-8	Shrimp	58			"	6-8	Herring and capelin larvae	e
									9	Scallop	27
1	B-F	DEU	10-11	Groundfish (OTB)	155			"	10-12	Pelagic (acoustic)	-
							LMN	USSR	8-12	Hydroacoustic (capelin)	114
2	H	CAN-N	9	Groundfish	26		LNO	${ }^{1}$	5-6	Hydroacoustic (capelin)	8
	HJ	CAN-N	8	Shrimp	136		LPs	CAN-N	3-5	Pelagic (acoustic)	-
									9-10	Cod tagging	
$2+3$	JK	CAN-N 1	1-2,11-12	Groundf ish	338		No	"	6-7	Capelin (acoustic)	-
$\begin{array}{r}3 \\ \\ \hline\end{array}$							NOP	"	6	Squid	144
	KLMNO	USSR	4-8	Groundfish	530		Ps	"	1	Scallop	31
	L	CAN-N	1-2,5,11	Groundfish	575			11	3	Cod tagging	100
	LNO	CAN-N	4	Groundfish	80				7	Redfish (acoustic)	-
		"	8-9	Juvenile flatfish	131			FRA	3	Scallop	96
	NO	"	4-5	Groundfish	207						
	Ps	"	3	Groundfish	162	4	R	CAN-N	5	crab	17
		"	3-4	Scallop	326		RS	CAN-SF		Cod/capelin acoustics	-
		FRA	2-3	Groundfish	94			CAN-Q	5-6	Ichthyoplankton	190
							ST		7	Scallops	71
0-3	BGHJKLNO	USSR	9-12	G. halibut and capelin	175			"	7-8	Lobster (diving)	..
$3+4$	P+RST	CAN-Q	1	Groundfish	184		T	CAN-G CAN-Q	4	Diver herring spawing beds Crab tagging	$\begin{aligned} & - \\ & 53 \end{aligned}$
4				Groundioh					5	Herring Tagging	
	R	FRA	1	Cod	36			"	7	Blue mussel feeding	...
	RST	CAN-G	8	Redfish	183			"	7	Mackerel larvae	
		CAN-Q	9-10	Shrimp	97			"	8	Scallops	88
	T	CAN-G	9	Groundfish comparative	183			"	10	Blue musse 1	
		"	12	Groundfish migration	45		TV	"	6-7	Mackerel larvac	138
	Vn	CAN-SF	10	Shrimp	30		TVn	CAN-G	11	Herring acoustics and trawl	w1 -
	Vow	"	5	Shrimp	30	-	VW	CAN-N	2-3	Squid	130
	vwx	"	9-10	Redf ish	82	-	vwx	CAN-SE	1-2	Squid	129
	wx	"	7	Groundfish	176				10	Sealworm	-
		USSR	10-11	Juvenile silver hake	100		W	"	1-2	Herring acoustics	11
	X	CAN-SF	10-11	Groundfish	98			${ }^{\prime \prime}$	11	Gear trials.	15
		USA	4,10-11	Botton trawl	65		wx	$\mathrm{CAN}^{\text {-SF }}$	4-5	Lobster habitat	44
$4+5$							x	"	1	Pollock ichthyoplankton Gear trials	47
	vwXZe xze	${ }_{\text {CAN-S }}$	6 3	Scallop Groundfish	116 159			"	1	Gear trials	34
	Y_{Z}							"	2	rop training	-
5		USA	3-4, 10-11	Bottom trawl	334			"	3	Groundfish acoustics	4
			8	Scallop	222			"	4	Gear trials	-
		"	6-7	Clam	93			"	5	Gear trials/pollock	-
	ABC								6	Larval/juvenile cod	49
6		$\stackrel{\text { USA }}{\sim}$	$3-4,9-10$ $7-8$	$\begin{aligned} & \text { Bottom trawl } \\ & \text { Scallop } \end{aligned}$	329 283			"	7 10	Live fish CTD triais	34
		"	6-7	Clam	241						
1		OTHER SURVEYS			-	$4+5$	XZe	CAN-SF	2	Pollock	-
								"	$6-7$ 9	Lobster larvae	406 102
								"	9-10	Scallep larvae	102
	A	GRL	$\begin{gathered} 8-9 \\ 8 \end{gathered}$	Whale marking Narwhal aerial	-			"	10-11	Larval herring	163
	ABCD	"	6	Hydrography, plankton	117						
	BCD	"	6	Iceland scallop	50	$4+5+6$	XYZABC	USA	$1-2,5-6$ $11-12$	Eggs, larvae, chlorophyli temperature, salinity	
		"	5-6	Harp seal	-			"		Eggs, larvae, temperature	281
	${ }_{\text {CD }} \mathrm{CD}$		7-8 $10-11$	Young cod	200						
	${ }_{\text {D }}$	"	${ }_{5}^{10-11}$	Cod inshore	60 35	5	Y	USA	$8-9$	Eggs larvae, temperature	36
		"	5 7	Iceland scallop Cod	35 20		Ze	CAN-SF	6	Juvenile gadoids	40
		"	12	Capelin	-			$\stackrel{1}{n}$	8	Deep trawling	61
		"	12	Hydrography	6		z	POL	${ }^{8}$	Scallops	150
		"	4	Hydrography	23			USA	5	Juvenile fish (IKMT)	88
		"	7	Cod	80			"	5	Juvenile fish (MOCNESS)	115
2	3	CAN-N	7-8	Cod	-					(MOCNESS vs. IYGPT) (Bottom traw1)	25 20
$2+3$	JK							"	7	J. fish (bottom trawl)	145
		CAN-N	$1{ }^{1}$	$\begin{aligned} & \text { Groundfish } \\ & \text { Capelin (acoustic) } \end{aligned}$	3	5+6	YABC	USA	6-8	Eggs, larvae, temperature	
	JKLM	"	10-11	Salmon tagging	-		YabC	-		dgss, larvae, temperature	221
	JKLMNOP	"	8	Oceanography	-	6	ABC	POL	2-5	Mackerel	254
3		USSR	2-6	Ichthyoplankton	88			USA	8-9	Eggs, larvae, chlorophyll, temperature, salinity	, 174

the working group in September 1987. In addition to these summaries, the working group should also consider at that time what further survey data or analyses, if any, should be made available for consideration in June 1988.

Table 2. Biological surveys planned for the NaFO Area in 1987 and early 1988.

Country	Area	Type of survey	Dates
STRATIFIED-RANDOM SURVEYS - 1987			
CAN-N	2 CH	Groundfish	Aug 14-Sep 07
	2HJ	Shrimp	Jul 08-22
	$2 \mathrm{~J}+3 \mathrm{~K}$	Groundfish	Oct 21-Dec 01
	3 L	Groundfish	Oct 15-Nov 03
	3LNO	Groundfish	Apr 21-Jun 02
		Juvenile flatfish	Sep 03-22
	3 Ps	Scallop	Apr 30-May 12
CAN-Q	3Ps+4RST	Groundfish	Jan 07-28
	4RST	Groundfish	Aug 03-28
	4 RS	Shrimp	Aug
CAN-G	4 T	Groundfish	Sep 02-26
		Groundfish migration	May 18-23
		Juvenile cod (IYGPT)	May 27-Jun 10
		Groundfish migration	Jun 13-19
CAN-SF	4 V	Shrimp	May 04-15
		Shrimp	Oct 05-16
	$\begin{aligned} & 4 \mathrm{VSW} \\ & 4 \mathrm{VWX} \end{aligned}$	Cod	0ct 05-16
		Groundfish	Mar 09-Apr 04
		Scallop	May 18-29
		Groundfish	Jun 29-Jul 24
		Redfish	Oct 19-30
	52 e	Scallop	Aug 03-28
DEU	$\begin{gathered} \text { E. Greenl. } \\ \text { iBCDEF } \end{gathered}$	$\begin{aligned} & \text { Groundfish (OTB) } \\ & \text { Groundfish (OTB) } \end{aligned}$	$\begin{aligned} & \text { Aug } 25 \text {-Oct } 05 \\ & \text { Oct O8-Nov } 20 \end{aligned}$
FRA	$3 \mathrm{Ps}^{\text {s }}$	Groundf ish	Feb 03-Mar 08
GRL	$0+1 \mathrm{ABCD}$	Shrimp trawl	Jul-Aug
JPN-GRL	E. Greenl. SA!	Botton trawl	Ju1-Aug
		Bottom trawl	Nov-Dec
POL	52	Mackerel	Apr-May
	6ABC	Mackerel	Jan-Apr
USA	4X	Bottom trawl	Apr 06-May 01
	5 YZ	Bottom trawl	Oct 12-30
		Bottom trawl	Mar 23-Apr 17
		Bottom trawl	Sep 28-Nov 06
	$\begin{aligned} & 5+6 \\ & 6 \end{aligned}$	Scallops	Jul 06-Aug 13
		Bottom trawl	Mar 02-Apr 03
		Bottom trawl	Sep 10-0ct 09
USSR	$\begin{aligned} & \text { OB+2GH.J } \\ & 3 \mathrm{KLMNO} \\ & 4 \mathrm{VX} \end{aligned}$	G. halibut and grenadier Groundfish Juvenile silver hake	$\begin{aligned} & \text { Sep-Dec } \\ & \text { Mar-Jul } \end{aligned}$
			Oct 15-Nov 30
OTHER SURVEYS - 1987			
CAN-N	$\begin{aligned} & 2 \mathrm{~J} \\ & 2+3 \end{aligned}$	Cod	Ju1 20-Aug 15
		Salmon tagging	Sep 24-Oct 13
		Gear trials	Nov 05-24
	$2 \mathrm{~J}+3 \mathrm{~K}$	Capel in (acoustic)	Sep 30-Oct 19
	$2 \mathrm{~J}+3 \mathrm{KL} M \mathrm{NOP}$	Oceanography	Jul 25-Aug 15
	3	Gear trials	Mar 30-Apr 19
	3 K	Cod (acoustic)	Jun 04-23
	3 KL ?	Herring (acoustic)	Oct 05-Dec 04
	3L	Capelin (acoustic)	May 14-Jun 02
		Crab	May 25-Jun 12
		Capelin	May 25-Jun 22
		Cod tagging	Jun 15-Jul 10
		Pelagic larvae	Jun 24-Jul 03
		Pelagic larvae	Jul 13-31
		Crab	Aug 03-19
		Pelagic larvae	Aug 18-Sep 04
		Oceanography	Aug 24-Sep 05
		Squid	Sep 07-11
		Pelagic larvae	Sep 14-0ct 02
	3L	Crab	Oct 12-30
		Larval capelin	Nov 26-Dec 11
	3no	Capelin (acoustic)	Jun 24-Jul 06
	30 P	Squid	Jun 04-18
	3 P	Redfish (acoustic)	Jul 24 -Aug 12
		Cod tagging	Sep 08-0ct 07
CAN-Q	$4 R$		Oct
	$4 \mathrm{RS}$	Shrimp larvae and ichthyoplankton	Apr 27-May 15
	45	Crab tagging	Jun 01-12
		Shrimp acoustics	Aug 10-18
	4 T	Mackerel larvae	Jun 15-Jul 10
CAN-G	4 T	Diver herring spawning bed Herring acoustics and trawl	$\begin{aligned} & \text { Sep } \\ & \text { Nov } 10-\text { Dec } 05 \end{aligned}$

Country	Area	Type of survey	Dates
CAN-SF	$3 \mathrm{LMNO}+4 \mathrm{RST}$	Capelin, ichthyoplankton	Nov 16-Dec 04
	4 V	Herring acoustics	Jan 05-30
	4 VW	Haddock tagging	Apr 06-17
		Clam tag recovery	Sep 03-18
	4VWx	Groundfish acoustics	Mar 23-Apr 03
		Parasite collection	Apr 06-10
		Sealworm	Apr 13-24
		Gear studies	Apr 27-May 15
		Sealworm	May 22-29
		Halibut survival	Jun 25-Jul 10
		Lobster larvae	Jul 13-31
		Gear studies	Sep 14-Oct 02
		Deep trawling	Sep 21-0ct 02
	4X	Crab tagging	Jun 01-12
		ECOLOG, test	Jun 15-26
		Plankton	Ju1 27-31
	4vwx+5z	Pollock acoustics	Jun 01-12
	4X+5ze	Cod larvae	Apr 14-24
		Larval scallop	Sep $28-0 \mathrm{ct} 20$
		Herring larvae	Oct 19-Nov 13
	$4 \mathrm{x}+52$	Lobster	Aug 31-Sep 11
		Off shore herring	Oct 22-Nov 13
	sze	Larval cod	Mar 23-Apr 03
		5ze fishery	Jul 13-24
		Juvenile gadids	Jul 27-Aug 07
	$4+5+6$	Squid	Jan 05-31
		Observer training	Feb 02
GRL	E. Greenl. 1A	Whales aerial	Jul-Aug
		Shrimp	Jun
		Greenland halibut	Aug
		Heavy metal	Sep
		Environmental research	Sep
	1 ABC	Greenland halibut	Sep-Oct
	1abcdef	Hydrography, plankton	Jun-Jul
		Hydrography	Nov-Dec
		Whales aerial	Jul-Aug
	$\begin{aligned} & 1 \mathrm{BCDEF} \\ & 1 D \end{aligned}$	Capelin scouting	Apr-May
		Hydrography	Jan
		Greenland hal ibut	Jan
		Hydrography	Feb
		Iceland scallop	Mar-Apr
		Heavy metal	Jun
		Hydrography	Jun
		Hydrography	Sep-Oct
		Hydrography	Dec
	1def	Hydrography	Mar
		Cod	Nov
	1E	Environmental research	Jun
	1 EF	Small cod	Jun-Jul
		Young f ish	Oct
POL	$\begin{aligned} & 2 \mathrm{HJ} \\ & 3 \mathrm{~K} \end{aligned}$	Greenland halibut Greenland halibut	$\begin{aligned} & \text { Feb-May } \\ & \text { Feb-Jun } \end{aligned}$
USA	$4 \mathrm{X}+5 \mathrm{y} 2+6 \mathrm{ABC}$	Eggs, larvae, chlorophyll, temp salinity, phytoplankton	$\begin{aligned} & \text { Jan-Feb } \\ & \text { May } \end{aligned}$
		" " " "	Aug-Sep
		Eggs, larvae, ${ }_{\text {/ }}$ temperature	Mar-Apr
		Eggs, larvae (mackerel), temp.	$\begin{aligned} & \text { Sep-Oct } \\ & \text { Nov-Dec } \end{aligned}$
	52	Juvenile fish (gadoids)	
		IKMT trawl	May 17-25
		MOCNESS	Jun 01-12
		Bottom trawls, IYGPT	Jun 15-27
		Bottom trawl	Ju1 08-17
		Bottom trawl	Ju1 21-30
		Submersible	Jul 25-30
	$\begin{aligned} & 5 \mathrm{YZ}+6 \mathrm{~A} \\ & 6 \mathrm{~A} \end{aligned}$	Eggs; larvae (mackerel), temp.	$\begin{aligned} & \text { Jun-Jul } \\ & \text { Apr } \end{aligned}$
USSR	```2J+3KLNO 3K 3KLMNO 3LMNO```	Hydroacoustic capelin Hydroacoustic Myctophidae Hydroacoustic capelin Ichthyoplankton and hydrography	Nov Sep-Dec Mar-Jul Mar-May
SURVEYS PLANNED FOR EARLY 1988			
CAN-N	$2 \mathrm{~J}+3 \mathrm{~K}$	Groundfish	Feb 01-22
	3LNO	Redfish	Jan 18-31
	3 Ps	Groundfish	Feb 02-21
	4 vW	Squid	Feb 23-Mar 14
CAN-SF	4 V	Herring acoustics	Jan 04-29
	4 VWx	Deep trawling	Jan 15-26
	4 x	Haddock acoustics	Mar 14-15
	52	Groundfish	Feb 29-Mar 18

Canada which is as follows: 145 observed number of days fished in 1983, 134 days in 1984, 76 days in 1985, and 34 days in 1986.
2. List of Fishing Vessels for 1986

The Committee noted that updated lists have been received by the secretariat from the following countries: Canada, Denmark (Greenland), Denmark (M), France (SP), Norway, United Kingdom and USA. Noting that certain countries were remissive in submitting their lists, STACREC accordingly recommends that the secretariat contact those responsible for the submission of this information, urging them to comply with the request.
3. Tagging Activities Reported for 1986 (SCS Doc. $87 / 8+$ addendum)

Information for 1986 was again documented by the Secretariat. STACREC noted the usefulness of this document and requested that the Secretariat continue this practice.
4. Review of Relevant Documents (SCS Doc. 87/3, 16)

The Committee took note of the Secretariat's documentation of historical catches of selected species by stock area and country (SCS Doc. 87/3) for the 1975-85 period and requested that the series be continued.

The Committee also noted a paper (SCS Doc. 87/16) entitled "Guidelines for the Establishment of Logbook and Related Systems" by J. A Pope (FAO Fish. Rep. 793). That paper was considered to be useful as a compendium or manual on the subject.
5. Conversion Factors

Information came to the attention of STACREC that the Fisheries Commission had requested the Scientific Council's advice on a conversion factor study which was tabled during its 8 th Annual Meeting in September 1986. Mr. R. Wells (Canada) indicated that he was aware of the origin of this study and agreed to make arrangements for its presentation to the Scientific Council at its September 1987 Meeting. There was general discussion on this subject, including the benefits that could be gained if a Scientific Council representative was present during meetings of working groups such as the one set up to study conversion factors. STACREC accordingly recommends that the Scientific Council bring to the attention of the Fisheries Comission that having the presence of a Scientific Council observer at such working group meetings would be beneficial in assisting the Scientific Council to provide timely advice in response to Cormission requests.
6. Program of Research

A proposal to discontinue the reporting of programs of research in future years was accepted.
7. Acknowl edgements

There being no further business, the Chairman extended his thanks to the participants for their cooperation, the rapporteurs for their assistance, and the staff of the NAFO Secretariat for their excellent work.

APPENDIX III. REPORT OF STANDING COMMITTEE ON PUBLICATIONS (STACPUB)

Chairman: J. S. Beckett

Rapporteur: R. G. Halliday
The Committee met at NAFO Headquarters in the Bedford institute of Oceanography, Dartmouth, Nova Scotia, Canada, on 8 and 15 June 1987. In attendance were J. S. Beckett (Chairman), R. G. Halliday (Canada), Sv. Aa. Horsted (Denmark-Greenland), S. Kawahara (Japan), M. G. Larraneta (EEC), and V. A. Rikhter (USSR). The Chairman of the Scientific Council (J. Messtorff) and the Assistant Executive Secretary (V. M. Hodder) also attended. The Administrative Assistant (W. H. Champion) and M. D. Grosslein, in his capacity as Associate Editor, attended the meeting on 8 June.

1. Review of STACPUB Membership

The Chairman welcomed V. A. Rikhter back to the Committee, replacing A. T. Pinhorn who had resigned.
2. Review of Scientific Publications Since June 1986
a) Journal of Northwest Atlantic Fishery Science

The shortage of submitted manuscripts in 1985 and early 1986, with consequent shortage of editor-approved papers, resulted in production of only Vol. 7 (No. 1), containing 9 papers (88 pages), with publication date of December 1986.

Six papers have been approved and galley-processed for Vol. 7 (No. 2), but 3 or 4 more are needed to facilitate publication in late summer or autumn 1987.
b) NAFO Scientific Studies

Number 10, containing 9 papers (112 pages), was published in August 1986, about 3-4 months after the usual time in the spring due to illness of the Editor.

Number 11, containing 11 papers (128 pages), was published on schedule in March 1987.
c) NAFO Statistical Bulletin

Volume 34 for 1984 (304 pages) was published in December 1986 after an 8 -month delay due to late receipt of some data.
d) NAFO Scientific Council Reports

The volume containing reports of 1986 meetings of the Scientific Council in January, June and September (156 pages), was completed in December 1986 and distributed in early 1987.
e) Indexes and Lists of Titles
i) The provisional index and list of titles of 124 research (SCR) documents and 28 summary (SCS) documents, which were presented at Scientific Council meetings during 1986 , were comp.iled and presented in SCS Doc. 87/2 (32 pages).
ii) The provisional index and list of titles of papers, which were published during 1980-86 in NAFO Scientific Council Studies (No. 1 to 10) and in dournal of Northwest Atlantic Fishery Science (Vol. i to 7(1)), were compiled and presented in SCS Doc. 87/7 (74 pages). STACPUB expressed its appreciation that Mr. Hodder had brought this index up to date, and agreed to follow his suggestion that publication be delayed until 10 years of publications were available for indexing.
3. Editorial Matters Regarding Scientific Publications
a) Editorial Board activities

Journal submissions increased to 18 in 1986 and 10 papers have been received to date in 1987. However, it appears that submissions may be stabilizing at about 20 or less per year, which is less than the number required (30 submissions) to support two issues per year. It was decided that one issue would be published in 1987 as Vol. 7 (No. 2) completing this volume. STACPUB members preferred that each volume be issued within a calendar year, even though this will iikely require a return to one-issue volumes in some, if not most, years. As subscribers are charged by the issue and not by the volume, this was not seen as a problem. Production of Vol. 8 for 1988 as one issue or two will be decided at the June 1988 Meeting based on the volume of papers available.
b) Editorial Board appointments

In November 1986, the Secretariat was informed of the sudden death of Dr. G. A. Robinson (Associate Editor for Biological Oceanography) about 2 months earlier in September 1986, only $2-3$ months after he had retired from the Institute of Environmental Research, Plymouth, England. The need to fill the vacancy was considered to be urgent, and Dr. J. M. Colebrook of the same Institute was appointed in February 1987.
c) Position of editor and review of interimarrangements

The Chairman reported that enquiries concerning candidates for editor had resulted in one response from a European laboratory, and from one group which may be interested in providing services on a contractual basis. STACPUB members expressed reservations about both of these proposals based on communication difficulties and expense respectively.

The three Associate Editors who could be contacted immediately prior to, or during, the meeting indicated that the interim arrangements, whereby they took on full responsibility for editing Journal papers, were working satisfactorily. The Committee noted the great contribution that Mr. Hodder had made to Council publications and recognized that the Secretariat's ability to contribute to the editorial work of the Council depended heavily on the qualifications of Mr. Hodder's replacement. This will affect not only technical editing of the Journal but the editing of the Studies series, presently undertaken entirely by Mr. Hodder. In view of this, STACPUB decided to maintain the present interim arrangements until a new Assistant Executive Secretary is appointed, and recommends that the Scientific Council convey to the Executive Secretary of NAFO that the Council wishes that the replacement for the present Assistant Executive Secretary, on his retirement, should be qualified to assume the editorial responsibilities for Studies and the Journal currently discharged by Mr. Hodder and that these duties should be part of his job responsibilities.
4. Promotion and Distribution of Scientific Publications
a) Brochure for the Journal

A suitable brochure has been produced by the Secretariat and this has been mailed to about 1,000 institutes and libraries worldwide, based on mailing lists obtained from Canadian sources.
b) Advertising for the Journal

Advertisement of the Journal through the Allen Subscription Catalogue has been initiated for the 1988 catalogue.
c) Invitational papers

The concept of inviting review papers for the Journal received wide support within the committee. A list of possible topics was reviewed and it was agreed that the Chairman would explore with potential authors the possibility of producing some of these papers, and the possibility of finding suitable authors for others. The list was recognized as only a first set of suggestions and that additional suggestions would be welcomed.

It was recognized that the present definition of the scope of the Journal is ambiguous about publication of review papers. As guidance to editors and potential authors, clarification is probably necessary. The suggestions for review papers included not only reviews of scientific topics but reviews of management practices and of fishery developments of a more historical nature. It was agreed that the Chairman, in consultation with STACPUB members and editors to the extent practical, would develop a proposal for revision of the Journal scope for consideration at the meeting of September 1987.
d) Other promotional initiatives

A review of Journal subscriptions indicated that no progress has been made to date in significantly improving distribution of the Journal. No new promotional initiatives were raised, however.
e) Publication costs and revenues for Scientific Council publications

Publication costs and revenues for the various publications related to the activities of the Scientific Council were reviewed. No noteworthy changes have occurred from the previous years.
5. Papers for Possible Publication
a) Review of proposals from 1986 meetings

A most useful comprehensive review of the results of the annual paper selection process since 1980 was provided by Mr. Hodder. During 1980-85, a total of 213 research documents were nominated, of which 65% were submitted for consideration and 57% pubiished. Response in 1985 was notably poorer than in earlier years (47% received and 31% accepted). In 1986 , 31 papers were nominated for possible publication of which 48% have been received and 35% accepted to date. However, more papers from the 1986 selections were expected.
b) Proposals for publication from 1987 documents

Documents which were presented at the January and June 1987 meetings were reviewed and the Committee requested the Assistant Executive Secretary to invite the authors of the following documents to submit suitably revised manuscripts for possible publication in one of the Scientific Council series: SCR Doc. $87 / 5,6,12,13,28,31,35,41,48,62$ and 68 . It was noted that SCR Doc. $87 / 68$ was considered by the authors as a report on ongoing work and the present recommendation is based on the authors being in a position to provide a final report, at least on this part of their work, fairly soon. If extensive additional work is proposed, however, the Committee would be pleased to consider a revised document at some later meeting.

The Assistant Executive Secretary brought the Comittee's attention to a proposal concerning publication of an atlas of fishing distributions from fisheries observer data. While the Committee thought the material would likely be of substantial interest, particularly to fishermen, it concluded that the Council's publications do not provide a suitable outlet. The author is encouraged to look elsewhere for a suitable vehicle for this material. If this proves unsuccessful, the Comittee would be prepared to consider whether making special arrangements for publication of this material can be justified.
6. Other Matters
a) Microfiche of ICNAF documents

The Secretariat reported that a microfiche reader had been purchased, as recommended, for use by the Scientific Council. STACPUB was disappointed that only seven sets of microfiche had been purchased to date, despite notification of 17 previously-interested parties and wide distribution of an advertising brochure. More purchases are expected, however.
b) Microfiche of NAFO documents

The Secretariat provided a cost estimate of approximately $\$ 5,500$ (Can.) to produce 30 copies of all NAFO SCR and SCS Documents distributed in 1979-85. STACPUB decided that the Council would be unwise to proceed with this project until demand was clearly established through sales of the ICNAF series already produced. The matter was deferred until such a time.
c) Acknowledgements

The Committee, on behalf of all members of the Council, expressed its deep gratitude for the contributions made to the Organization's publications by the Assistant Executive Secretary, Mr. Hodder. His retirement later in 1987 will bring to an end an era in which he has been a dominant force in the documentation of the Council's work, as well as of its predecessor STACRES of ICNAF. Mr. Hodder's high and inviolable standards, which he directed towards all aspects of his responsibilities, have resulted in a record of the Council's work of which both the Council and Mr. Hodder can be proud. He can retire knowing that he has made his mark on the Organization and that his labours will be missed. He is wished a long and happy. retirement.

PART C

Report of Scientific Council
Annual Meeting, September 1987

CONTENTS

Page

1. Fishery Science (App. I) 99
2. Special Session on Deepwater Resources 99
3. Stock Assessments 99
4. Gear and Selectivity 99
5. Topics for Future Special Sessions 99
6. Other Matters 100
II. Research Coordination (App. II) 100
7. Survey Design Procedures 100
8. Review of Information on Conversion Factors 100
9. Survey Requirements for Greenland Halibut and Grenadiers 100
10. Publications (App. III) 100
11. Editorial Matters 100
12. Papers for Possible Publication 100
IV. Future Scientific Meetings 100
13. Scientific Meeting in June 1988 100
14. Special Session and Annual Meeting in September 1988 101
15. Scientific Meeting in June 1989 101
16. Special Session and Annual Meeting in September 1989 101
V. Other Matters 101
17. Provisional Report of June 1987 Meeting 101
18. STACPUB Membership 101
19. Oceanographic Analysis Charts 101
20. Deficiencies in Research and Statistical Information on Stocks in the Regulatory Area 101
21. Role of Scientific Council in Filling Vacant
Position of Assistant Executive Secretary 101
VI. Adjournment 102
Appendix I. Report of Standing Committee on Fishery Science (STACFIS) 103
22. Special Session on Deepwater Resources 103
23. Introduction 103
24. Specific Topics 103
II. Stock Assessments 104
25. Yield-per-recruit of Cod in Divisions $3 N$ and 30 104
26. Shrimp Stocks in Subareas 0 and 1 in Denmark Strait 105
III. Gear and Selectivity 105
27. Escapement and Selectivity Problems Associated With Use of Strengthening Ropes, Splitting Straps and Codend Floats 105
IV. Topics for Future Special Sessions 106
28. Outline for Special Session 1988 106
29. Proposed Theme for Special Session in September 1989 107
V. Other Matters 107
30. Review of Scientific Papers 107
31. Acknowledgements 107
Appendix II. Report of Standing Committee on Research Coordination (STACREC) 109
32. Working Group on Survey Design Procedures 109
33. Review of Information on Conversion Factors 110
34. Response to Canadian Request for Analysis of Research Activities on Greenland Halibut and Roundnose Grenadier 111
35. Acknowledgements 111
Appendix III. Report of Standing Committee on Publications (STACPUB) 113
36. Editorial Matters 113
37. Review of Papers for Possible Publication 113
38. Microfiche of NAFO Documents 113
39. Other Matters 113
40. Acknowledgements 114
Appendix IV. Decision of the Fisheries Commission on Establishment of an Annual Scientific Program 115

REPORT OF SCIENTIFIC COUNCIL

Annual Meeting, September 1987

Chairman: J. Messtorff
Rapporteur: V. M. Hodder
The Scientific Council and its Standing Committees on Fishery Science (STACFIS), Research Coordination (STACREC) and Publications (STACPUB) met at the Lord Nelson Hotel, Halifax, Nova Scotia, Canada, during 14-18 September 1987, to consider and report on various matters listed in the agenda (see Part D, this volume). Representatives attended from Canada, Cuba, Denmark (Greenland), European Economic Community (EEC), German Democratic Republic, Japan, and Union of Soviet Republics (USSR).

That meeting was preceded by the Special Session on "Biology and Ecology of Demersal Resources of the North Atlantic Continental Slopes, with Emphasis on Greenland Halibut and Grenadiers', which was also held at the Lord Nelson Hotel during 9-11 September 1987, with participation by scientists from Canada, Denmark (Greenland), EEC, German Democratic Republic, Iceland, Japan, Norway, USSR and USA.

The reports of the Standing Comnittees, as adopted by the Council on 18 September 1987, are given in Appendix I (STACFIS), Appendix II (STACREC) and Appendix Ill (STACPUB). Brief summaries of these reports and other matters considered by the council are given below, including the request of the Fisheries Commission regarding the establishment of a program to improve scientific knowledge on the fish stocks in the Regulatory Area (see Appendix IV). Lists of research and summary documents and the list of participants are given in in Part D (this volume).

I. FISHERY SCIENCE (APP. I)

1. Special Session on Deepwater Resources

At the Special Session which was convened by W. R. Bowering (Canada), 25 scientific papers and 2 oral reports were presented. There were 3 presentations on oceanography, 14 on Greenland halibut, 6 on grenadiers, and 4 on other deepwater species. Most of the papers focused on the yield, distribution and various biological characteristics of the studied species. The Session concluded with a detailed discussion on identifying major gaps in biological knowledge of the species, with emphasis on Greenland halibut and grenadiers. The discussion ended with several recommendations for research, including collaboration among scientists working on similar issues.

The Council endorsed the recommendations for research and noted especially the proposed collaborative research on grenadiers by Canadian and USSR scientists.

2. Stock Assessments

The Council noted that STACFIS had considered a reevaluation of yield-per-recruit for the cod stock in Div. 3NO. It was agreed that a more detailed examination of the necessary parameters be undertaken before changes in species yield-per-recruit values are accepted. The results of the analysis were made available to the Fisheries Commission (SCS Doc. 87/24).

The Council concurred with STACFIS that, due to the lack of useful abundance indices, a mid-term meeting to assess the shrimp stocks in Subareas 0 and 1 and in Denmark Strait was unnecessary. It was also agreed that the management advice for 1988 should remain the same as that provided at the January 1987 Meeting for 1987 , and that advice for 1989 will be provided at the June 1988 Meeting. The Council therefore advises that the TAC for 1988 on the offshore grounds in Subarea 1 south of $71^{\circ} \mathrm{N}$ and in the adjacent parts of Subarea 0 be maintained at 36,000 tons, as advised for 1987. The Council was still unable to advise on a TAC for shrimp in Denmark Strait.
3. Gear and Selectivity

The Council was grateful to Dr. H. Bohl (EEC gear expert) who responded to the request of the Scientific Council in June 1987 by providing some information regarding the effects of splitting straps, strengthening ropes and codend floats on the selectivity of trawls. The information was made available to the Fisheries Commission (SCS Doc. 87/26).
4. Topics for Future Special Sessions

The Council adopted the program that was outlined by STACFIS for the Special Session in September 1988 on "impact of Changes in Environmental. Conditions in the North Atlantic on Distribution, Availability and Abundance of Marine Species, with Particular Emphasis on the Northwest Atlantic in the Early $1980^{\prime} s^{\prime \prime}$, noting that J. C. Rice (Canada) had been named Convener.

The Council also adopted the proposal by STACFIS that the theme for the Special Session in 1989 be "Changes in Biomass, Production and Species Composition of Fish Populations in the Northwest Atlantic Over the Last 30 Years, and Their Possible Causes".
5. Other Matters

The Council noted that STACFIS had deferred one paper (SCR Doc. 87/98) for consideration at the June 1988 Meeting.

II. RESEARCH COORDINATION (APP. !।)

1. Survey Design Procedures

The Council was pleased to note that some progress had been made by the working group which was established to evaluate the available information, provided by Canada, France, Federal Republic of Germany and USSR, on research vessel surveys in Subareas 2 and 3. A number of general and specific points were noted, and several recommendations were made, all of which were endorsed by the Council as being important aspects of future work on analysis of survey results.
2. Review of Information on Conversion Factors

The Council noted that the experiment by Canada to estimate conversion factors for salted cod provided valuable information. There appeared to be no scientific objection to using the results of the experiment for enforcement purposes.
3. Survey Requirements for Greenland Halibut and Grenadiers

In response to the Canadian request for information on survey requirements to estimate biomass of Greenland halibut and grenadiers in Subareas 0 and 1 , the Council concurred with the views of STACREC that a major research effort would be required for $3-5$ years, with at least summer and late autumn surveys of possibly 45 operating days each by a large trawler. Depths from 200 m to at least $1,500 \mathrm{~m}$ would have to be covered, and the latter depth could still be a limitation for research on grenadiers. In addition, Greenland halibut abundance in West Greenland fjords north of $70^{\circ} \mathrm{N}$ and south of $61^{\circ} \mathrm{N}$ in Subarea 1 would need to be quantified. Design of survey procedures, however, would require future work.
III. PUBLICATIONS (APP. III)

1. Editorial Matters

The Council agreed that the present arrangement, whereby Associate Editors have full responsibility for editing Journal papers, be continued at least until June 1988. It was noted that the second number of Journal Vol. 7 will likely be published before the end of 1987.

In June, the Council endorsed the views of STACPUB that certain invitational papers should be considered for the Journal, but no potential authors have as yet accepted the invitation to write such papers. To clarify the scope of the Journal regarding such papers, the Council endorsed STACPUB's proposal to revise the description of the scope on the inside front cover of Vol. 7 (1) to read "Both practical and technical papers are eligible for consideration, as are review articles of particular relevance to the work of ICNAF and NAFO'1.
2. Papers for Possible Publication

The Council was encouraged to learn that the Secretariat has already received 5 of the 11 papers which were presented at the June 1987 Meeting and identified by STACPUB as potential contributions for the Council's Journal or Studies. Examination of 27 papers which had been presented at the present meeting (mostly at the Special Session) resulted in 15 being so identified.

IV. FUTURE SCIENTIFIC MEETINGS

1. Scientific Meeting in June 1988

The Council reviewed its earlier tentative decision on dates of the June 1988 Meeting and agreed to meet, together with its Standing Committees and Subcommittee, at NAFO Headquarters in Dartmouth, Nova Scotia, during 8-23 June 1988. This meeting will deal with the usual requests for scientific advice on fisheries management and other fisheryंrelated research and statistical activities.
2. Special Session and Annual Meeting in September 1988

The Council will meet in conjunction with the Annual Meeting of NAFO in Ottawa, Ontario, Canada, during 6-10 September 1988. That meeting will be followed on 12-14 September by the Special Session (also in Ottawa) on "Impact of Changes in Environmental Conditions in the North Atlantic on Distribution, Availability and Abundance of Marine Species, with Particular Emphasis on the Northwest Atlantic in the Early 1980's'.
[Subsequent to the Council's decision on the time of the Special Session, the dates for the Annual Meeting were changed to 12-16 September 1988. Consequently, the Special Session will now precede the Annual Meeting and be heid on 7-9 September 1988.]
3. Scientific Meeting in June 1989

The Council tentatively agreed to meet during 7-21 June 1989 to deal with fishery science and statistical matters.
4. Special Session and Annual Meeting in September 1989

Considering that the Annual Meeting is scheduled for 11-15 September 1989, the Council agreed to hold its Special Session on 6-8 September.

V. OTHER MATTERS

1. Provisional Report of June 1987 Meeting

The Council formally approved, with minor amendments, the summary report of its meeting on 3-17 June 1987 (see Part B, this volume). Some corrections to the Appendices (Committee reports) were noted for incorporation prior to publication.
2. STACPUB Membership

The Council noted that SV. Aa. Horsted, who becomes Vice-chairman of the Council at the end of this meeting, also becomes ex officio Chairman of STACPUB. His position as a member-at-large of STACPUB thus becomes vacant, and the Council appointed J. Messtorff to fill the vacancy. STACPUB membership was confirmed as follows:

$$
\begin{array}{ll}
\text { SV. Aa. Horsted (Chairman) } & \text { M. G. Larrañeta (EEC) } \\
\text { R. G. Halliday (Canada) } & \text { U. Messtorff (EEC) } \\
\text { S. Kawahara (Japan) } & \text { V. A. Rikbter (USSR) }
\end{array}
$$

3. Oceanographic Analysis Charts

The Chairman informed the Council of a reply which he had received from the USA regarding the Council's concern about reducing the coverage in the Northwest Atlantic from $50^{\circ} \mathrm{N}$ to $47^{\circ} \mathrm{N}$ and from $44^{\circ} \mathrm{W}$ to $47^{\circ} \mathrm{W}$. It was indicated that the original northern ($50^{\circ} \mathrm{N}$) and eastern ($44^{\circ} \mathrm{W}$) limits have been retained with a southward extension to the Bermuda area. The Chairman was requested to convey the Council's gratitude to the appropriate USA authorities for their very positive response to the Council's request.
4. Deficiencies in Research and Statistical Information on Stocks in the Regulatory Area

The Council was informed that a request on this matter would be forthcoming from the fisheries Commission, but the request had not been received before the last session of the Council was adjourned. It was decided, therefore, to defer consideration of the request to the June 1988 Meeting but to append it to the report of the present meeting for advance information (see Appendix IV).
5. Role of Scientific Council in Filling Vacant Position of Assistant Executive Secretary

The General Council was requested by the Chairman of the Scientific Council (J. Messtorff) to establish the involvement of the Scientific Council in the candidate assessment, with reference to Article XV(3) of the NAFO Convention. The following points were particularly emphasized: it is essential that the new incumbent have the proper scientific qualifications, experience, and reputation to effectively fulfill those duties relating to those of the Scientific Council. Judgement of these qualifications can only be properly exercised by professional scientists who are themselves experts. It will, therefore, be satisfactory to the scientific Council only if it has the authority to establish which candidates meet the scientific standards required for the position.

At its meeting on 18 September 1987, the General Council adopted the following Resolution relating to the appointment of the New Assistant Executive Secretary: "The General Council, noting that the position of Assistant Executive Secretary of NAFO has become vacant and that candidates have been invited to submit their applications, and noting Article XV(3) of the Convention, requests the Chairman of the Scientific Council to convene, in conjunction with the present Annual Meeting, a small advisory group to assist the Executive Secretary in assessing the scientific qualifications of the applicants in order for the Executive Secretary to appoint the new Assistant Executive Secretary, taking into consideration the overall qualifications of the different applicants'.

The Scientific Council established the advisory group, consisting of J. S. Beckett (Incoming Chairman), J. Messtorff (Outgoing Chairman) and W. R. Bowering (Outgoing Chairman of STACFIS). The group met briefly to develop guidelines for the assessment process and anticipates that copies of the applications of all candidates will be dispatched to each participant as soon as possible by the Executive Secretary.

VI. ADJOURNMENT

There being no further business, and this meeting being the end of his term in office, the Chairman expressed his appreciation and thanks to the chairmen of the Standing Committees (\mathbf{W}. R. Bowering, R. Dominguez and J. S. Beckett) and Environmental Subcommittee (M. Stein), to the convener of the Working Group on Survey Procedures (W. Brodie), to the various rapporteurs and to all other participants for their cooperation and contribution to the success of Scientific Council meetings during the last 2 years. On behalf of the Council, he thanked the Assistant Executive Secretary (V. M. Hodder) and other Secretariat staff for their continuous and excellent assistance and efficiency in organizing and servicing the meetings. The final session was adjourned at 1245 hr on 18 September 1987.

APPENDIX 1. REPORT OF STANDING COMMITTEE ON FISHERY SCIENCE (STACFIS)

The Committee met at the Lord Nelson Hotel, Halifax, Nova Scotia, Canada, during 14-17 September 1987, to consider and report on various fishery-science matters that were referred to it by the Scientific Council (see Part D, this volume for agenda). Representatives attended from Canada, Cuba, Denmark (Greenland), EEC, German Democratic Republic, Japan and USSR.

The meeting was preceded on 9-11 September 1987 by the Special Session on deepwater resources of the North Atlantic, which attracted scientists from Canada, Denmark, EEC, German Democratic Republic, Iceland, Japan, Norway, USA and USSR.

The matters which were considered at both meetings are outlined below. Various participants contributed to the preparation of initial drafts of the different sections of this report.

1. SPECIAL SESSION ON DEEPWATER RESOURCES

1. Introduction

The Special Session on "Biology of Demersal Resources of the North Atlantic Continental Slopes, with Emphasis on Greenland Halibut and Grenadiers", convened by W. R. Bowering (Canada), was held at the Lord Nelson Hotel, Halifax, Nova Scotia, Canada, during 9-11 September 1987, and attracted a total of 31 scientists who are conducting research in the Northwest and Northeast Atlantic and the North Pacific Oceans. A total of 25 papers (SCR Doc. $87 / 72$ to $87 / 96$ inclusive) and two oral presentations were given by participants from Canada, Federal Republic of Germany, German Democratic Republic, Greenland, Iceland, Norway, USA and USSR.
2. Specific Topics
a) Oceanography

There were three presentations on oceanographic conditions in the Northwest Atlantic as an area of major interest. Specific discussions were centered around the Arctic outflow in the Northwest Atlantic, and the processes controlling the seasonal and interannual changes in near-bottom temperatures over the Labrador Shelf as well as shelf edge processes. These features were considered in the light of the distribution of deepwater species in the Northwest Atlantic. It was noted, however, that very little oceanographic information is, in fact, available regarding depths of $500-1,500 \mathrm{~m}$, where these deepwater resources are mainly distributed. It was agreed that the Environmental Subcommittee should solicit information on oceanographic conditions in this depth range for consideration at the June 1988 Meeting.
b) Greenland hal ibut

There were 14 presentations on Greenland halibut. These included major review papers on the biology and fisheries of the species in the North Pacific, West Greenland, Labrador-eastern Newfoundland, Gulf of St. Lawrence, and Norwegian-Barents Sea areas. An oral account of the biology and fishery of Greenland halibut in the East Greenland-lceland area was also presented. Studies on various biological features were also reported, such as stock identification, age and growth, and distribution in relation to depth and temperature. On the last day of the Session, there was a detailed discussion regarding future research activity, research priorities and collaborative scientific ventures on Greenland halibut, as follows:
i) In the North Pacific, little experience in ageing Greenland halibut has been gained although ageing material has been collected. It was felt that, as a next step in investigating the biology of Greenland halibut in the North pacific, age and growth studies should be conducted. It was recommended that scientists at the USA laboratory in Seattle, Washington, and scientists at the Canadian laboratory in St. John's, Newfoundland, collaborate on this matter, because the Canadian scientists have many years of experience in ageing the species. Depending upon the success of such collaboration, other collaborative studies could be explored.
ii) It was further noted that ageing techniques, in the Northwest Atlantic, should be standardized for the Gulf of St. Lawrence, Labrador-eastern Newfoundland and West Greenland areas. It was suggested that an exchange of photographic material on otoliths would be a good approach to this matter. It was pointed out that delineation of Greenland hal ibut stocks throughout this region has yet to be fully resolved, and studies of this nature are considered of high priority, particularly in the Gulf of St. Lawrence and in West Greenland areas. One of the major gaps in the life history of Greenland hal ibut in the Labrador-West Greenland region has been the lack of knowledge of the specific
location of the spawning stock, the time of spawning, the biology of egg and larval stages. It was recommended that studies designed to resolve this major gap in knowledge of the life history should be initiated, particularly ichthyoplankton and 0-group studies. In fact, it was pointed out that a pilot project of 0 -group surveys as part of this initiative has already been started in southwestern Greenland waters.
iii) Research activity on the general biology and stock assessment of Greenland halibut was reported to be ongoing in the Icelandic area. However, it was felt that additional activity should focus on the distribution and abundance of Greenland halibut larvae at East Greenland and the possible relationship with West Greenland.
iv) In the Northeast Atlantic, research priorities on Greenland halibut are being directed towards the development of recruitment indices, investigation of the reproductive cycle, and predation studies on young stages. It was felt that the results of these research activities may enable scientists to better evaluate the life history of the species in this area and may be extrapolated to other areas as well.
c) Grenadiers

Six papers were presented on grenadiers, primarily roundnose and roughhead grenadiers. The papers dealt with the biology and fishery of the species throughout the North Atlantic. Many gaps in the knowledge of the biology of grenadiers were identified, such as stock delineation, reproduction cycle, and status of the stocks. These were highlighted as being of particular concern in the Northwest Atlantic, where there is major fishery for grenadiers by countries such as German Democratic Republic and USSR. It was noted that these countries have large grenadier databases which should be examined in order to form the basis for future research. It was recommended that collaborative research efforts between Canadian and USSR scientists working in the Northwest Atlantic be considered along the lines of that presently conducted on Greenland halibut. Such a combined effort would likely allow for a better understanding of the distribution and biology of these species, as well as stock identification.
d) Other species

There were four papers on species other than Greenland halibut and grenadiers, these being primarily Atlantic halibut and blue hake, and the deepwater resources off Norway. Research activity on Atlantic halibut is expanding, but research activity on species such as blue hake will iikely continue on an opportunistic basis.

11. STOCK ASSESSMENTS

1. Yield-per-recruit of Cod in Divisions 3 N and 30 (SCR Doc. 87/97)

A new yield-per-recruit analysis was not possible at the June 1987 Meeting because average weight-at-age data were not then available for cod older than age 12 years. Following a recommendation of the Scientific Council, average weights for age-groups 13-20 were calculated from research vessel data. Length-at-age values were calculated from the data sources cited in SCR Doc. 87/97. Weight-at-age values were then estimated by applying a length-weight relationship to the average length-at-age values. These average weights and the values from the commercial fishery for ages 3-12 years, were included in a yield-per-recruit analysis.

The values of $F_{0,1}$ and $F_{\text {max }}$ derived from this analysis were somewhat different from the values (0.18 and 0.22 respectively) used in previous years. It was noted that such calculated values tend to vary, since they reflect the normal variability in the estimated weight-at-age values and the estimated proportions of the fishing mortality acting upon the younger (and smaller) cod, which are not fully recruited to the fishery. Current estimates of average weights for cod older than 16 years were highly variable, perhaps due to infrequent occurrences of these ages in the survey catches.

STACFIS concluded that a more detailed examination of the necessary parameters should be undertaken before changes in specific yield-per-recruit values are accepted. It was noted that the yield-per-recruit function should be calculated from values consistent with those observed in the stock when it was at an appropriate size. STACFIS accordingly recommends that the appropriate laboratories in Canada and USSR which have series of research-vessel surveys in this area provide the data and perform the necessary yield-per-recruit analyses for presentation at the June 1988 Meeting. Relevant data from the commercial fisheries of all nations for cod in Div. 3NO should be provided.
2. Shrimp Stocks in Subareas 0 and 1 and in Denmark Strait

STACFIS considered whether a special meeting in January 1988 was necessary to provide advice on the shrimp stocks. It was pointed out that shrimp (Pandalus borealis) is a relatively short-lived species, compared to some finfish, and that the fishery is dependent on only 3 or 4 year-classes. Also, recruitment and stock size are difficult to predict, especially when ageing problems are still to be resolved. In the past, it has been accepted that, in order to adequately assess these stocks, the most recent fishery and research data should be available for consideration. However, the usefulness of mid-term meetings has been increasingly questioned because of deficiencies in the data. In 1986, the Scientific Council still considered that a mid-term meeting to assess shrimp was appropriate, at least until quantitative recruitment estimates are available. An assessment in June would utilize data which were a year older than an assessment in the following January, and any adjustments to the TAC to take account of sudden changes in abundance, as has been observed elsewhere for other shrimp stocks, would only be possible 2 years after the changes. Furthermore, since data from the fishery in July-September are important, it is not appropriate to assess the stock until January (NAFO Sci. Coun. Rep., 1986, page 9).

Assessment of shrimp stocks, in the past, has been based on CPUE indices and, for the West Greenland stock, biomass estimates from the photographic survey, supplemented by ancillary biological data. In January 1987, STACFis was unable to interpret the CPUE series as an index of stock size. Also, due to problems with the interpretation of the data, the photographic survey was not conducted in 1986, and STACFIS was advised that such surveys would not be continued in the future. Therefore, there was no basis to advise a change in TAC.

Under these circumstances, in June 1987, the Scientific Council reexamined the need for a special meeting in January 1988 and suggested that the assessments be conducted at the regular June meeting. It was preferred that advice for 1988 be provided at the September 1987 Meeting and advice for 1989 at the June 1988 Meeting. It was also noted that, if stock abundance should decline rapidly, the Chairman of the Scientific Council has the authority to convene a special meeting at any time upon the request of the coastal state.

STACFIS was informed at the present meeting that problems with the interpretation of the CPUE series remain and that these will not be resolved by January 1988. Even if a decrease in CPUE were observed in 1987, it would be very difficult to quantify an appropriate reduction in TAC. Points raised at the June meeting (i.e. provision of advice in June, and the possibility of a special meeting at any time if a rapid decline in stock becomes evident) were reiterated. It was agreed that, under present circumstances, a special meeting in January 1988 was not necessary. It was further agreed that, if it is established that a significant improvement in the accuracy of advice can be obtained, a return to mid-term meetings would be appropriate.

It was recognized that, because no new data on either the Subareas $0+1$ or Denmark Strait stocks were available for this meeting, advice on TACs for 1988 must be the same as that provided in January 1987 for 1987 and that advice will be provided for 1989 at the June 1988 Meeting. STACFIS therefore advises that the TAC for 1988 for the offshore grounds in Subarea 1 south of $71^{\circ} \mathrm{N}$ and the adjacent parts of Subarea 0 be maintained at 36,000 tons, as advised for 1987 . STACF:S was still unable to advise a TAC for shrimp in Denmark Strait.

I!I. GEAR AND SELECTIVITY

1. Escapement and Selectivity Problems Associated With Use of Strengthening Ropes, Splitting Straps and Codend Floats

In compliance with an expressed need for information on this matter by the Fisheries Commission, the Scientific Council, at its meeting in September 1986, recommended that all available information on the subject be presented at the June 1987 Meeting (NAFO Sci. Coun. Rep., 1986, page 110). No new information on the subject came forward at the June 1987 Meeting, and the only relevant material was compiled for the present meeting by Dr. H. Bohl (gear research expert, EEC), as follows:
a) Strengthening ropes

In the most comprehensive sense, these are load-bearing ropes which are attached to the lestridges and/or any other part of the trawl. When fixed to the lestridges, they are commonly designated as "selvage (selvedge) ropes". The technical terms used here were defined by Bridger et al. (1981).

Properly rigged selvage ropes have been shown to improve the selectivity of trawls to a great extent (Bohl, MS 1960). Covered-codend experiments in the Baltic Sea yielded selection factors of 2.1 for cod and 2.5 for whiting, when a bottom trawl without these ropes was used. During the same experiments, the lestridges of the trawl were strengthened from the wing tips
to the codline meshes by means of manila ropes. This gear modification led to much higher selection factors (3.1 for cod and 4.2 for whiting). These results demonstrate that strengthening ropes enable the meshes of towed codends to be open. An inverse effect, however, may be expected when the ropes are fastened on lengthwise stretched netting, because the meshes would remain closed during towing. In EC waters, it is prohibited to attach strengthening ropes inside the codend (Commission Regulation (EEC) No. 3440/87 of 6 December 1984).
b) Splitting straps

Although the effects of splitting straps have not been studied in detail, it can be taken for granted that these devices impede the selectivity of trawls to some extent. Nevertheless, the use of splitting straps has to be tolerated, because, otherwise, side trawlers and stern trawlers without ramps would not be able to haul big catches on board. For "round straps" (another type of circular strap with a completely different function), it is known that they do not reduce the selectivity, if their length is not less than 45% of the circumference of the codend (Beltestad, MS 1977). Despite the fact that the length of splitting straps very often corresponds to 40% or less of the codend girth, it would be irrational to introduce a minimum length for them. Relatively short splitting straps are absolutely necessary to lift full codends over the ship's bulwark in case the pulley used for this purpose cannot be placed to a sufficient height. However, regulatory measures are required with respect to the wristband-shaped chafing pieces which are commonly used in conjunction with splitting straps. These cylindrical pieces of netting, which prevent the straps from cutting the codends, are thought to reduce selectivity to a higher degree than the splitting straps themselves.

When splitting straps and their accessories are used in EC waters, certain rules must be observed, and these are given in Articles 7 and 9 of Commission Regulation (EEC) No. 3440/87.

c) Codend floats

Especially in coastal fisheries, a single codend float is frequently used to mark the position of the trawl at the surface. Since, in general, such a marker buoy is tethered to the rearmost end of one of the selvage ropes, its influence on trawl selectivity may be considered negligible. Occasionally, codend floats are used as lifting devices, but their effects on selectivity are unknown.
d) References cited above

BELTESTAD, A. K. MS 1977. Selectivity experiments with topside chafers and round straps. ICES C. M. Doc., No. B:38 (Gear and Behaviour Committee).

BOHL, H. MS 1960. Note on the influence of net design on selectivity of trawls. ICES C. M. DoC., No. 162 (Comparative Fishing Comittee).

BRIDGER, J. P., J. J. FOSTER, A. R. MARGETTS, and E. S. STRANGE. 1981. Glossary of United Kingdom Fishing Gear Terms. Fishing News Books Ltd., Farnham, Surrey, England.

IV. TOPICS FOR FUTURE SPECIAL SESSIONS

1. Outline for Special Session 1988

Further consideration of the theme for the Special Session in September 1988, which was adopted at the Annual Meeting in September 1986, resulted in agreement to expand coverage from the Newfoundland and Labrador regions (Subareas 3 and 2) northward to include Baffin island and West Greenland regions (Subareas 0 and 1). Thus, the revised theme of the Special Session in September 1988 is "lmpact of Changes in Environmental Conditions in the North Atlantic on Marine Species, with Particular Emphasis on the Northwest Atlantic in the Early $1980^{1} s^{\prime \prime}$. The session will be convened by J. C. Rice (Canada), The following outline was adopted:
a) General theme

The primary intent of the session is to provide a greater understanding of the influence of the extreme oceanographic conditions in the Northwest Atlantic in the early $1980^{1} s$ on the distribution and abundance of fish populations in those waters and their impact on survey and commercial abundance indices. Although the principal areas of interest are the Northwest Atlantic regions, studies in other areas will be considered. Analyses of data from commercial fisheries, research surveys, and special directed studies in this field will be welcomed.
b) Specific topics
i) Historical reviews of oceanographic conditions in selected areas, particularly with
emphasis on periods of anomalous conditions. Rigorous empirical comparisons of oceanographic conditions in the early 1980^{\prime} s with long-term conditions in the Northwest Atlantic are of special interest.
ii) Examination of process-oriented explanations of why oceanographic conditions in the Northwest Atlantic were extreme in the 1980 's.
iii) Comparisons of the distribution and abundance of fistipopulations in the $1980^{\prime} \mathrm{s}$ with long-term patterns of distribution and abundance as reflected in research vessel and commercial fishery data.
iv) Examination of relationships between patterns of distribution and abundance of fish populations and anomalies in oceanographic conditions. Analyses of synchronous variation over large areas, temporal variation in restricted areas, or variations in both space and time will be important.
v) Consideration of mechanisms through which the anomalous environmental conditions affect the fish populations, through changes in availability, catchability, and other factors,
vi) Examination of mathematical-statistical tools for reducing large data sets on oceanographic attributes or fish populations to concise representative data series, and for relating variables from the two types of data sets.
2. Proposed Theme for Special Session in September 1989

STACFIS confirmed its view that a special session on the general topic that was suggested at the June 1987 Meeting would be appropriate and proposed the following title:
"Changes in Biomass, Production and Species Composition of the Fish Populations in the Northwest Atlantic Over the Last 30 Years, and Their Possible Causes."

It was agreed that the scope of the theme will be considered and defined when the convener for the Session is appointed at the June 1988 Meeting.

V. OTHER MATTERS

1. Review of Scientific Papers

Of 27 papers which had been documented for consideration by STACFIS at this meeting, 26 were reviewed and one (SCR Doc. 87/98) was deferred to the June 1988 Meeting,
2. Acknowledgements

There being no further business, the Chairman thanked the participants for their assistance and the NAFO Secretariat for their efficient service during the course of this meeting and the preceding special session.

APPENDIX II. REPORT OF STANDING COMMITTEE ON RESEARCH COORDINATION (STACREC)

Rapporteurs: W. B. Brodie and W. R. Bowering
The Committee met at the Lord Nelson Hotel, Halifax, Nova Scotia, Canada, on 15-16 September 1987 to consider and report on various matters referred to it by the Scientific Counci) (see Part 0 , this volume, for agenda), dealing mainly with survey design procedures, salt fish conversion factors, and survey requirements for Greenland halibut and grenadiers in Subareas 0 and 1. Representatives attended from Canada, Cuba, Denmark (Greenland), EEC, Japan and USSR.

1. Working Group on Survey Design Procedures

STACREC noted that the Working Group had met on 11 September 1987, with W. B. Brodie as Convener and representatives from Canada (D. Power), EEC (J. Bertrand, J. Messtorff) and USSR (V. A. Rikhter), and reviewed the available information on research vessel groundfish surveys conducted in Subareas 2 and 3 by Canada, Federal Republic of Germany, France and USSR. The following general points were noted from the Working Group's summary of survey documentation:
a) Survey coverage was lower, often considerably so, both in terms of number of sets and strata fished, in the earlier years of many survey series compared to later years. Techniques such as multiplicative analyses are encouraged to maximize the amount of survey data which can be incorporated into abundance indices.
b) The timing of surveys within a series often differed by as much as 5 months in some years. Such differences could have significant effects on the abundance indices for some species but these effects are virtually impossible to quantify.
c) Users of research-vessel survey data shouid be aware of changes or peculiarities in series and their potential effects on abundance indices.

Several survey series conducted by France, Canada, Federal Republic of Germany and the USSR were examined. The following specific points were noted by STACREC:
d) Surveys by France in Subdiv. $3 P s$ and Federal Republic of Germany in Div. 2J underwent little change over time. Both used a 12-hour (approximate daylight) fishing plan, which differs from the 24 -hour operations used by Canada and the USSR. The two vessels used in the Federal Republic of Germany surveys are considered comparable in terms of the survey results which they provided. The Federal Republic of Germany surveys have been discontinued because the research vessel Anton Dohrn is no longer available.
e) Some survey series conducted by Canada were affected by a change in vessel/gear from the side trawler A. T. Cameron up to the end of 1982 to the stern trawlers Wilfred Templeman and $A l$ fred Needter from 1983 onward. Conversion factors exist only for catches of American plaice and yellowtail flounder, while cod catches were determined to be equal by both vessel/gear types. The survey series involved are Div. 3LNO (spring), Div. 3L (fall) and Subdiv. 3Ps.
f) Two new strata were added to the Canadian surveys in Div. $3 K$ from 1984 onward, covering the near-shore areas in the 101-200 m depth range.
g) No surveys were done in Div. 3LNO by Canada in spring 1983, and coverage of certain divisions was minimal or non-existant in 1974, 1981 and 1984.
h) Canadian surveys on the Flemish Cap (Div. 3M) during 1978-85 were done by the stern trawler Gadus Atlantica and are much more extensive than the 1977 survey carried out by the A. T. Cameron. These surveys were discontinued after 1985.
i) Three series of USSR surveys, covering the 1961-70, 1971-82 and 1983-85 periods are distinctly different in terms of objectives, design, vessel/gear and operating procedures.
j) The design and timing of the USSR young fish surveys of 1961-70 changed in 1967 and therefore the data for 1961-66 are not considered at this time to be comparable with the data for subsequent years. Abundance indices (number-per-tow only) are available for cod, haddock and redfish aged 1 to 3 years from the $1967-70$ surveys, which were done with similar side trawlers.
k) The 1971-82 USSR surveys, conducted by similar stern trawlers, operated on the same grid of fixed stations used in 1967-70. With comparative fishing indicating that the stern-trawler gear caught 1.4 times more fish than was caught by the side-trawler gear, the results from 1967-70 should be comparable with those for young fish in 1971-82. However, further examination of the distribution of sets in these years is necessary before specific conclusions can be reached concerning the comparability of the young fish estimates in each division sur-
veyed. Data, including catch weights, from fish other than young cod, haddock and redfish were collected in 1971-82 USSR surveys. Thus, abundance estimates in the form of number-pertow and weight-per-tow only are available for several groundfish species from these surveys. However, no information on survey coverage by location was available to determine the comparability of the abundance estimates over the series.

1) Stratified-random surveys in Subarea 3 were begun by the USSR in 1983, using the same call of vessel/gear used in the 1971-82 period. Tows were 1 hour in 1983 and 30 minutes in 1984-85. A smaller vessel, but with the same gear, was used in 1985 and the effect on catches was not considered to be significant, although no comparative fishing data exist. Comparability of these surveys with the fixed-station surveys of 1967-82 was not established.
m) The USSR survey directed at Greenland halibut in Subareas 0 and 2 during 1980-85 were done using a stratification by depth zone (100 m intervals) rather than with a standard stratification scheme. The effects of this design on abundance and variance estimates are not known, although the indices for Greenland halibut from this series are affected significantly by annual variations in survey coverage.

In the light of the preceding points, STACREC makes the following recommendations:
i) Techniques such as multiplicative analyses should be used to establish comparability among all years in abundance indices from a particular survey series.
ii) Since changes in design, timing, coverage, vessel/gear, etc., in survey series can have significant effects on abundance indices, the documented information on survey design procedures should be included for future reference in a summary (SCS) document.
iii) Comparative fishing results which exist for some survey series should be used on the appropriate species where necessary.
iv) Recent results from comparative fishing experiments between Federal Republic of Germany research vessels fishing at random in a small suitable area should be examined by researchers planning comparative fishing tests. These results will be available in a paper from the 1987 ICES Meeting.
v) Because comparability of the three USSR time series has not been satisfactorily established, more information on the distribution of sets as well as investigations into the comparability of fixed-station and stratified-random surveys are required. However, the surveys in 1961-66 are not considered to be comparable with other USSR surveys because of changes in design and timing.
vi) Additional USSR survey data should be made available for consideration. For the 1967-82 period, this information should consist of a listing of the fixed stations by division and depth, indicating which stations were successfully surveyed in each of the years from 1967 to 1982. For the stratified-random surveys in 1983-85, tables of survey coverage by division and stratum, identical to those of other survey series reviewed by the working group, are required. For the Greenland halibut surveys of 1980-85, similar tables of coverage by division and depth zone are necessary. If possible, this information should be sent to the Convener of the Working Group so that analysis can begin sometime before the June 1988 Meeting.
2. Review of Information on Conversion Factors

Results of an experiment carried out by Canada to determine split codfish weight (kg) from a volume of salt codfish in bulk (cubic metres) were presented to STACREC (SCR Doc. 87/71). Variables considered in the analysis were the ratio of salt used to split fish weight, the height to which the bulk cod was stored, and the rate at which the split fish was placed into salt. The experiment was conducted on land but simulated conditions in the fishery as closely as possible.

The experimental results indicated that the equilibrium conversion factor was greater for lower salt-to-fish weight ratios, increasing from about $1,200 \mathrm{~kg} / \mathrm{m}^{3}$ for 70% salt to about $1,500 \mathrm{~kg} / \mathrm{m}^{3}$ for 50% salt. Effects of compression (bulk fish height) on the conversion factor were not included in the model as the factor was only about 5% higher for a 1.5 m -high pile than for a 0.85 m pile. After final salting, the conversion factor reached about 95% of its maximum value within a week. However, the conversion factor increased sharply over the first few days after salting.

To apply this methodology at sea, observers need to know what salt-to-fish ratio was used, and the proportion of fish salted on dally basis. These variables, together with several constants can be used to derive the split-fish equivalent from volumes of salt bulk. The range of experimental values for the conversion factor was 600 to $1,500 \mathrm{~kg} / \mathrm{m}^{3}$, largely depending on the time span that fish were in salt bulk.

The ratio of salt-fish weight to split-fish weight in the Canadian experiment, which was obtained in addition to the conversion factor for salt-bulk volume to split-fish weight, was in good agreement with preliminary results from a Spanish experiment reported to STACREC. The Spanish experiment, which also produced conversion factors for split to round and salt to round, measured only weights, and like the Canadian experiment, indicated that the size of the fish seems to be a negligible factor for the conversion of salt-fish weight to split-fish weight. However, the Spanish data indicated that fish size was important.in split to round conversions.

STACREC noted that the salt-to-fish weight ratio was a crucial factor in determining the conversion factor and that this ratio often varied between fleets and on a seasonal basis. Although no value for this ratio is recorded in vessel logbooks, the ratio is available from the skipper's estimates, and could be obtained empirically with the cooperation of the vessel's crew. The importance of having accurate conversion factors in the determination of nominal catches was noted by STACREC, and there is no scientific objection to using the results of the Canadian experiment for enforcement purposes.
3. Response to Canadian Request for Analysis of Research Activities on Greenland Halibut and Roundnose Grenadier

Canada requested the Scientific Council, when reviewing the status of the Greenland halibut and roundnose grenadier stocks in Subareas 0 and 1 at its meeting in June 1987, to prepare an analysis of research activities that are necessary to allow estimation of (i) total biomass, and (ii) distribution of that biomass between the two subareas. This request was deferred to the September 1987 Meeting when some existing information on the distribution of these species in Subareas 0 and 1 would be available. These results were presented in SCR Doc. 87/86 and 87/94 for Greenland hal ibut and roundnose grenadier respectively.

It was reported in these papers that both species are extensively distributed throughout the Davis Strait region in both subareas at least between $61^{\circ} \mathrm{N}$ and $70^{\circ} \mathrm{N}$ where survey data were available. It was therefore concluded that any survey activity should involve coverage of both subareas at least between $61^{\circ} \mathrm{N}$ and $70^{\circ} \mathrm{N}$. For practical purposes, both species could be surveyed together, provided that a depth range of at least $200-1,500 \mathrm{~m}$ is covered. Based upon the results of a Canadian survey in 1986 (SCR Doc. 87/22), using a recently developed stratification scheme (SCR Doc. $87 / 25$), coverage of about 220 sets might be considered reasonable, giving 1 set per 350 square miles and allowing at least 2 sets per stratum. Considering an average of 7 sets per day, this would require approximately 32 fishing days (up to 45 operating days). A large offshore trawler would be necessary to undertake the work, with the capability to fish effectively to depths of $1,500 \mathrm{~m}$. The latest technology in navigation and monitoring fishing performance would also be essential. Nine scientific staff would be needed to sort the catches, obtain samples and collect data on Greenland halibut and grenadiers as well as other by-catch species. Additional resources would be necessary for analysis of the collected data.

Ideally, at least two surveys should be conducted annually, one during summer when the Greenland halibut are widely distributed and the other in late autumn-early winter when spawning concentrations are believed to be formed in the deep waters of Davis Strait. It is emphasized, however, that such surveys would provide estimates of abundance only for the area surveyed and that obtaining satisfactory estimates during the autumn-winter would be dependent upon ice conditions, which are highly variable at that time of year. STACREC also made the following observations: (i) Important commercial fisheries occur for Greenland halibut in the West Greenland fjords; (ii) while no surveys have been conducted north of $70^{\circ} \mathrm{N}$, recently developed shrimp fisheries in West Greenland as far north as $74^{\circ} \mathrm{N}$ have reported substantial by-catches of young Greenland halibut; and (iii) Greenland halibut also occur south of $61^{\circ} \mathrm{N}$ in Subarea 1 . Whether Greenland halibut in these areas are part of the same biological resources as those between $61^{\circ} \mathrm{N}$ and $70^{\circ} \mathrm{N}$ is unknown. Also estimates of biomass of Greenland halibut in these areas are unavailable. It is therefore advised that investigations into these matters be considered before assuming that the estimates of abundance of Greenland halibut in the $61^{\circ} \mathrm{N}$ to $70^{\circ} \mathrm{N}$ region is truly reflective of most of this resource in the management zone of Subarea 0 and 1. It was further noted that, while the area south of $70^{\circ} \mathrm{N}$ may not be of much concern with regard to roundnose grenadier, so little is known of the distribution of the species that surveying only to a depth of $1,500 \mathrm{~m}$ may be an important limitation.

STACREC considered that, in order to resolve such questions, a major research effort would be required for at least $3-5$ years and that a multinational approach should be pursued. STACREC further noted that a research proposal for shrimp in these same areas was made at the January 1987 Meeting (SCS Doc. 87/01, page 20) and the possibility of coming aspects of these research efforts should be explored.
4. Acknowledgements

There being no further business, the Chairman thanked the rapporteurs and other participants for their assistance and cooperation and the NAFO Secretariat for their usual efficient service during the meeting.

APPENDIX III. REPORT OF STANDING COMMITTEE ON PUBLICATIONS (STACPUB)

Chairman: J. S. Beckett
Rapporteur: R. G. Halliday
The Committee met at the Lord Nelson Hotel, Halifax, Nova Scotia, Canada, on 17 and 18 September 1987. In attendance were J. S. Beckett (Chairman), R. G. Halliday (Canada), S. Kawahara (Japan) and V. A. Rikhter (USSR). The Chairman of the Scientific Council (J. Messtorff) and the Assistant Executive Secretary (V. M. Hodder) also attended. M. G. Larrañeta (EEC) attended the second session on 18 September.

1. Editorial Matters

a) Interim Editorial Arrangements

All Associate Editors have indicated that the present arrangement whereby they take full responsibility for editing Journal papers is working satisfactorily. It was agreed that this can continue at least until June 1988.
b) Invitational Papers

The Chairman indicated that he was still in the process of contacting potential authors of reviews on topics suggested at the June 1987 Meeting. As yet, no commitments have been ob~ tained. New suggestions for reviews have been made but additional proposals would be welcomed.
c) Scope of the Journal

To meet concerns that the present description. of Journal scope does not clearly allow for review papers to be published, STACPUB recommends that the description of Journal scope (as stated on the inside front cover of Vol. (T1) be revised to read (in part) "Both practical and theoretical papers are eligible for consideration, as are review articles of particular relevance of the work of ICNAF and NAFO".
2. Review of Papers for Possible Publication
a) Review of proposals for past meetings

Aditional papers have been received since June 1987 from among those selected for publication in 1985 and 1986, but authors' response for those years remains below earlier levels. A good response has occurred in relation to June 1987 Meeting selections, however, 5 of 11 papers having been received to date.
b) Proposals for publication

The Committee reviewed SCR documents that were submitted since June 1987 and proposed that the Assistant Executive Secretary contact authors of the following documents, expressing the Council's interest in having them submitted in suitable form for publication in the Journal or Studies: SCR Doc. $87 / 71,72,73,74,75,79,80,81,82,86,87,88,89,93,94$ and the author of SCR Doc. $87 / 75$ is encouraged to consider inclusion of the most important elements of Doc. $87 / 76$ and 77) in his version for publication of Doc. 87/75. Consideration of SCR Doc. $87 / 98$ was deferred until June 1988.
3. Microfiche of NAFO Documents

The situation concerning sales of ICNAF microfiche sets has not improved significantly since June 1987 and it was agreed to again defer the issue of microfiching NAFO documents.
4. Other Matters
a) Status of scientific publications

Volume $7(2)$ of the Journal of Northwest Atlantic Fishery Science still requires acceptance of several more papers before publication. A review of outstanding manuscripts indicates that 2-3 papers can be expected within about one month. It is proposed that the volume be published before the end of the calendar year provided that at least 2 more papers are forthcoming.

Volume 12 of NAFO Scientific Council Studies is scheduled for publication in March-April 1988 and 5 papers are already available for inclusion.

Volume 35 (for 1985) of the Statistical Bulletin still awaits submission of the USA STATLANT 21 B report, now 14 months late.

5. Acknowl edgements

The Committee was grateful that Mr. Hodder could be available to assist in its work.

After considering the Report of the $A d$ hoc Working Group which was established to prepare a proposal on the need for improving scientific knowledge of the fish stocks in the Regulatory Area, the Fisheries Commission adopted the following (see FC Doc. 87/13):

1. The Fisheries Commission has decided on the establishment of an Annual Scientific Program in order to improve scientific knowledge on the status of the fish stocks in the Regulatory Area. This Program, which shall be adopted by the Fisheries Commission on the basis of the recommendations from the Scientific Council, shall determine those stocks which require priority attention.
2. With a view to the establishment of the first Annual Scientific Program at the 1988 Annual Meeting, the Fisheries Commission hereby requests the Scientific Council to prepare a report for that meeting. This report should analyse the level of scientific information available on the stocks in the Regulatory Area, identifying the shortcomings in available data. This analysis should also include comments on how such information was collected for each fleet component and whether it meets the level required for the purposes of the assessment of the stocks. The report should furthermore review the means available for collecting the necessary data, including the implications involved in each approach.
3. A working group shall draw up, for the consideration of the Fisheries Commission at the 1988 Annual Meeting, the requirements for the implementation of the relevant scientific research and sampling activities.
4. The results of the Annual Scientific Program shall be evaluated by the Scientific Council which shall submit a report of its findings to the Fisheries Commission. This report shall incorporate the Scientific Council's recommendations for the subsequent Annual Scientific Programs.

PART D

MISCELLANEOUS

CONTENTS

Page

1. Agenda for Scientific Council Meetings, 1987 119
II. List of Research and Summary Documents, 1987 127
III. List of Participants in Scientific Council Meetings, 1987 ... 133
IV. List of Recommendations and Proposals, 1987 135
A. JANUARY 1987 MEETING
2. Opening (Chairman: J. Messtorff)
3. Appointment of rapporteur
4. Adoption of agenda
5. Plan of work
II. Fishery Science (STACFIS Chairman: W. R. Bowering)
6. Assessment of Shrimp Stocks ${ }^{1}$
a) Shrimp in Subareas 0 and 1
i) Review of fishery trends
ii) Distribution and biology
iii) Catch and effort
iv) By-catches in shrimp fishery
v) Biomass estimates
vi) Total allowable catch
vii) Review of previous recommendations and future research needs
b) Shrimp in East Greenland
[ltems (i) to (vii) as in $1(a)$ above]
7. Other Matters
a) Planning for the second Shrimp Ageing Workshop (SCS Doc. 86/24, page 64)
b) Quantitative description of research needed to allow estimation and distribution of biomass in Subareas 0 and 1 and target levels of removals (Annex 1)

Ill. Other Scientific Matters
IV. Adjournment
B. JUNE 1987 MEETING

1. Opening (Chairman: J. Messtorff)
2. Appointment of rapporteur
3. Adoption of agenda
4. Plan of work

1]. Fishery Science (STACFIS Chairman: W. R. Bowering)

1. General review of catches and fishing activity in 1986
2. Review of relevant recommendations from 1986 meetings (see Appendix 1II)
3. Stock assessments
a) Stocks within or partly within the Regulatory Area, as requested by the Fisheries Commission with the concurrence of the Coastal State (see Annex 2):

- Cod (Div. 3M; Div. 3NO)
- Redfish (Div. 3LN: Div. 3M)
- American plaice (Div. 3LNO; Div. 3M)
- Witch flounder (Div. 3NO)
- Yellowtail flounder (Div. 3LNO)
- Capelin (Div. 3NO)
- Squid (Subareas 3 and 4)

[^6]- [Note also Item 3 of Annex 2 concerning cod in Div. 3L)
b) Stocks within the 200 -mile fishery zone in Subareas 2, 3 and 4 , as requested by Canada (Annex 3):
- Greenland halibut (Subarea 2 and Div. 3KL)
- Roundnose grenadier (Subareas 2 and 3)
- Silver hake (Div. 4VWX)
- Capelin (Div. 3L)
c) Stocks within the 200 -mile fishery zone in Subarea 1 and at East Greenland, as requested by Denmark on behalf of Greenland (Annex 4):
- Atlantic cod (Subarea 1)
- Redfish (Subarea 1) (if possible, by species)
- Wolffish (Subarea 1) (if possible, for spotted and striped)
- Northern shrimp (Subarea 1, north of $71^{\circ} \mathrm{N}$)
- Northern shrimp (East Greenland)
d) Stocks overlapping the fishery zones in Subareas 0 and 1 , as requested by Canada and by Denmark on behalf of Greenland (Annexes 3 and 4):
- Greenland halibut (Subareas 0 and 1)
- Roundnose grenadier (Subareas 0 and 1)
- Northern shrimp (Subareas 0 and south of $71^{\circ} \mathrm{N}$ in Subarea 1)

4. Environmental Research (Subcommittee Chairman: M. Stein)
a) Marine Environmental Data Service report for 1986
b) Review of environmental studies in 1986
c) Overview of environmental conditions in 1986
d) Update of remote-sensing activities
e) Marine Environmental Ecosystems Subcommittee of CAFSAC (report)
f) Environmentally-related aspects of Special Session in September 1987
g) Revision of List of NAFO Standard Oceanographic Sections and Stations
h) Other matters
5. Ageing techniques and validation studies (if any)
6. Gear and selectivity studies
a) Trawl escapement and selectivity problems (NAFO Sci. Coun. Rep., 1986, p. 110)
b) Other relevant studies
7. Review of research documents not considered in items (1) to (6) above
8. Other matters
a) Further consideration of need for mid-term shrimp meetings in January (see Part A, this volume).
b) Proposal for further work on ageing shrimp (see Part A, this volume).
c) Progress report on contributions for the Special Session in September 1987 (W. R. Bowering, Convener)
d) Preparation for Special Session in September 1988 on "The Impact of Changes in Environmental Conditions in the North Atlantic on Distribution, Availability and Abundance of Marine Species, with Particular Emphasis on the Labrador and Grand Bank Regions During the Early 1980's' (outline and conveners)
e) Proposed theme for Special Session in September $: 989$
f) Review of current arrangements for conducting stock assessments
g) Other business
lll. Research Coordination (STACREC Chairman: R. Dominguez)
9. Fishery statistics
a) CWP activities relevant to NAFO
i) Report of 13th Session in February 1987
ii) Consideration of recommendations and proposals
b) Progress report on Secretariat activities in 1986-87
i) Acquisition of STATLANT $21 A$ and $21 B$ reports for recent years
ii) Publication of statistical information
iii) Updating of fishery statistics database
c) Review of reporting requirements
i) Forms and deadines for submission of STATLANT 21A and 21B statistics
ii) Implementation of recommendations on boundary changes and effort prorating
10. Biological sampling
a) Progress report on activities in 1986/87
b) Forms and deadiines for submission of data
11. Biological surveys
a) Review of survey activity in 1986
b) Survey plans for 1987 and early 1988
c) Review of stratification schemes
d) Coordination of surveys in 1987 and 1988 (if requested)
e) Survey design procedures (αd hoc Working Group Convener - W. Brodie)
12. Other Matters
a) Review of scientific observer program
b) List of fishing vessels for 1986 (progress work)
c) Tagging activities reported for 1986
d) Review of relevant SCR and SCS documents (not considered in Items 1 to 3 above)
e) Conversion factors
f) Program of research
IV. Publications (STACPUB Chairman: J. S. Beckett)
13. Review of STACPUB Membership
14. Review of scientific publications since June 1986
15. Editorial matters regarding scientific publications
a) Editorial board activities
b) Editorial board appointments
c) Position of editor and review of interim editorial arrangements
16. Promotion and distribution of scientific publications
a) Brochure for the Journal
b) Advertising for the Journal
c) Invitational papers
d) Other promotional initiatives
e) Production costs and revenues for Scientific Council publications
17. Papers for possible publication
a) Review of proposals for 1986 meetings
b) Review of contributions to 1987 meetings
18. Other matters
a) Question of microfiching NAFO research documents
v. Rules of Procedure
19. Report by Executive Secretary on implementation of amended rules
20. Formulation of Rules common to the three main bodies of NAFO (GC DOC. 86/4, items 9, 23, 27, App. X)
VI. Collaboration with other Organizations
21. Combined assessment of cod stocks at West and East Greenland
22. Reconsideration of establishment of joint ICES/NAFO working group on seals
23. Thirteenth Session of CWP, Rome, Italy, February 1987
VII. Adoption of Reports
24. Provisional report of January 1987 Meeting (SCS Doc. 87/01)
25. Committee reports from this meeting (STACFIS, STACREC, STACPUB)

VIll. Arrangements for Special Sessions
[See under Fishery Science, Section 8(c), 8(d) and 8(e)]
IX. Future Scientific Council meetings, 1987 and 1988
X. Nomination and Election of Officers for 1987-89

1. Scientific Council
2. Standing Committee
XI. Other Matters
XII. Adjournment
C. ANNUAL MEETING, SEPTEMBER 1987
3. Opening (Chairman: J. Messtorff)
4. Appointment of rapporteur
5. Adoption of agenda
6. Plan of work
II. Fishery Science (STACFIS Chairman: W. R. Bowering)
7. Report of Special Session on "Biology of Demersal Resources of the North Atlantic Continental Slopes, with Emphasis on Greenland Halibut and Grenadiers' (held on 9-11 September 1987 with W. R. Bowering as Convener), which involved the following topics:
a) General Theme

The primary intent of the Special Session is to elicit research papers on Greenland halibut and grenadiers, which have established commercial potential but about which relatively little is known. Although the principal area of interest is the North Atlantic Ocean, papers on Greenland halibut, in the North Pacific ocean are welcomed because the species is the same in both regions. The scope of the Special Session also includes unexploited species which occupy the same or greater depths on the continental slopes of the North Atlantic. They may include benthic invertebrates, but the well-studies species, such as Atlantic cod and the redfishes, are excluded even though they are distributed along the upper slope areas. Papers which deal with oceanographic and topographic features of the slope areas, especially in relation to the biology of deepwater species, are also invited.
b) Specific Topics

1. Oceanographic and topographic features of North Atlantic continental slopes.
2. Spatial and temporal distribution and abundance of deepwater species.
3. Biological characteristics (age and growth, sexual maturity, food and feeding, other relevant features).
4. Species interactions (predator-prey relationships among deepwater species).
5. Stock Assessments
a) Yield-per-recruit of cod in Div. 3NO
b) Shrimp stocks in Subareas $0+1$ and off East Greenland (advice for 1988)
6. Gear and Selectivity
a) Escapement and selectivity problems associated with the use of strenghtening ropes, splitting straps and codend floats.
7. Future Special Sessions
a) Outline for Special Session in September 1988 (to be prepared by the Convener, J. C. Rice)
b) Further consideration of proposed theme for Special Session in September 1989
8. Other Matters
9. Research Coordination (STACREC Chairman: R. Dominguez)
10. Report of Working Group on Survey Design Procedures
11. Review of Information on Conversion Factors
12. Survey Requirements for Greenland Halibut and Roundnose Grenadier in Subareas $0+1$ (see Annex 3)
13. Other Matters
IV. Publications (STACPUB Chairman: J. S. Beckett)
14. Editorial matters (including invitational papers)
15. Review of Papers for Possible Publication
a) Review of proposals from past meetings
b) Contribution to present meeting
16. Microfiche of NAFO Documents
17. Other Matters
V. Adoption of Reports
18. Provisional Report of Scientific Council, June 1987
19. Committee Reports of Present Meeting
VI. Review of Future Meeting Arrangements
20. Mid-term Meeting on Shrimp (if needed)
21. June 1988 Meeting (confirmed dates are 1-16 June 1988)
22. Annual Meeting (6-10 September 1988)
23. Special Session on Changes in Environmental Conditions (12-14 September 1988)
24. Tentative dates for June 1989 Meeting (7-20 June 1989)
VII. Other Business
25. Review of STACPUB Membership
26. Role of Assistant Executive Secretary in the Work of the Scientific Council
27. Identification of Deficiencies in Fisheries Data for the Regulatory Area and Suggestions on the Means for Collecting the Necessary Additional Data.
VIII. Adjournment

ANNEX 1. CANADIAN REQUEST FOR ADVICE ON SHRIMP STOCK IN SUBAREAS 0 AND 1

1. "Canada requests the Scientific Council, when reviewing the status of the shrimp stock overlapping Subareas 0 and 1 , at its meeting in January 1987, to prepare an analysis of research activities necessary to allow estimation of (a) total biomass, (b) distribution of that biomass between the two subareas, and (c) advice on target levels of removals. This analysis should include quantitative description of the activities deemed necessary (e.g. ship time, number of stations, etc.) and commentary on the time periods over which such activities should be carried out." (It is our outstanding that this request will also be submitted by Denmark on behalf of Greenland.)
2. With respect to the assessment of the shrimp stocks in subareas 0 and 1 , Canada requests the Scientific Council to use the same terms of reference as requested by Canada in the past several years.

L. S. Parsons
Assistant Deputy Minister (Science) Department of Fisheries and Oceans Ottawa, Canada

ANNEX 2. FISHERIES COMMISSION REQUEST FOR SCIENTIFIC ADVICE ON MANAGEMENT
IN 1988 OF CERTAIN STOCKS IN SUBAREAS 3 AND 4

1. The Fisheries Commission with the concurrence of the Coastal State requests that the Scientific Council, at a meeting in advance of the 1987 Annual Meeting, provide advice on the scientific basis for the management of the following fish and invertebrate stocks or groups of stocks in 1988:

$$
\begin{aligned}
& \text { Cod (Div. 3NO; Div. 3M) } \\
& \text { Redfish (Div. 3LN; Div. 3M) } \\
& \text { American plaice (Div. 3LNO; Div. 3M) } \\
& \text { Witch flounder (Div. 3NO) } \\
& \text { Yellowtail flounder (Div. 3LNO) } \\
& \text { Capelin (Div. 3NO) } \\
& \text { Squid (Subareas 3 and 4) }
\end{aligned}
$$

2. The Commission and the Coastal State request the Scientific Council to consider the following options in assessing and projecting future stock levels for those stocks listed above:
a) For those stocks subject to analytical dynamic-pool type assessments, the status of the stock should be reviewed and management options evaluated in terms of their implications for fishable stock size in both the short and long term. In those cases where present spawning stock size is a matter of scientific concern in relation to the continuing productive potential of the stock, management options should be evaluated in relation to spawning stock size. As general reference points the implications of fishing at $F_{0,1}, F_{1986}$ and $F_{\text {max }}$ in 1988 and subsequent years should be evaluated. The present stock size and spawning stock size should be described in relation to those observed historically and those expected in the longer term under this range of options. Opinions of the scientific Council should be expressed in regard to stock size, spawning stock sizes, recruitment prospects, catch rates, and TACs implied by those management strategies for 1988 and the long term. Values of F corresponding to the reference points should be given and their accuracy assessed.
b) For those stocks subject to general production-type assessments, the time series of data should be updated, the status of the stock should be reviewed and management options evaluated in the way described above to the extent possible. In this case, the general reference points should be the level of fishing effort or fishing mortality (F) which is calculated to be required to take the MSY catch in the long term and two-thirds of that effort level.
c) For those resources on which only general biological and/or catch data are available, no standard criteria on which to base advice can be established. The evidence of stock status should, however, be weighed against a strategy of optimum yield management and maintenance of stock biomass at levels of about two-thirds of the virgin stock.
d) Spawning stock biomass levels that might be considered necessary for maintenance of sustained recruitment should be recomended for each stock.
e) Presentation of the result should include the following:
i) for stock for which analytical dynamic-pool type assessments are possible:

- a graph of yield and fishing mortality for at least the past 10 years.
- a graph of spawning stock biomass and recruitment levels for at least the past 10 years.
- a graph of catch options for the year 1988 over a range of fishing mortality rates (F) at least from $F_{0,1}$ to $F_{\text {max }}$.
- a graph showing spawning stock biomasses at 1.1 .1989 corresponding to each catch option.
- graphs showing the yield-per-recruit and spawning stock per-recruit values for a range of fishing mortality.
ii) for stocks for which advice is based on general production models, the relevant graph of production on fishing mortality rate or fishing effort.
${ }_{1 n}$ all cases the three reference points, actual $F, F_{m a x}$ and $F_{0.1}$ should be shown. '

3. The Fisheries Commission with the concurrence of the coastal state requests that the Scientific Council continue to provide information, if available, on the stock separation in Div. $2 \mathrm{~J}+3 \mathrm{KL}$ and the proportion of the biomass of the cod stock in Div. 3L in the Regulatory Area.
anNex 3. Canadian request for scientific advice on management in 1988
OF CERTAIN STOCKS IN SUBAREAS 0 TO 4
4. Canada requests that the Scientific Council, at its meeting in advance of the 1987 Annual Meeting, provide advice on the scientific basis for the management of the following fish and invertebrate stocks in 1988:

> Greenland halibut (Subarea 2 and Div. 3 K and 3 L) Roundnose grenadier (Subareas 2 and 3) Silver hake (Div. $4 V, 4 W$ and 4 x)

It is further suggested that, subject to the concurrence of Denmark (Greenland), the Scientific Council, prior to the 1987 Annual Meeting of NAFO, provide advice on the scientific basis for management in 1988 of the following stocks:

$$
\begin{aligned}
& \text { Shrimp (Subareas } 0 \text { and } 1 \text {) } \\
& \text { Greenland halibut (Subareas } 0 \text { and 1) } \\
& \text { Roundnose grenadier (Subareas } 0 \text { and } 1 \text {) } \\
& \text { Capelin (Div. } 3 L \text {) }
\end{aligned}
$$

With respect to Greenland halibut and roundnose grenadier in Subareas 0 and 1, Canada requests that the Scientific Council also prepare an analysis of research activities necessary to allow estimation of the total biomass and the distribution of that biomass between the two subareas. This analysis should include quantitative description of the activities deemed necessary (e.g. ship time, number of stations, etc.) and commentary on the periods over which such activities shall be carried out.
2. Canada requests the Scientific Council to consider the following options in assessing and projecting future stock levels for those stocks listed above:
a) For those stocks subject to analytical dynamic-pool type assessments, the status of the stock should be reviewed and management options evaluated in terms of their implications for fishable stock size in both the short and long term. In those cases where present spawning stock size is a matter of scientific concern in relation to the continuing productive potential of the stock, management options should be evaluated in relation to spawning stock size. As a general reference point, the implications of continuing to fish at $F_{0.1}$ in 1988 and subsequent years should be evaluated. The present stock size should be described in relation to those observed historically and those to be expected at the $F_{0.1}$ level in both the short and long term. Opinions of the Scientific Council should be expressed in regard to stock sizes, catch rates, and TACs implied by these management strategies for 1988 and the long term.
b) For those stocks subject to general production-type assessments, the status of the stock should be reviewed and management options evaluated in the way described above to the extent possible. In this case, the general reference point should be the level of fishing effort (F) which is two-thirds that calculated to be required to take the MSY catch in the long term.
c) For those resources on which only general biological and/or catch data are available, no standard criteria on which to base advice can be established. The evidence on stock status should, however, be weighed against a strategy of optimum yield management and maintenance of stock biomass at levels of about two-thirds that of the virgin stocks.

L. S. Parsons

Assistant Deputy Minister (Science) Department of Fisheries and Oceans Ottawa, Canada

ANNEX 4. DENMARK (GREENLAND) REQUEST FOR SCIENTIFIC ADVICE ON

 MANAGEMENT OF CERTAIN STOCKS IN 19881. Denmark, on behalf of Greenland, requests the Scientific Council of NAFO at its June 1987 Meeting to provide advice on the status of the stocks and on the scientific basis for management in 1988 and as many years onward as the data allow for the following stocks:
a) Stocks occurring in Subarea 1
i) Atlantic cod
ii) Redfish (by species, if possible)
iii) Wolffish (by species (spotted and striped), if possible)
iv) Northern shrimp (Pandalus borealis), north of $71^{\circ} \mathrm{N}$
b) Stocks overlapping Subareas 0 and 1 (subject to the concurrence of Canada)
i) Greenland halibut
ii) Roundnose grenadier
iii) Northern shrimp (Pandalus borealis), north of $71^{\circ} \mathrm{N}$
c) As in the past, advice on status of stock and management options for shrimp at East Greenland should also be provided in cooperation with ICES.
d) Any other stock of invertebrates and finfish in Subarea 1 for which data allow a status report.
2. More specific guidelines as basis for the analyses and advice will follow before the meeting starts.

Einar Lemche
Greenland Home Rule Authorities
Nuuk, Greenland

RESEARCH DOCUMENTS (SCR)

SCR No. Ser. No.

87/01 N1269

87/02

87/03

87/04 N1272

N1275

N1276

N1277

N1279

N1280

N 1281

N1291

N1294

N1295

N1296

N1297

N1298

N1299
87/19

87/20 N1300

PARSONS, D. G., P. J. VEITCH, and V. L. MERCER. Research and commercial fishing for shrimp (Pandalus borealis) in Division OA, 1986. (18 pages)

SMEDSTAD, 0. M. Preliminary report of a cruise with M / T "Masi" to East Greenland waters in September 1986. (11 pages)

SMEDSTAD, O. M., and S. TORHEIM. Norwegian investigations on shrimp (PandaZus borealis) in East Greenland waters in 1986. (9 pages)

SKÚLADÓTTIR; U:; and 1. HALLGRÍMSSON. The Icelandic shrimp (Pandalus borealis) fishery in Denmark Strait in 1986. (10 pages)

CARLSSON, D. M., and P. KANNEWORFF. Problems with bottom photography as a method for estimating biomass of shrimp (Pandalus borealis) off West Greenland. (11 pages)

STEIN, M. On the variability of water masses, currents and ice in Denmark Strait. (21 pages)

LUND, H. Trial fishery for shrimp (Pandalus borealis Kr .) in West Greenland waters north of $70^{\circ} 52.5^{\prime} \mathrm{N}$ in 1986. (9 pages)

CARLSSON, D. M., and P. KANNEWORFF. The shrimp fishery in NAFO Subarea 1 in 1985 and 1986. (32 pages)

CARLSSON, D. M., and P. KANNEWORFF. The commercial shrimp fishery of Denmark Strait in 1985 and 1986 . (26 pages)

ERNST, P., and H. BORRMANN. Natural mortality of Greenland halibut (Reinhardtius hippoglossoides) in NAFO Subareas 0 and 2 and Divisions 3KL. (4 pages)

BAEZ, M., and M. G. LARRAÑETA. Fishery ecology of silver hake in Divisions 4VWX. (19 pages)

AUSTER, P. J. Understanding marine fish communities: historical perspectives, recent research, and future directions. (26 pages)

PRICE, C. A., and K. W. BARTON. Anticyclonic warm core Gulf Stream rings off the northeastern United States during 1986. (19 pages)

INGHAM, M. C., and G. WOOD. Variations in the spring windfield in the northwestern Atlantic, 1946-1985: a progress report. (12 pages)

BENWAY, R. L. Water column thermal structure across the shelf and slope southeast of Sandy Hook, New Jersey in 1986. (6 pages)

ARMSTRONG, R. S., and G. A. STROUT. Variation in the shelf water front position in 1986 from Georges Bank to Cape Hatteras. (8 pages)

BAKANEV, V. S. Assessment of capelin stocks from results of USSR investigations in Div. $2 \mathrm{~J}+3 \mathrm{~K}$ and 3LNO in 1986 . (11 pages)

AKHTARINA, T. A. Results of the ichthyoplankton survey on Flemish Cap in AprilMay, 1986. (11 pages)

VASKOV, A. A., G. B. RUDNEVA, and A. G. GALUZO. Estimation of stock size and total allowable catch of beaked redfish in Div. 3 LN and 3 M for 1988. (10 pages)

87/21	N1301	RIKHTER, V. A., and V. F. TUROK. Distribution of silver hake and other fishes on the Scotian Shelf slopes in 1986, from USSR observer data. (14 pages)
87/22	N1305	BOWERING, W. R. Distribution and abundance of Greenland halibut in Davis Strait (NAFO Subareas 0 and 1) from a Canadian research vessel survey in 1986. (10 pages)
87/23	N1306	$\frac{\text { BOWERING, W. R. }}{2 H .} \frac{(6 \text { pages })}{}$ A newly developed stratification scheme for NAFO Divisions $2 G$ and
87/24	N1307	BOWERING, W. R. The status of the witch flounder resource on the southern Grand Bank (NAFO Div. 3 N and 30). (10 pages)
87/25	N1308	BOWERING, W. R. A newly developed stratification scheme for selected areas in NAFO Subareas 0 and i. (5 pages)
87/26	N1310	BATTAGLIA, A., and J. C. POULARD. Year to year variations in water temperature in NAFO Subdivision 3Ps. (16 pages)
87/27	$N 1311$	STEIN, M. Warming off West Greenland continues. (4 pages)
87/28	N1312	HOVGÅRD, H. Effects of gill net selection on survey results in the Greenland young cod survey. (11 pages)
87/29	$N 1313$	BUCH, E. Preliminary considerations on the heat transport in west Greenland waters. (19 pages)
87/30	N1314	NYGAARD, K. H., and H. HOVGARD. On inshore distribution and abundance of the West Greenland cod stock, autumn 1986. (14 pages)
87/31	N1315	HOVGARD, H., and J. MESSTORFF. Is the West Greenland cod mainly recruited from Tcelandic waters? An analysis based on the use of juvenile haddock as an indicator of larval drift. (18 pages)
87/32	N1316	HOVGARD, H. Young cod distribution and abundance in West Greenland inshore areas, 1986. (11 pages)
87/33	N1317	BOJE, J., and F. RIGET. Catch and size distribution of Greenland halibut (Reinharditius hippoglossoides Walb.) at Jakobshavn West Greenland. (11 pages)
87/34	N1318	RIGET, F., and J. BOJE. Migration and exploitation of Greenland halibut, Reinhardtius hippoglossoides (Walb.), in the Nuuk area, West Greenland based on tagging experiments in 1969-70. (6 pages)
87/35	N1319	RiGET, F., and J. BOJE. Distribution and abundance of young Greenland halibut (Reinhardtius hippoglossoides Walb.) in West Greenland waters. (12 pages)
87/36	N1320	RIGET, F. Results of age determination of Atlantic wolffish (Anarhichas lupus) based on otoliths and on vertebrae. (5 pages)
87/37	N1322	POWER, D., and D. B. ATKINSON. Redfish in NAFO Div. 3 M. (11 pages)
87/38	N1323	ATKINSON, D. B. The distribution and abundance of redfish (Sebastes marinus and S. mentelita) in Davis Strait (NAFO Subarea $0+1$). (11 pages)
87/39	N1324	ATKINSON, D. B., and D. POWER. An evaluation of the status of roundnose grenadier in SA $0+1$ and $2+3$. (11 pages)
87/40	N1330	$\frac{\text { BRODIE, W. B. B }}{\text { pages) }}$ American plaice in Divisions 3 LNO - an assessment update. (38
87/41	N1326	ZUBCHENKO, A. V. Vertical zones and formation of the parasitic fauna in deep water fishes from the offshore areas of the North Atlantic. (22 pages)
87/42	N1327	NOSKOV, A. S. Assessment of the Scotian silver hake (Meriuccius bilinearis) stocks and allowable catch in 1988. (8 pages)
87/43	N1329	BRODIE, W. B. Comparison of groundfish catches from research vessel surveys in the area around the $200-\mathrm{mile}$ limit on the southern Grand Bank. (18 pages)

87/44	N1331	BRODIE, W. B., and S. J. WALSH. An assessment of the yellowtail flounder stock in Div. 3LNO. (24 pages)
87/45	N1332	BOWERING, W. R., and W. B. BRODIE. The Greenland halibut resource in Labrador and eastern Newfoundland area (NAFO Subarea 2 and Divisions 3 K and 3 L). (18 pages)
87/46	N1325	WALSH, S. J. Some observations on the movement of tagged yellowtail flounder (Limanda ferpuginea) on the Grand Bank, NAFO Division 3LNO. (5 pages)
87/47	N1334	WALSH, S. J., and W. B. BRODIE. Aspects of American plaice distribution in NAFO Divisions 3L, 3N and 30. (12 pages)
87/48	$N 1335$	WALSH, S. J. Diel variability in catches of yellowtail flounder on the Grand Bank, Divisions 3 LNO. (18 pages)
87/49	N1338	NAKASHIMA, B. S. Capelin school surface area index incorporating the 1986 aerial survey in NAFO Div. 3L. (6 pages)
87/50	N1339	NAKASHIMA, B. S., and R. W. HARNUM. The 1986 inshore capelin fishery in NAFO Div. 3L. (11 pages)
87/51	N1340	HUNT, J. J. An analysis of inconsistencies in estimates of silver hake catch-atage. (13 pages + addendum)
87/52	N1341	HUNT, J. J. . Results of the 1986 and 1987 Canada-USSR silver hake otolith exchange.
87/53	N1342	BISHOP, C. A., and J. W. BAIRD. Assessment of the cod stock in NAFO Divisions 3 NO. (20 pages)
87/54	N1343	BAIRD, J. W. An update of biomass estimates for cod in NAFO Div. 2J+3KL beyond the
87/55	N1344	SCHUMACHER, A. Status of Subarea 1 cod and the fisheries. (24 pages)
87/56	N1345	$\frac{\text { FANNING, L. P. }, ~ D . ~ E . ~ W A L D R O N, ~ a n d ~ C . ~ B O U R B O N N A I S . ~}{\text { lation size in } 1986 . ~(26 \text { pages })}$ Scotian Shelf silver hake popu-
87/57 (Rev.)	N1346	$\frac{\text { LEHMANN, K. Commercial redfish fishery at West Greenland, Subarea 1, 1977-86. (7 }}{\text { pages) }}$
87/58	N1347	POWER, D., and D. B. ATKINSON. Redfish in NAFO Divisions 3LN. (18 pages)
87/59 (Rev.)	N1348	LEMMANN, K. Catches of redfish in shrimp research trawling in Div. IA and 1B, 1976 to 1986. (8 pages)
87/60	N1349	CARSCADDEN, J. E., B. S. NAKASHIMA, añ D. S. MILLER. Relative year-class strengths of capelin (Mallotus villosus) in NAFO Div. 3L. (12 pages)
87/61	N1350	RIGET, F., and J. MESSTORFF. Distribution, abundance and migration of Atlantic wolffish (Anarhichas lupus) and spotted wolffish (Anarhichas minor) in West Greenland. (19 pages)
87/62	N1351	DRINKWATER, K. F., and R. W. TRITES.. Overview of environmental conditions in the Northwest Atlantic in 1986. (23 pages)
87/63	N1352	$\frac{\text { KEELEY, J. R. Marine Environmental Data Service (MEDS) Report for 1986/87. (24 }}{\text { pages) }}$
87/64	N1353	AKENHEAD, S. A., and S. BATSTONE. Aircraft expendable bathythermograph data collected along 47 N in May, 1987. (7 pages)
87/65	N1354	$\frac{\text { KEELEY, J. R. Temperature }}{1986 .(82 \text { pages })}$ and salinity anomalies of the Northwest Atlantic in
87/66	N1355	AKENHEAD, S. A. Temperature and salinity off Newfoundland: Station 27 annual cycle and residual. (20 pages)

87/67	N1356	RICE, J. C. Report of the 1986 Meeting of Marine Environment and Ecosystems Subcomittee of CAFSAC. (4 pages)
87/68	N1357	PETRIE, B., S. AKENHEAD, J. LAZIER, and J. LODER. The cold intermediate layer of the Labrador and Northeast Newfoundland Shelves, 1978-1986. (27 pages)
87/69	N1358	MILLER, D. S., and J. E. CARSCADDEN. Capelin (Mallotus villosus) biomass estimates from hydroacoustic surveys in NAFO Div. 3NO (1986) and Div. 3L (1987). (8 pages)
87/70	N1359	HORSTED, SV. Aa., and A. SCHUMACHER. Revisions of catch statistics, catch in numbers by age, mean weight at age and estimates of F for cod at West Greenland, 1986. (4 pages)
87/71	N1371	CANADA. Experiment to determine split fish equivalent factor for salted codfish in bulk. (63 pages)
87/72	N1372*	SMITH, P. C., and H.SANDSTRÖM. Shelf edge processes. (23 pages)
87/73	N1373*	LAZIER, J. R. N. Near bottom temperatures over the Labrador Shelf, the seasonal cycle. (13 pages)
87/74	N1374*	GODQ, O. R., and T. HAUG. A review of the natural history, fisheries and management of Greenland halibut (Reinhardtius hippoglossoides) in the eastern Norwegian and Barents Sea. (28 pages)
87/75	N1375*	ERNST, P., and H. BORRMANN. Investigation on growth of the Greenland halibut stock (Reinhardtius hippoglossoides Walb.) off Canada and West Greenland. (15 pages)
87/76	N1376*	ERNST, P. On the distribution and stock delimitation of Greenland halibut (Reinhardtius hippoglossoides Walb.) in sea areas off East Canada and West Greenland. (37 pages)
87/77	N1377\%	```ERNST, P. Distribution of Greenland halibut (Reinhardtius hippoglossoides Walb.) of the Canadian-West Greenland stock in dependence on the temperature level. (13 pages)```
87/78	N1378**	DANKE, L. Some particularities of roundnose grenadier (Coryphaenoides mpestris Gunn.) in the north mid-Atlantic ridge region. (10 pages)
87/79	N1381*	ALTON, M. S., R. G. BAKKALA, G. E. WALTERS, and P. T. MUNRO. Greenland halibut (Reinhartius hippoglossoides) of the eastern Bering Sea and the Aleutian \|slands region: a review. (43 pages)
87/80	N1382*	CLARKE, R. A., and C. K. ROSS. Arctic outflow and the oceanographic conditions of the Northwest Atlantic. (12 pages)
87/81	N1384*	$\frac{\text { RIGET, F., and J. BOJE. Biology and fishery of Greenland halibut at West Green- }}{\text { land. }}$
87/82	N1385*	GODd, O. R., and T. HAUG. Tagging and recaptures of Atlantic (Hippoglossus hippoglossus L.) on the continental shelves off eastern Canada and of western and eastern Greenland. (23 pages)
87/83	N1386**	GOD \varnothing, 0 . R., and T. HAUG. Preliminary report on recruitment variation in Greenland halibut (Reinhardtius hipplglossoides Walb.) in the Svalbard area. (14 pages)
87/84	N1387*	JAKUPSSTOVU, S. H. I., and T. HAUG. Spawning of Atlantic halibut (HippogZossus hippoglossus L.) in deep waters of the contentinal slope southwest of the faroe Islands. (17 pages)
87/85	N1388*	BERGSTAD, O. A., and B. ISAKSEN. Deepwater resources of the Northeast Atlantic: distribution, abundance and exploitation. (40 pages)
87/86	N1389:*	BOWERING, W. R., and A. K. CHUMAKOV. The distribution and relative abundance of Greenland halibut (Reinhardtius hippogZossides) in the Canadian Northwest Atlantic from Davis Strait to northern Grand Bank. (32 pages)
87/87	N1391*	MAGNÚSSON, J. V. Grenadier fish in Icelandic waters. (19 pages)

87/88	N1392*	SAVVATIMSKY, P. I. Investigations on the common grenadier Nezumia bairdi (Goode et Bean) in the Northwest Atlantic in 1969-1983. (17 pages)
87/89	N1393*	NIZOVTSEV, G. P. Growth pattern of Greenland halibut (Reinhardtius hippoglossoides W.) From the Northeast Atlantic. (20 pages)
87/90	N1394*	ARTEMJEVA, K. F., A. K. CHUMAKOV, and G. B. RUDNEVA. Some indicators of the Greenland halibut local groups in North Atlantic. (29 pages)
87/91	N1395*	SHIBANOV, V. N., and P. 1. SAVVATIMSKY. Methods of conversion of roundnose grenadier (Coryphaenoides mpestris Gunnerus, Macrouridae) ante-anal distance into zoological length. (12 pages)
87/92	N1396*	SAVVATIMSKY, P. I., and V. N. SHIBANOV. On population structure of roundnose grenadier (Coryphaenoides mpestris Gunnerus, Macrouridae) in the North Atlantic. (17 pages)
87/93	N1397*	CHUMAKOV, A. K, and P. I. SAVVATIMSKY. Distribution of Greenland halibut and roundnose grenadier in the Northwest Atlantic in relation to hydrographic conditions in 1968-1986. (38 pages)
87/94	N1398**	ATKINSON, D. B., and D. POWER. Distribution of roughhead and roundnose grenadiers in the Northwest Atlantic. (28 pages)
87/95	N1399**	FRÉCHET, A. Biology and fishery of Greenland halibut in the Gulf of St. Lawrence. (11 pages)
87/96	N1400*	ZILANOV, V. K. Some problems of optimum utilization and management of grenadier and halibut stocks in the Northwest Atlantic in the conditions of $200-\mathrm{mile}$ zones. (6 pages)
87/97	N1401	BISHOP, C. A., J. W. BAIRD, and R. WELLS. Yield-per-recruit analysis for the cod stock in NAFO Div. 3NO. (3 pages)
87/98	N1402	SHERSTYUKOV, A. I., and G. 1. NAZAROVA. Vertical migrations and feeding of the Scotian 0 -group silver hake in November 1985. (14 pages)

[Asterisks (*) indicate papers presented at the Special Session on Deepwater Fishes, 9-1] September 1987]

SUMMARY DOCUMENTS (SCS)

SCS No. Ser. No.

87/01	N1278	NAFO. Provisional Report of Scientific Council, January 1987 Meeting. (29 pages + Corrigendum)
87/02	N1282	NAFO SECRETARIAT. Provisional index and list of titles of research and summary documents for 1986. (31 pages)
87/03	N1283	NAFO SECRETARIAT. Historical catches of selected species by stock area and country for the period 1975-85. (38 pages)
$\begin{aligned} & 87 / 04 \\ & (\text { Rev. }) \end{aligned}$	N1284	PARSONS, L. S. Canadian request for scientific advice on management in 1988 of certain stocks in Subareas 0 to 4. (1 page)
87/05	N1285	LEMCHE, E. Denmark (Greenland) request for scientific advice on management of certain stocks in 1988. (1 page)
87/06	N1286	ASSISTANT EXECUTIVE SECRETARY. Report to the CWP on NAFO statistical program, data-processing and publications, 1984-86. (9 pages)
87/07	N1288	NAFO SECRETARIAT. Provisional index of Journal of Northwest Atlantic Fishery Science and NAFO Scientific Council Studies, 1980-86. (73 pages)
87/08	N1289	NAFO SECRETARIAT. Tagging activities reported for the Northwest Atlantic in 1986. (5 pages + addendum)

87/09	N1292	COADY, L. W., J. S. SCOTT, R. A. EISNER and A. FRÉCHET. Canadian research report, 1986. (Sections I, II, III and IV) (24 pages)
87/10	N1302	CWP SECRETARY. Report of the Thirteenth Session of the Coordinating Working Party on Atlantic Fishery Statistics (CWP), February 1987. (30 pages).
87/11	N1303	NAF0 SECRETARIAT. Lists of biological sampling data for 1985. (45 pages)
87/12	N1304	MAURER, R. O., M. D. GROSSLEIN, and F. M. SERCHUK.' United States research report for 1986. (9 pages)
87/13	N1309	VAZQUEZ, A. Spanish research report, 1986. (9 pages)
87/14	N1321	LEHMANN, K. Denmark (Greenland) research report for 1986. (11 pages)
87/15	N1328	CHUMAKOV, A. K., V. A. BOROVKOV, and A. S. NOSKOV. USSR research report for 1986.
87/16	N1336	$\frac{\text { POPE, J.A. Guidelines for the establishment of logbook and related systems. (26 }}{\text { Pages) }}$
87/17	N1333	KAWAHARA, 5. Japanese research report for 1986. (4 pages)
87/18	N1337	GODINHO, M. L. Portuguese research report for 1986. (9 pages)
87/19	N1361	NAFO SECRETARIAT. Synopsis of Scientific Council requirements for fishery statistics. (40 pages + addendum)
87/20	N1362	NAFO SECRETARIAT. Provisional nominal catches in the Northwest Atlantic, 1986. (53 pages)
87/21	N1363	NAFO. Provisional Report of Scientific Council, Dartmouth, Canada, 3-17 June 1987. (92 pages + corrigendum)
87/22	N1370	KOSIOR, A. Polish research report, 1986. (8 pages)
87/23	N1379	$\frac{\text { ERNST, P., }}{(11 \text { pages })}$ and R. EGGERS. German Democratic Republic Research Report for 1986.
87/24	N1404	NAFO. Information for the Fisheries Commission on yield-per-recruit analysis of the cod stock in Division 3NO. (2 pages)
87/25	N1407	DENMARK (in respect of Faroe Islands and Greenland). Proposal for change of Rules of Procedures for the General Council, Fisheries Commission and Scientific Council. (2 pages)
87/26	N1408	NAFO. Information for the Fisheries Commission on escapement and selectivity probTems associated with use of strengthening ropes, splitting straps and codend floats. (2 pages)
87/27	N1410	NAFO. Report of Scientific Council Meeting, September 1987. (26 pages)

Akenhead, S. A.
Northwest Atlantic Fisheries Centre, P. O. Box 5667, St. John's, Nfld.
Anderson, J. T.
Atkinson, D. B. Baird, J. W. Bishop, C. A. Bowering, W. R. Brodie, W. G. Carscadden, J. Kulka, D. W. Miller, D. S. Nakashima, B. Parsons, D. G. Pepin, P. Power, D. Rice, J. C. Walsh, S. J. Wells, R. Winters, G. H. Beckett, J. S. Loder, J. W. Clarke, R. A. Lazier, J. R. M. Smith, P. C. Fanning, P. Halliday, R. G. Themelis, D. Zwanenburg, K. C. Drinkwater, K. F. Hunt, J. J. Perry, R. 1.
Taliman, R. F. Rivard, D.. Keeley, J. R. Cleary, L. Frèchet, A.

Coastal Oceanography, Bedford Institute of Oceanography, Dartmouth, N.S. Marine Fish Division, Biological Station, St. Andrews, N.B.
Fisheries Research Branch, Gulf Region, P. 0. Box 5030, Moncton, N.B. Fisheries Research Branch, DF0, 200 Kent Street, Ottawa, Ontario Marine Environmental Data Service, 200 Kent Street, Ottawa, Ontario Institut Maurice Lamontagne, 850 Route de la Mar, Mont.-Joli, Quebec Dept. of Fisheries and Oceans, P. O. Box 1000, Mont.-Joli, Quebec
CAFSAC, Bedford Institute of Oceanography, Dartmouth, N.S. B
Atlantic Oceanography Lab., BIO, Dartmouth, N.S.

CUBA

Dominguez, R. Flota Cubana de Pesca, Ave. Pesquera esq. Desamparados, Havana
Boje, J.
Carlisson, D. M.

Horsted, Sv. Aa.

Hovgàrd, H.
Kanneworff, P.
Lehmann, K. M. Lund, H.
Riget, F.
Institute, Tagensvej, 135, Copenhagen, Denmark

Nygaard, K. H.

$\begin{gathered} \text { Greenland } \\ \text {,I } \end{gathered}$	Fisheries	Institute,	Tagensvej,	135,	Copenhagen,	Denmark
1	1	"	"	"	11	"
"	1	"	"	11	11	"
11	$1{ }^{1}$	"	"	"	"	"
"	11	"	"	11	${ }^{\prime \prime}$	11
"	11	"	1	11	"	11
11	11	"	11	I'	1	"

Biological Station, P. 0. 570, DK-3900 Nuuk, Greenland

EUROPEAN ECONOMIC COMMUNITY (EEC)

Noé, R.
Commission of European Communities, Joseph 11 121-6/223, 220 Rue de Loi, Bussels 1049, Belgium
Messtorff, J. Sea Fisheries Institute, Bremerhaven, Federal Republic of Germany
Sea Fisheries Institute, Hamburg, Federal Republic of Germany
A B C
$\begin{array}{lll}A & B & C \\ B & C\end{array}$
Stein, M.
IFREMER, B. P. 1049, F-44037 Nantes-Cedex, France
Maucorps, A. M.
IFREMER, B. P. 699, F-62321 Boulogne-Sur-Mer, Cedex, France

B

Bertrand, J.

Godinho. M. L.
Instituto Nacional de Investigacao das Pescas, Alges-Praia, 1400 Lisbon, Portugal
Caramelo, A. M. Larrañeta, M. G Vazquez, A.
Cross, 0 .
Instituto de Investigaciones Marinas, Muelle de Bouzas, 36208 Vigo, Spain
EUROSTAT, B. P. 1907, Batiment J. Monnet, Luxembourg (Grand Duchy)

german democratic republic

Mahnke, W.
Institute for Deepsea Fisheries, 251 Rostock-Marienehe (HAUS 2)

ICELAND

Hallgrimsson, 1. Magnusson, J. V.

Marine Research Institute, Skulagata 4, P. 0. Box 390, 121 Reykjavik II

JAPAN
Kawahara, S. Far Seas Fisheries Research Laboratory, 7-1 Orido 5-Chome, Shimizu 424

NORWAY

Dragesund, 0 . Univ, of Bergen, Dept, of Fishery Biology, P. O. Box 1839, N-5011, Bergen
Instiute of Fishery Technical Research, P. B. 1964, 5024, Bergen
Haug, T. Dept. of Marine Biology, Univ. of Troms ϕ, P. O. Box 2550, N-9001 Troms ϕ Smedstad, 0. M. Institute of Marine Research, P. O. Box 1870-72, N-5011, Bergen-Nordnes

UNION OF SOVIET SOCIALIST REPUBLICS (USSR)
Goussev, G. V. Ministry of Fisheries of the USSR, External Relations Dept.,
12 Rozhdestvensky Bou., Moscow K-31
Ministry of Fisheries, ${ }_{11}{ }_{11}$ Rozhdestensky Boul., Moscow K-45, 103045
PINRO, 6 Knipovich Street, Murmansk 183763
Tsoukalov, V. I.
Kovalev, S.
Mamylov, V. S.
Petrov, V. N.
Rikhter, V. A.
Riazantsev, Y. B.
Fedorenko, V. G.
AtlantNIRO, 5 Dmitry Donskoy Street, Kaliningrad, 236000
VNIRO, 17 V. Krasnosel skaya, Moscow B-140
Assistant Representative of USSR in Canada on Fisheries, 2074 Robie Street, Suite 2202-3, Halifax, Nova Scotia, Canada

OBSERVERS

Alton, M.
Northwest \& Alaskan Fisheries Center, 7600. Sand Point Way NE, B1N C15700, Bldg. 4, Seattle, Washington 98115-0076, USA Northeast Fisheries Center, Woods Hole Lab., Woods Hole, MA. 02543, USA
Grosslein, M. D.
Mayo, R. K.
Ingham, M. C.

National Marine Fisheries Service, Narragansett, Rhode Island 02882 , USA

C

NAFO SECRETARIAT

Capt. J. C. E. Cardoso, Executive Secretary
V. M. Hodder, Assistant Executive Secretary
W. H. Champion, Administrative Assistant
F. D. Keating, Finance and Publications Clerk-Steno
F. E. Perry, Documents and Mailing Clerk
B. J. Cruikshank, Senior Clerk-Secretary
D. C. A. Auby, Clerk-Secretary
R. A. Myers, Clerk-Duplicator Operator
B. T. Crawford, Clerk-Duplicator Operator
G. M. Moulton, Senior Statistical Clerk
C. L. Kerr, Statistical Clerk
B. L. Marshall, Satistical Clerk

IV. LIST OF RECOMMENDATIONS AND PROPOSALS, 1987

A. Special Meeting, January 1987

1. Research Requirements for Shrimp in Davis Strait (Page 15)
a) Stratified-random trawl surveys should be conducted for a number of years to determine changes in distribution and abundance.
b) Observer programs should be continued and extended to cover a greater portion of the fleet with the main objectives to obtain sampling data on shrimp catches, by-catches and objective estimates of discard rates.
c) Selectivity studies should be conducted for shrimp in Davis Strait to determine optimal mesh size.
d) Research surveys should be continued to determine the location of nursery grounds for shrimp in the Davis Strait.
e) That a study be undertaken to quantify the effects of new gear technology in the fishery.
2. Research Requirements for Shrimp in Denmark Strait (page 19)
a) That biological samples be obtained from all components of the fishery in Denmark Strait.
b) That research vessel surveys in the area be continued and intensified.
c) That plankton surveys be carried out to observe the distribution of shrimp larvae.
d) That environmental studies be undertaken in the area of Storfjord Deep.
B. Scientific Meeting, June 1987
i. NAFO Statistical Considerations (pages 28,87)
a) That the document on the Council's requirements for fishery statistics (SCS Doc. 87/19) be brought to the attention of all Contracting Parties.
b) That the Fisheries Commission and General Council take note that fishing by non member countries in the Regulatory Area has become a significant factor in the exploitation of the resources there but that statistics on many of these activities are not available to the Scientific Council. This has an adverse effect on the ability of the scientific Council to provide advice, and the General Council and Fisheries Commission are requested to make further efforts to resolve this problem.
c) That, if the General Council wishes to resolve the issue of the boundary between Div. 4 S and 4 T , the coordinates of Pte. des Monts should be established and the boundary should be allowed to "run in an easterly direction along a rhumb line to a point at $49^{\circ} 25^{\prime} \mathrm{N}$, $64^{\circ} 40^{\prime} \mathrm{W} . \mathrm{F}^{\prime \prime}$.
3. Biological Sampling (pages 28,88)

That the Secretariat contact the scientists who are responsible for the submission of sampling data to insure that previous lists of 1979-84 data are verified prior to their collation into a single volume for publication. Outstanding data for 1985 and 1986 should also be included in the request.
3. Cod in Divisions 3 N and 30 (pages 44 , 47)
a) That alternate methods of determining Canadian directed fishing effort be investigated before the next assessment of this stock.
b) Re USSR survey data, comparable survey indices covering as much of the time series as possible be provided.
4. Redfish in Subarea 1 (pages 48, 49)
a) That the biomass estimates of redfish from the Canadian research survey off the banks and the Federal Republic of Germany research survey on the banks should be combined for the June 1988 Meeting, and further data from others also should be made available.
b) That analysis of sampling data for S. mentella from commercial catches by the federal Republic of Germany in recent years should be made available in June 1988.
5. Redfish in Division 3M (page 50)

That the STACFIS guidelines for presentation of VPA analyses be followed closely for future assessments so that the analyses can be fully utilized.
6. Redfish in Divisions 3 L and 3 N (page 51)

That STACFIS guidelines be followed when presenting the results of VPA so that the analyses can be fully evaluated and that in the future commercial data be presented for Div . 3 N and 30 separately.
7. Silver Hake in Divisions 4V, 4W and 4X (page 55)
a) That means of incorporating survey estimates into the current assessment methods be investigated.
b) That consideration be given to criteria upon which such a decision might be based, noting that one aspect of this which bears investigation is whether relationships between F and effort can be satisfactorily derived between the two periods to validate effort standardization; it should also be investigated whether the F versus effort relationships can provide inferences concerning terminal F in VPA.
8. American Plaice in Divisions 3L, 3 N and 30 (pages 57, 60, 63)
a) That available length frequency information from non-Canadian catches be incorporated into the calculation of numbers and mean weights-at-age in the commercial fishery, and that countries involved in the fishery for this stock be encouraged to provide appropriate data to the NAFO Secretariat.
b) That information on the ageing of otoliths from this stock be exchanged between Spanish and Canadian age readers.
c) That data from more strata be included in the analysis of canadian surveys, with the use of a multiplicative model being investigated to achieve this goal.
d) That the effect of recent changes in the age composition of the catch and corresponding changes in mean weight-at-age and partial-recruitment vectors on the calculation of yield-per-recruit be examined.
e) That the effect on the calibration of cohort analysis of data prior to 1977 , when some catch estimates may have been less reliable, be examined.
9. Witch Flounder in Divisions $3 N$ and 30 (page 64)

That countries fishing the witch flounder stock in Div. $3 N 0$ should collect catch and effort information as well as length and age data and present them to NAFO to allow for a better evaluation of the status of this resource.
10. Yellowtail Flounder in Divisions $3 L, 3 N$ and 30 (pages 66, 68)
a) That available sampling from the non-Canadian catch in 1985 and 1986 be incorporated into the calculation of age composition of the catch and average weight-at-age.
b) That the Canadian research-vessel survey data be reanalyzed to include information from more strata, with the feasibility of using a multiplicative model in this analysis being investigated.
c) That further analysis on the distribution and abundance of juvenile yellowtail flounder be conducted, involving determining the effects of diel variability on indices of abundance from research-vessel surveys on both juveniles and adults.
11. Greenland Halibut in Subarea 2 and Divisions $3 K$ and 3 L (page 70)
a) That biomass estimates and catch-at-age data from the complete USSR series of Greenland halibut surveys be provided in a single document for the June 1988 Meeting.
b) That the shrimp survey data on Greenland halibut be examined further in an attempt to standardize the catch-at-age between Div. 2 H and 2 J to better evaluate year-class strength.
c) That the lack of correspondence between survey and VPA population size and age structure be investigated as a basis for exacting improved hypotheses about VPA input parameters.
12. Roundnose Grenadier in Subareas 2 and 3 (page 72)

That those countries involved in the Greenland halibut fishery examine their databases for data on age composition of commercial catches and, if possible, prepare updated VPAs for this stock, following the designated guidelines for presentation of the results.
13. Ageing Techniques and Validation Studies (pages 77,78)
a) That future exchanges of silver hake otoliths be designed to allow for identification of specific reasons for differing interpretations as, well as the level of inter-reader agreement, with photographs of otoliths being the means of achieving this objective.
b) That studies on silver hake be continued in order to identify and resolve the extent and source of differences in catch-at-age estimates.
c) That ageing studies on Atlantic wolffish including validation be continued.
14. Working Group on the Flemish Cap Project (page 84)

That the Working Group be discontinued, with the proviso that the Flemish Cap Project be maintained on the Council's agenda for 1988 in order to keep the Subcommittee informed of the analyses which are still outstanding and also to promote the reporting of the results of such work to STACFIS.
15. Conversion Factors (page 91)

That the Scientific Council bring to the attention of the fisheries Commission that having the presence of a Scientific Council observer at such working group meetings would be beneficial in assisting the Scientific Council to provide timely advice in response to Commission requests.
16. Position of Editor (page 94)

That the Scientific Council convey to the Executive Secretary of NAFO that the Council wishes that the replacement of the present Assistant Executive Secretary, on his retirement, should be qualified to assume the editorial responsibilities for Studies and the Journal currently discharged by Mr. Hodder and that these duties should be part of his job responsibilities.
C. Annual Meeting, September 1987

1. Yield-per-recruit of Cod in Div. 3 N and 30 (page 104)

That the appropriate laboratories in Canada and USSR which have series of research-vessel surveys in the area provide the data and perform the necessary yield-per-recruit analyses for presentation at the June 1988 Meeting. Relevant data from the commercial fisheries of all nations for cod in Div. 3NO should be provided.
2. Survey Design Procedures (page 110)
a) Techniques such as multiplicative analyses should be used to establish comparability among all years in abundance indices from a particular survey series.
b) Since changes in design, timing, coverage, vessel/gear, etc., in survey series can have significant effects on abundance indices, the documented information on survey design procedures should be included for future reference in a summary (SCS) document.
c) Comparative fishing results which exist for some survey series should be used on the appropriate species where necessary.
d) Recent results from comparative fishing experiments between Federal Republic of Germany research vessels fishing at random in a small suitable area should be examined by researchers planning comparative fishing tests. These results will be available in a paper from the 1987 ICES Meeting.
e) Because comparability of the three USSR time series has not been satisfactorily established, more information on the distribution of sets as well as investigations into the comparability of fixed-station and stratified-random surveys are required. However, the surveys in 1961-66 are not considered to be comparable with other USSR surveys because of changes in design and timing.
f) Additional USSR survey data should be made available for consideration. For the 1967-82 period, this information should consist of a listing of the fixed stations by division and depth, indicating which stations were successfully surveyed in each of the years from 1967 to 1982. For the stratified-random surveys in 1983-85, tables of survey coverage by division and stratum, identical to those of other survey series reviewed by the working group, are required. For the Greenland halibut surveys of 1980-85, similar tables of coverage by division and depth zone are necessary. If possible, this information should be sent to the Convener of the Working Group so that analysis can begin sometime before the June 1988 Meeting.
3. Scope of the Journal (page 113)

That the description of Journal scope (as stated on the inside front cover of Vol. 7(1)) be revised to read (in part) 'Both practical and theoretical papers are eligible for consideration, as are review articles of particular relevance of the work of ICNAF and NAFO'.

[^0]: 31 December 1987

[^1]: ${ }^{1}$ Provisional data.
 2 Pertains to western side of midline only.

[^2]: 1 Includes logbook data for Danish vessels in 1981 and 1982.
 2 Data for Iceland side of midline; all other data for Greenland side of mid1ine.

[^3]: 1 Provisional data.

[^4]: 1 Provisional data.

[^5]: 1 Includes 40% of the "flounder non-specified" catch reported to NAFO by South Korea.
 2 Provisional data.

[^6]: 1 The Canadian and Denmark (Greenland) requests for advice on management of the shrimp stocks in 1987 were contained in the requests considered at the June 1986 Meeting of the Scientific Council (see NAFO Sci. Coun. Rep. for 1986, pages 140-142).

