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ABSTRACT 

The analysis of morphometric data for fish species differentiation and stock

discrimination has frequently been un atisfactory due to sampling bias associated

with the varying size of specimens an the large overlapping of characters. These

difficulties may be overcome by employing discriminant function with covariance

e	and multivariate analysis of covarianc	 In this paper, (1) these methodologies

are introduced in a classification stuly of beaked redfishes, in which the

specimens of Sebast f̂ s fasciatus are snilller than those of S. mentella.

Discriminant function with covariance provided a more effective discrimination

between species/populations than one without covariance. (2) It is demonstrated_

that employing a large number of charaFters in discriminant analysis may not be

appropriate. (3) It is explained why ‘xpressing morphometric measurements as
ratios, proportions, or percentages of body length may not be an appropriate way

of reducing variation owing to size differences. Presentation of analysis.

includes discussion of intermediate results, which are not easily accessibleeven

though these details are often of interest to users. Seven morphometric

characters were identified as pertinent discriminators between S. fasciatus and S.
mentella. Discriminant function separ ted the two species remarkably well, as

much as 89% of the total variation inthe sample was accounted for by the

discriminant function and only 8 out

of uncertainty.

198 individuals (i.e. 4%) were in the zone

  

STOCK DISCR; MINATION SYMPOSIUM



Introduction

In morphological studies of beaked redfishes, Ni (1981a and b) pointed out

that the effective management of redfish resources in the Northwest Atlantic

requires a clear understanding of Sebastes spp. composition and stock units.

However, for decades the distinction between S. mentella and S. fasciatus has

not been clearly established. Although the distinction can be sustained on the

basis of one anatomical character, the extrinsic gasbladder musculature (Ni

1981a), examination of this character is time-consuming and not practical in

field studies. In his discriminant analysis, Ni (1981b) employed data on

meristic and nominal characters only and reported that discriminant analysis was

remarkably effective in separating the two specks and for identifying good

discriminators to be utilized in field studies. However, he did not apply

discriminant analysis to morphometric data because the specimens of S. fasciatus 

were smaller than those of S. mentella and the range of characters overlapped

broadly between groups. This difficultly is frequently encountered in

morphological studies of species differentiation and stock discrimination in fish.

is, therefore, submitted that use of discriminant function with covariance will

overcome this difficultly.

A survey of the applied research in social, behavioural, business and

medical sciences would indicate that the use of Fisher's discriminant function

has been extensive by the most conservative standards (Goldstein and Dillon 1978),

'EVen when two similar species. 	 be identified with a single . ffleasurment, a

combined criterion of two or more may increase the separation between them" (Bliss

1970). In this analysis of redfish morphometrics it was observed that a single

character would not separate species effectively. But a compound criterion

(discriminInt function) of .,c'veral 	 characters separated the specie ,; effectively.

and made identification possible from morphometric data. Discriminant analys.fs

would be particularly apprnpriate when the existence of refe-enc, s ‘ wples can be

assumE, d on the basis of an external 	 criterion (Kendall and Stuart 1976) as in

this study of redfish data where reference samples were formed on the basis ci the

extrinsic gasbladder musculature (Ni 1981a). Multivariate normal distributic- is

a required condition for Fisher's linear discriminant function (LDF) to yield

optimal assignment rule (Dillon 1979). Performance of LDF in non-norm41

situations can be very misleading (Lachenbruch et al. 1973, Dillon 1979).

Morphometric measurements are taken on "continuous" variables and are far more



appropriate for discriminant an alysis as multivariate normality is closely

approximated by their logarithms (Piementel 1979, p. 57; Bliss 1967, p. 115).

Individuals vary within popuTat

correction and to employ a disc

r4liss 1970). The methodology

ions, as in standard length, to warrant its

riminant function which is adjusted by covarlan(e

is documented in statistical literature (see e.g.

Bliss 1970) but, as far as the authors are aware, it•has not previously been

applied to fisheries data. A valid discriminant analysis must be preceded by

significant difference. between populati ,on mean vectors . ftiementel 1979). This: wAY

be tested by multivariate analy sis of covariance (MANCOVA). AS far as the authors

are aware this methodology also has not been used for cofflpdcinj f i h populaions,

although the utility of ANCOVA at the univariate level has long been recognized.

For example, Marr (1955) remarked that the analysis of ratios is inefficient as

opposed to regression analysis of original variates and Royce (1964) preferred

regression anaTyiS to ratios or indices in order to control the effect of _`size of

fish in his comparisons.

In this paper, (1) method() ogies of MANCOVA and discriminant analysis with

covariance are introduced and applied to a classification study of beaked

redfishes based on morphometric data. (2) It is demonstrated that parsimony in

the number of characters to be ncluded in discriminant analysis is desirable.

(3) It is explained why expressing morphometric measurements of characters as

ratios, proporttons, or percent ges of body length may not be an appropriate

way of reducing variation owing to size differences. The presentation also

includes discussion of intermediate results which are not easily accessible

even though these details are o ten of interest to users.

Materials and Methods

Morphometric data of the 20 0 beaked redfish specimens described by Ni

(1981a and b) were employed in the present study. These specimens were

separated into two groups on the basis of the extrinsic gasbiadder

musculature prior to discriminant analysis. Each S. fasciatus or S. mentellF

group consisted of 100 specimens All specimens were frozen after capture a'd

thawed prior to measurement. There were twelve morphometric. characters examined

(Table 1), most of which were suggested by Barsukov and 7akharov . (1972): a. rid .

Barsukov (1972). All mensural c aracters were measured with calipers to the

nearest 0.1 mm except standard length which was rounded to the r1,2drest 1 	 Body



weight was recorded to the nearest gm. Head length and preanal length were

measured from anterior part of upper jaw to the relevant posterior point on a line

parallel to the main axis of the fish.

Statistical methodology was organized and computer program was written in

FORTRAN by one of us (RKM).

Statistical Analysis and Results.

It is often belieVed that the effect of_size differences in pOpOlation

comparisons can be eliminated by expresSing measurements as ratios,

proportions, or percentages of body length. For examples, in their examination

of morphometric data for the evidence of stock discreteness, Casselman et al

(1981) expresse'd body measurements as ratios of body legth to reduce variations

of fish size within each sample. Such relative values were also employed with a

similar objective in a number of stock discrimination studies presented at the

fourth annual meeting, September 1982, of NAFO. This use of ratios has been

criticized (see e.g. Blackith and Reyment 1971, p. 27). The following would

demonstrate that this may not be an appropriate procedure: Consider, e.g. two

variables X (body size such as standard length) and Y (a morphometric character)

related by an equation of simple allometry,

Y = aXb (1)

where a and b are constants. Equation (1) shows that Y is 'functionally related

X and requires adjustment in its value for the effect of X. Functional

relationship fcr the ratio, Y/X, would then be Y/X = aX (b-1) which is of the

same form as (1). Thus, ratio of Y (or percentage, which is only a constant,

viz. 100, times the ratio) is affected by X just as Y itself is, barring the

special case when b	 1. In fact, a statistical analysis of ratio of Y would

very likely be more questionable than the analysis of Y itself, since

additional problems prevail with ratio data. tor example, ratios h ve unusual

distributions and are subject to various errors (Pimental 1979, P-  60). The

argument against appropriateness of analyzing ratio data would always hold when

X and Y are correlated, even if not related by allometry. For example, a

simple linear regression Y - a-i-bX for Y leads to the equation Y/X	 a/X + b for

its ratio, which shows that the ratio is still not independent of X.

All measurements were transform-?.d to co,.im►n logarithms for MANCOVA and

discriminant analysis for the following reasons. (1) Multivariate normality is

more closely approximated by logarithms than by the original variables



(Pimentel . 1979, p. 57; Bliss 1967, p: 115). (2) MANCOVA adjustments generally

assume linear relationships and this assumption i also made in the vesent

analysis. Logarithmic transformation should satisfy test of linearity (Pimentel

1919, p. 60, p. 182). (3) The convention is to use common logarithm (Pimentel

1957, p. 57). Only complete specimens i.e, specimens for which all twelve

measurements were available, were used in statistical analyses. "Missing

observations virtually destroy morphometrics" (Pimento) 1979, p. 191). Samples
• 	 •

from S. mentella and S. fasciatus had 97 and 99 complete specimens, respectively.

Morphometric characters listed were designated Yi , i = 1, 2, .	 ., 12.

Table 1 gives means and ranges of Yi

"A series of univariate statis ical analyses carried out separately for

each of the variables is, i general, not adequate as it ignores the

correlations among variables" (Kshi sagar 1972). Following Bliss 	 (1970, p. • 329

and 332), the following was noted: Ranges (Table 1) of characters overlapped

between species, from 39',.!, (Y 2 ) to 60% (Y u ) in S. mentella and from 61% (Y4 ) to

98% (Y11) in S. fasciatus. With these

st),Irate specres effectively. The p

Lubischew's coefficient of separatio

18.2:4 (for Y9 ). Yet univariate anal

hypotheses of equality of means indi

large overlaps no single character would

robability of misclassification based un

n was large, varying from 7.5% (for Yb ) to

ysis of variance (ANOVA) to test null

cated that the difference between species in

means was highly significant (probability level at p<0.001) for each character.

It was, therefore, desirable to fin a compound criterion ..(discriminant function)

of characters which would make identification possible from sev:-i-al. measOremnts.

However, discriminant analysis is valid only if populations differ

significantly in their means (Pimentel 1979, p. 188). Discriminant analysis

was therefore preceded by MANCOVA.

covariate. The following were note

general linear model of MANCOVA the

variate Y i on the covariate is inco

thereby adjusted for inequalities i

overlaps of 46% in S. mentella and

Standard length (Y 12 ) was employed as

-(Bliss 1970, Morrison 1976). In the

within-sample linear regression of each

porated. Sample mean vectors Y are

standard length. Incidentally, large

67% in S. fasciatus in the ranges (Table

of Y i , and its inadequicy to discriminate between the two species effectively,

remarked earlier in the text, provided additional support for qualifying

standard length as *a reasonable covariate (Snedecor and Cochran 1967, p. 430).

MANCOVA model assumes that populations do not differ in their regression model
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and hence, utilizes the matrix 	 of computed regression coefficients from

"vithinSample s sums of squarec and prOducts (SS and SP). matrices.

The null hypothk-sis of no difference between species in slopes (weighted by

SS of the covariate) of individual variates was, therefore . , tested and accepted

(p>0.05). When the combined slope of a Y i differs significantly from zero, the

residual variation in Y 1 about each sample reoression will be less than that

dlound the resptctive 1112(ins of individual sa.oples with LhC covariaLc ipored,

thereby leading to a more effective comparison of means and discriminant function

based on covariance procedure. The null hypothesis B = 0 of no linear regression

of variates on the covariate was tested by the union intersection procedure. The

test statistic 0 was 0.9889 with values 1, 4.5 and 188.5 of parameters s, m, and

n, respectively (Morrison 1976, Section 5.4), leading to the rejection of the null

hypothesis (p'0.041). The null hypothsis of equal vectors of adiusted means was

next tested (Morrison 1976, Section 5.4). The test statistic 0 was 0.7243 with

the same values of s, m, and n.	 The null hypothsis was rejected in favour of the

conclusion that the two species differ in mean values of one or more variates

independent of the difference between tjiem in standard length.

Before proceeding with discriminant analysis it was considered desirable

investigate which of the eleven variates, if any did not contribute to the

difference between species in the MANCOVA, with the aim of omitting them from

discriminant analysis, for the following reason. Discriminant analysis has a

close analogy to multiple regression with many stages of calculation parallel

to those for a multiple regression but with X and Y reversed (Bliss 1970,

Kshirsagar 1972). The expected value of R 2 , coefficient of multiple correlatioh

squared, is proportional to the number of variates (Morrison 1976, p. 108). This

implies that for samples of limited sizes choosing a large number of characters in

discriminant function would artificially inflate its discriminatory power.

Parsimony in the number of variates should, therefore, be exercised. Needless to

say that working with a smaller number of discriminators also makes discriminant

function that much more convenient to employ in field studies. Following Morriscm

(1976, Section 5.5), 95% simultaneous confidence intervals for characters were

csti,-dated.	 The hypothesis or no significant differen c, 0 1),2 .,wen two s7;'cies iii t.ne

adjusted means of Y3 (snout length) and Y l o (width of caudal peduncle) was

accepted, as their confidence intervals included zero. Discriminant analysis was

therefore done for variates Yi, Y2 Y4 ' Y	 Y6 '
	 , Y8 , Y 9 , and Y il only with Yiz



as the covariate. The discriminant

mainly from Bliss (1970 Chapters 18

discriminant analysis with analysis

analysis methodology employed here was taken

and 20). The methodology combines

of covariance by adjusting variates by means

  

of their within-sample regressions on the covariates and then finding a compound

response (Z) of adjusted variates which would measure best the difference between

two species. Species were qualifi d by values +1 and -1 of "dummy variate" X and

discriminant coefficients computed s6 as to maximize ratio of Z to its standard

error (SE). This Z may be express d as

Z E L i Y i -EL b i 12 d, i=1, 2, 4, 5,	 8, , 11, 

where

L i are discriminant coefficients,

b.
1, 12 is within-sample coefficient of regression of Y on Y 12 , and d is the

difference between the observed val ue and a selected level of the .covari ate

Y12, the selected level in this analysis was its overall mean (Bliss 1970).

For the redfish data computed 7 = 10.5866 + 0.8935Y 1 - 9.6952Y2	1.5965Y4 +

5.7151Y5 + 12.3990Y6 - 4.7132Y7 + 6.5272Y8	7.7912Y9	 1.3918Y11	 4.5100Y12.

Simultaneous equations determining L- (Bliss 1970, P. 335) were based on "total"

SS and SP in order to facilitate the. ANOVA of Z in terms of X. ANOVA showed that

89(4 of the total SS in X was attributable to the discriminant function. In an

.7itt--2wpt to reduc tie number of vaiates further, this ANOVA was extended to test

r ''the significance of each discrimina t coefficient the same way as a partial

regression coefficient is tested (Bliss 1970). The null hypothesis 	 that each li

has true or population value of ze o was accepted (p)0.05) for Y l (F = 1.36) Y (F

=1.89) and Y11 (F = 3.55), each F Lith degrees of freedom (df) = 1,	 185, and

rejected for every other variate.

	

18.3): (1)	 If coefficients for tw

with the smallest F is omitted fi

coefficient reduces the error of

if the variate is highly correlat

Stability of the discriminant fun.	 .
increased by its omission. For

- 	:
of correlation were all high (in

Following were noted (Bliss 1970, Section

0 or more variates are non-significant, the ,ne

rst. Omitting a variate with a non-significint

the remaining recomputed coefficients, especially

ed with one or more of the other variates.

ction based on remaining variates is also

he redfish data paired within-sample coefficient!,

the range of 0.76 to 0.98). (2) Deletion of

variates is continued, one at a time and starting with the one which yields

smallest F value, until each rema ining variable has a significant ff fei,ec—

Following this procedure, the discriminant function was recomputed with Y l (rody



weight) omitted. The recomputed value of the disciminant coefficient for Y, was

still non -s i gnificant. Therefore, the discriminant function was recomputed with

Y, (inter-orbital width) omitted. As discriminant coefficients of all 	 the

remaining variates were then significant (p<0.05), computation was stcpped at thif.

point. ANOVA of the discriminant function for the reduced set of variates

i ndicated that percentage of the total SS in X attributable to the discriminant

function was still the same, viz. 89%. Thus, it was su f ficient to employ seven

variates in the discriminant function. It was, however, noted that the combined

effect of all partial regression coefficients cannot be partitioned orthogonally

when the variates are correlated with one another (Bliss 1970, Section 18.3).

interpretati 'ons based on individual discriminant coefficients may, 	 therefore, be

of restricted scope. Discriminant analysis uses (rather than removes)

intercorrelations among variates (Pimentel 1979).

For discriminant analysis with seven variates Y2 , Y5 , Yb , Yi , y	 y9, and

Y l 1 and the covariate Y l z, the number of "complete" specimens was 99 in each

sample. The discriminant function computed, was Z = 7.0682 - 10.2039Y2

5.6028Y5 + 12.8670Y8 - 5.0213Y7 + 7.3811Y8 - 8. 2 966; - 1.5 1 60Y 11 	 3.0098Y12.

A larger discriminant coefficient does not necessarily indicate a measure of

greater importance than a smaller discriminant coefficient (Bliss 1970). ANOVA

of discriminant coefficients by the partial regression approach indicated that

characters did .not contribute equally and were, in fact, placed in the

following order of decreasing importance Y6 (F = 115.94), Y8 , Y2 , Y9,.Y7,

and Y il (F = 4.26), each F with df = 1,189. In other words, the effective

discriminators are pectoral fin base, length of longest pelvic ray, head length,

length of longest pectoral ray, anal 	 fin base, preanal length, and dorsal length

of caudal peduncle. Variance of a single Z was esti mated as 0.086105. When the

discriminant function was computed with Y 12 (standard length) included as an

additional discriminator (rather than as a covariate), variance of a single Z was

0.103184 which is as much as 20% higher than 0.086105. This indicated, in yet

another way, that a discriminant function with covariance provided more effective

discrimination than one without it 	 Mean Z values were -4.1697 and -2.77552 for

S. mentella and S. fasciauts respectively. Difference between these means was

highly significant (p'0.001). The zone of uncertainty or wrong identifications of

individuals at each end (at p = 0.05) was small viz. -3.6530 to -3.2883. Only 8

out of 198 individuals (i.e. 4% were in this zone of uncertainty.



Marr, J. C. 1955. The use of morphometric data in systematic, racial and

relative growth studies in fishes. Copeia 1955(1): 23-31.
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T6ble 1, Means and . ranges of body weight and eleven morphometric characters Yi
.(i =. 1,...,12) for S. mentella (n-97) and S. fasciatus (n=99). All measurements-were
transformed to common logarffhmS.

Character	 Character . mentella S. fasciatus 

    

No. description Bean

    

• Range 4e-a

   

Range

2.7000

2.0011

1.3564

1.2421

2.2466

1.3460

1.6124

1.6723

1.8380

1.3522

1.5954

2.4238

2.1703-3.2423

1.8325-2,1772

1.1584-1.5428

1.0755-1.4099

2.0846-2.4190

1.1790-1.5198

1.4330-1.7528

1.4914-1.8156

1.6484-1.9845

1.1875-1.5340

1.3324-1.7679

2.2742-2.5763

2.2324

1.8211

1.1586

1.0486

2.0991

1.2184.

1.4438

1.5486

.1.6712

1.2103

1.4351

2.2725

2.0374-2.6830

1.7634-1.9685

1.0682-1.3365

0.9638-1.2529

2.J158-2.2480

1.1335-1.3856

1.3522-1.6107

1.4265-1.6776

1.6085-1.8312

1.13354.3579

2.2041-2.4133

1
	

Body weight

2
	

Head length

3
	

Snout length

4
	

Inter orbital
width

Preanal length

Pectoral fin
base

Anal fin base

Length of longest
pelvic ray

Length of longest
pectoral ray

10
	

Width of caudal
peduncl e

11	 'Dorsal. :length of
caudal peduncle

12	 Standard length
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