SCIENTIFIC COUNCIL MEETING - JUNE 1987

Redfish in NAFO Div. 3M
by
D. Power and D. B. Atkinson

Department of Fisheries and Oceans, Science Branch P.O. Box 5667, St. John's, Newfoundland, Canada A1C 5X1

Introduction

Nominal catches over the past dozen years have ranged between 13,000 and 26,000 t. The present TAC of $20,000 t$ has been achieved in each year since 1983. Insufficient catch at age data prevents any attempts of an analytical assessment of this stock and only catch and effort data have been used in monitoring its status.

Methods and Results

The USSR has been the predominant force in this fishery in recent years (Table 1). Provisional catch statistics from NAFO for 1986 indicate an increase in catch of about $5000 t$ from the 1984 and 1985 totals due to the increased landings reported by the EEC. Nominal catches for the period 1959-1986 are displayed in Fig. 1. Fishing occurs throughout the year but catches are generally greater in the Jan.-Aug. period (Table 2).

Catch and effort data obtained from ICNAF/NAFO Statistical Bulletins from 1959 to 1984 were combined with provisional 1985 data from NAFO. Only data where redfish accounted for more than 50% of the total catch were selected. This database was analysed by a multiplicative model (Gavaris 1980) to obtain a standardized catch rate series for the 1959-85 period. Before employing the model catch and/or effort data less than 10 units and less than five data points of either country-gear-tonnage class or month category types were deleted.

In past assessments, when employing the multiplicative model, grouping of similar category types was done a posteriori, which has since been questioned. It was therefore decided to use the same groupings as reported in last year's assessment (Power and Atkinson MS 1986). However, in that paper the Japan ОTB7 and Portugal 0TB7 country-gear-tonnage class grouping and its regression coefficient had erroneously been excluded from the table. The correct groupings and their estimated regression coefficients from the multiplicative model are provided in Table 3.

In the 1986 assessment of this stock the data were weighted in the regression by $\log _{10}$ effort (Power and Atkinson MS 1986). For the present analysis an unweighted regression was chosen because of possible pro-rating of effort data prior to 1984. The regression was highly significant ($p<.01, r^{2}=.59$) the results of which are shown in Table 4. The standardized catch rate series is displayed in Table 5 and plotted in Fig. 3. Standardized effort is also plotted in Fig. 2. The standardized catch rate series shows a general decline from 1961-1967 followed by a sharp increase to the highest value on record in 1970. Since then catch rates declined until 1979 and then increased moderately to 1982 before gradually declining again to the present.

Catch per unit effort and standardized effort were used in an equilibrium general production analysis using unlagged effort data and effort lagged 6, 8, and 10 years (Gulland 1961). The regression of CPUE on unlagged effort was not significant (p>.16) (Fig. 4). Regressions using effort lagged 6, 8 and 10 years all showed significant relationships ($p<.03$). For the regressions using unlagged effort data the correlation coefficients for the residuals in year t versus year $t-1$ were not significant (6 -year lag: $r=.302 p>.18$, 8 -year lag: $r=.318 \mathrm{p>} .18$, 10 -year lag: $r=.069 \mathrm{p>} .79$). This is different from previous analyses (Power and Atkinson MS 1986) which showed no significant serial correlation only for effort data lagged 10 years. The following results were obtained from each regression:

Lag MSY	Effort (Hours)	$2 / 3$ Effort (Hours)	Yield at 2/3 Effort (tons)	
6	17001	11602	7734	15112
8	17137	11475	7650	15233
10	17575	10384	6923	15623

It can be seen that the results from the three treatments are quite similar. The results for the 10 -year lag are shown (for illustrative purposes) in Fig. 5 and 6.

The catch and standardized effort from the multiplicative model were used in a non-equilibrium version (Schaefer form) of a general production model (Rivard and Bledsoe 1978). Initial estimates of virgin stock biomass (B_{∞}), MSY catchability coefficient (q) were derived from the equilibrium general production analysis in the following way: assuming $2 / 3$ effort at MSY =
$F_{0} \cdot 1$ and that $F_{0} \cdot 1$ for redfish is generally considered to be 0.15 , an estimate for q can be derived from the relation $F=f q$. The value for q obtained from this can be used to estimate B_{∞} from the relationship $a=q B_{\infty}$ where a is the intercept from a regression of CPUE on effort (see Ricker 1975, pg. 315-316). MSY is estimated by $\mathrm{a}^{2} / 4 \mathrm{~b}$ from the same regression where again a in the intercept and b is the slope.

From the above procedure input values of $B \infty=156,000 t$, MSY $\cong 17575$ t and $q=2 \times 10^{-5}$ as estimated from the regression of CPUE on effort lagged 10 years were used to start the model. With q fixed at 2×10^{-5} and letting the model estimate Bo and MSY, the model did not converge to realistic values (i.e. $B_{\infty}=91516 t, M S Y=50261 t$). This was considered unrealistic because biomass estimates from Canadian surveys have been in the range of 130,000 to $270,000 \mathrm{t}$ for the 1978 to 1985 period.

USSR trawl survey estimates of biomass for 1984 and 1985 are 132,300 and 51,000 t respectively (Chumakov et al. MS 1986) however, it was pointed out in that paper that for the 1985 estimate that $200,000 \mathrm{t}$ was observed in pelagic waters, based on an acoustic survey, and not avallable to the bottom trawl. Rerunning the model with a fixed value of $q=5 \times 10^{-6}$, $B_{00}=500,000 \mathrm{t}$ and $\mathrm{MSY}=17575$ resulted in convergence based on change in residual sum of squares (RSS) <. 0001 . Parameter estimates from this run were $B_{\infty}=455007 \mathrm{t}$ and MSY=21063t, both considered to be realistic. The model was then rerun letting q be estimated as well. Again the model converged very quickly (RSS<.00001 and orthogonality offset <.001) with parameter estimates of $B_{\infty}=454,400 t, M S Y=21,053 t$ and $q=5.00767 \times 10^{-6}$. The results from the two analyses are very similar. The latter run (estimating q) was considered more appropriate because of a lesser standard error around MSY as well as satisfying a second criterion for convergence. Estimated population biomass at the beginning of 1986 was $311,655 \mathrm{t}$. Since there was no Canadian research survey to Div. 3 M in 1986 we do not have an independent estimate to compare this with, however, past biomass estimates of this stock have been close to this value (Atkinson MS 1985, Table 6). A plot of yearly q values estimated from the final analysis is shown in Fig. 7. This is a reflection of the residuals in effort. The equilibrium curve derived from the non-equilibrium model is shown along with the trajectory of actual catches from 1959 to 1985 in Fig. 8.

The results of the non-equilibrium analysis are as follows:
MSY
2/3 Effort ${ }_{\text {MSY }}$

Effort (hours)	18,504	12,336
CPUE (tons/hour)	1.138	1.517
Yeld(tons)	21,053	18,714

Prajections for 1987 and 1988 were done on the basis of $2 / 3$ effort MSY but first the 1986 non-equilibrium yield had to be adjusted iteratively to the actual 1986 catch taken. This resulted in yields for 1987 and 1988 of 18786 t and 18778 respectively.

Commercial length frequencies available from the Canadian observer program caught by USSR vessels (Fig. 9) indicate different modes at two different depth zones sampled. This reflects the hypothesis that larger redfish are found at greater depths.

There is no Canadian research survey in 1987 to Div. 3M.

Discussion

The catch rate series from the multiplicative model show that catch rates have been on the decline since 1982 and from provisional data for 1985 this trend is continuing.

The equilibrium general production runs based on regressions of CPUE on effort lagged 6, 8 and 10 years suggest an equilibrium yield at $2 / 3$ effort MSY int he range of 15,000 . As was pointed out in the 1986 assessment (Power and Atkinson MS 1986) the regressions were highly - Influenced by the 1970 and 1971 points. This same situation exists with the inclusion of the 1985 point and therefore these results are to be considered with caution.

The non-equilibrium general production analysis suggest a yield of approximately $19,000 \mathrm{t}$ at $2 / 3$ effort MSY. This is about 5% less than the present TAC of $20,000 t$ and is therefore considered an appropriate TAC for 1988.

References

Atkinson, D.B. MS 1985. The redfish of NAFO Div. 3M. NAFO SCR Doc. 85/48. Ser. No. N997, 10 pp .

Chumakov, A.K. V.A. Borovkov and A.S. Noskov MS 1986. USSR research report for 1985. NAFO SCS Doc. 86/17. Ser. No. N1179. 32 pp.

Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37: 2272-2275.

Gulland, J.A. 1961. Fishing and stocks of fish at Iceland. U.K. Min. Agric. Fish. Food, Fish. Invest. (Ser. 2) 23(4): 52 pp .

Power, D., and D.B. Atkinson. MS 1986. An update of the status of redfish in NAFO Div. 3 M. NAFO SCR Doc. 86/28. Ser. No. N1142, 7 pp.

Ricker, W.E. 1975: Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191: 382 p.

Rivard, D., and L.J. Bledsoe, 1978. Parameter estimation for the Pella-Tomlinson stock production model under non-equilibrium conditions.: Fish. Bull. 76(3): 523-534.

Table 1: Noainal catchas (t) of redfish in Division 3M by country and yoar.

Country	1973	1976	1077	1878	1979	1980	1981	1082	1083	1984	1093*	1986*
mowaramema		п-maxa										aryme
Canada (M)+	: -	4,040	1,402	488	443	218	12	-	-	-	-	-
Canada (M)	059	4,328	3,392	3,881	4,688	60	517	2	-	-	-	-
France (M)	-	-	546	242	67	15	$?$	-	-	-	-	-
France (SP)	\therefore -	-	25	-	-	-	-	-	-	-	-	-
FRO	4	44	10	300	\cdots	73	-	41	-	769	848	- -
GDR	-	-	-	-		1,290	15	-	40	98	-	88
Japan	-	-	138	321	636	978	388	392	390	389	313	399
Poland	. 1	30	11	83	13	- 292	-	-	-	-	-	-
Portugal	2,464	518	854	455	686	985	659	1,408	1,667	2,123	1,306	-
Foatcinia	\cdots	-	-	24	4	-	-	-	-	-	-	-
Spain	-	-	52	31	13	29	488	31	589	282	281	-
UK	552	-	376	20	-	-	- -	3	\cdots	-	-	-
US5R	12,303	8,038	9,507	9,251	10,441	10,430	10,434	10,948	14,5i7	15,005	15,703	13,817
Ireland		-	2,503	767	-	, -	-	-	-	-	-	-
Nomumy	2	-	-	-	- -	-	-	-	-	-	-	-
Cuba	-	-	1,451	883	1,527	1,549	1,373	1,853	2,324	1,562	1,831	-
Bulgaria	-	-	-	58	1,578	50		-	-	-	-	-
Kor-S	-	*	-	-	-	-	-	38	-	-	-	-
EEC (Un. Sp.)	-	-	-	-	-	-	-	-	-	-	-	11,568
TOTPL	16,075	16,998	20,267	15, 762	20,074	15,067	13,891	14,684	19,52?	20,228	20,282	25,872

- Provisional.
+ Maritimes and Quebec mer combined prior to 1979.

Table 2: Nominal catches (t) of redfish in Divigion 34 by month and year.

Yeur	Jan. 3x=mix	Feb 	$a r .$	Ppr.	Moy	Jun.	Jul.	Puxg.	Sep.	Oct.	Now.	Dec.	Total
1973	983	920	917	2,042	1,012	1,191	1,039	1,873	1,584	1,819	1,615	1,100	16,073
1974	2	2	180	2,950	1,580	1,130	686	7,415	2,473	277	283	20	16,998
1977	417	532	2,786	1,847	1,821	3,649	4,284	1,418	500	243	81	98	20,287
1978	394	334	. 883	1,158	1,026	4,017	1,004	1,650	1,301	2,996	1,087	634	16, 762
1978	790	1,580	808	4,23?	5, 14?	2,394	1,393	58	111	1,486	1,369	635	20,074
1980	1,212	1,341	4,751	2,852	1,377	735		1,083	1,125	471	293	726	15,987
1981	108	849	2,671	5,120	1,615	711	698	052	847	7	149	74	13,891
1982	98?	295	2,222	2,825	2,328	1,484	1,292	2,209	543	241	125	133	14,084
1983	2,393	1,014	1,128	2,280	2,395	3,099	3,384	1,529	1,500	681	51	83	19,527
1984	159	1,725	2,465	4,283	3,773	3,679	1,149	912	900	419	449	316	20,228
1985*.	287	422	445	656	2,172	79	3,135	7,308	1.046	614	2,051	2,08?	20,282
1980*	2,728	3,988	2,011	.1,026	5	-	1,157	1,392	513	-	24	1,462	25,872

* Provisional
a includes a catch of $2,503 t$ from month 'unknown'.
b includes a catch of 11,588 t from month 'unknown'

Table 3: Parameter estimates from the analysis of catch/effort for redfish in Division 3M using a multíplicative model.

Country-Gear-TC	Estimato	Month	Estimate
		\therefore.	
USSR OTB 4	-1. 596	Mar.	-0.248
CAN(N) CTB 5	-0.793	Jan.	-0.099
		Dec.	
JPN OTB 6	-0.632		
POL OTB 7		Feb.	
		Apr.	
JPN OTB 7	-0.357	May	
POR OTB 7		Jun.	
		Jul.	0.000
CAN (N) OTM 4		Aug.	
CAN(MQ) OTB 5	0.000	Sep:	
USSR OTB 7		Oct.	
CUBA OTB 7		Nov.	
CAN(M) OTB 5			
CAN(MQ) OTM 5	0.350		
CUBA OTM 7			
CAN (N) OTM 5			
POR OTB 6	0.481		
USSR OTM 7			

Table 4: Regression of multiplicative model for redfish in Division 3 M.

muitiple $r \ldots \ldots . . .$.	$\mathbf{0 . 7 6 8}$
multiple r squared......	$\mathbf{8 . 5 9 0}$

analysis of variance

source of variation	df	suas of squares	mean squares	f-value
intercept	1	3.650 e 1	3.658 e 1	
regression	34	1.274e2	3.748e8	15.894
tupe 1	6	6.929 e 1	1. 155 e 1	45.595
type 2	2	1.955e0	$9.773 \mathrm{e}^{-1}$	3.936
type 3	25	1.567 e 1	$6.828 e^{-1}$	2.428
residuals	356	3.840e1	2.483e-1	
total	391	2.523 e 2		

Table 5: The predicted catch rate for redfish in Division 31.

year	In	form.	retro mean	$\begin{aligned} & \text { rmed } \\ & \text { s.e. } \end{aligned}$	catch	effort
1959	0.4063	0.0284	1.683	0.239	51977	30882
1968	0.7281	0. 1449	2.181	0.802	8388	3845
1961	0.9792	0.0834	2.892	0.819	15517	5366
: 1962	0.5770	0.0766	1.941	9.528	6958	3585
1963	0.4142	0.0621	1.661	0.488	7035	4235
1964	0.2046	0.2691	1.214	0.591	17647	14533
1965	8.4857	0.0639	1.646	0.407	33427	20303
$1986{ }^{\circ}$	-0.0685	0.2622	0.927	0.446	7241	7898
1967	-0.2839	0.2622	0.748	0.359	729	975
1968	0.3938	0.8587	1.630	0.390	4963	3044
1969	0.3521	0.0928	-1.538	0.457	2801.	1821
1970	1.2105	0.0458	3.714	0.787	3168.	853
1971.	0.9293	0.0228	2.836	0.426	8833	2833
1972	0.5282	0.0159	1.906	0.240	41946	22013
1973	8.5334	8.0359	1.896	0.356	22352	11787
1974	0.5486	0.8135	1.931	0.224	34671	17950
- 1975	0. $5940{ }^{\circ}$	0.8117	2.639	0.220	16875	7882
1976	0.3856	0.8125	1.528.	0. 170	16998	11126
1977	0.2825	0.0121	1.493	B. 164	29267	13572
1978	0.3352	0.0096	1.576	0. 154	16762	10636
1979	0.1066	0.0886	1.255	0.116	20974	16000
1980	0.3308	0.0188	1.567	0.162	1595?	10183
1981	0.4276	0.0119	1.727	0. 188	13891	8845
1982	0.5695	0.0134	1.971	0.227	14584	7452
1983	0.3143	0.0121	1.542	0.169	19527	12667
- 1984	0.2662	0.8167	1.466	0. 189	20228	13801
1985	0.2008	0.0207	1.370	0.195	20282	14802

Fig. 1: Nominal catches of redfish from Division 3M, 1959-1986. (1985 and 1986 are provisional)

Fig. 2: Standardized effort for redfish in Division 3M, 1959-1985. (1985 is provisional)

Figure 3: Plot of catch rates for redfish in NRFO Division 3 M in the period 1959-1985 as derived using a multiplicative model (1985 is preliminary).

Figure 4: Regression of standardized CPUE on unlagged standardized effort for redfish in Nafo Diuision 3 (for the period 1959-1985 (1985 is provisional).

Figure 5: Regression of standardized CPUE on standardized effort lagged 10 years for redfish in NRFO Division 3M for the period 1959-1985 (1985 is provisional).

Figure 6: Equilibrium curve for redfish in NRFO Division $3 M$ derived from effort lagged 10 years and showing actual yield and effort (unlagged) for 1968 to 1985 (1985 is provisional).

Figure 7 Comparison of average 9 as fixed in the non-equilibrium model and the actual annual q estimated by the model. for redfish in NRFO Division 3M.

Figure 8. Equilibrium curve derived from the non-equilibrium model for redfish in MRFO Division 3 M. Also shown are the actual annual values of catch and effort with their trajectory

Fig. 9: Commercial length frequencies of redfish caught by the USSR in NAFO Division 3 in 1986 (sea sampling).

