

Fisheries Organization

Bottom Water Effects on the Distribution and Density of Bottom Fish in NAFO Subarea 3
by
V. A. Borovkov, A. Yu. Bulatova, A. K. Chumakov, P. I. Savvatimsky and I. I. Tevs Polar Research Institute of Marine Fisheries and Oceanography (PINRO)

6 Knipovich Street, 183763 Murmansk, USSR

ABSTRACT

Influence of oceanographic factors responsible for yearitoyear variations in the distribution, species composition of catch, abundance and biomass of commercially-important fish in the Newfoundland area is studied on the basis of historic data from USSR and Canada surveys. Relations are ascertained between mean catch of cod, beaked redfish, long rough dab, numbers of young cod in separate divisions and the area occupied by bottom waters of certain temperatures. Mean catch per hour tow, abundance and biomass of witch in Divs. $3 \mathrm{~K}, 3 \mathrm{~L}, 3 \mathrm{~N}$ are found to vary by depth during 1983 and 1984.

INTRODUCTION

Catch per unit effort is widely used in fisheries research and practice. This index is commonly assumed to reliably represent variations in abundance and biomass of survejed fish stock. For example, T. F.Dementjeva (1976) suggests that catch per fishing effort is a useful tool of estimating the relative abundance of population at any time of the jear and reflects reliably changes in its distribution.

Being in line with the aforesaid, we at the same time think that CPUE is an integrated index of effects of many factors, both environmental which induce changes in the distribution of aquatic organisms and their availability to fisheries, and natural stock dynamics.

A study of the influence of environment on the distribution of harvested fish stock needs comprehensive and systematic data on spatial and temporal variability of oceanographic factors.

In view of this, oceanographic observations carried out annuady by the Polar Institute during trawl surveys in NaFO

SA 3 in spring and summer are of particular interest. A total of up to 350 oceanographic stations are completed annually during the same time periods and cover densely and uniformly the area surveyed.

The purpose of this paper is to study oceanogrephic factors responsible for year-to-year variations in the density and distribution of fish, species composition of bottom catches, abundance and biomass of major commercial fish.

MATERIAL AND NETHODS
On the basis of data collected during annual trawl surveys on the Grand Bank catches of different species per hour tow are analyzed, total catch and catch of each species in per cent of the total catch (by biomass) by 100 m depth intervals are estimated. Curves in some ifigures and tables are smoothed, and this is noted in their legends. Smoothing has been accomplished in accord with standard technique by the formula

$$
B=\frac{a+2 b+c}{4}
$$

where a, b, c, preceding, medium and following terms in a series, and B is an estimated one.

Tables of mean catches in number and by wetght per hour tow of major comercial species in the Newfoundland area in the period from 1971 to 1988 were compiled in accord with the technique established in previous years. Total number and total weight of each species captured in a division were divided by the number of tows. Data for 1984-1988 were doubled for to obtain catch/hour tow estimates, because 30 min.tows were made during this period. Division area was not taken into account. In calculations of the mean catch account of the distribution depth was made, tows deeper 500 m (for cod and long rough dab), deeper 100 m (for dab) and shallower than 100 m (for beaked redfish) were not.included.

Bottom temperatures measured at oceanographic stations during trawl surveys for bottom and pelagic fish were used as indicator of environmental conditions. For every survey in spring and summer seasons of 1972 to 1988 maps of bottom temperatures were plotted. Temperature values were interpolated into fixed points of a regular grid with a step of 30 min.latitudinally and 30 min. longitudinally, as well as into some extra points. For every point in the grid samples were formed, including successive annual temperature values for 1972-1988. For these samples a series of statistical characteristics was obtained - arithmetic mean, standard deviation etc.

RESULTS
Species compositions of catches from Divs. 3N, 3L, 3 M were, in general, nearly identical due to closeness of the surveyed areas and similar oceanographic conditions in them (Table 1). However, it should be noted that small relative numbers of Greenland halibut were found in catches from Div.3M, prom bably, because of small depth of fishing (only 6 tows were completed deeper 800 mg that is 0.6% of the total number of tows), and relative numbers of beaked redfish were large. Species composition changed sharply with increasing depth. Of most plentiful species, cod and long rough dab dwelt in spall depth, beaked redfish in $300-700 \mathrm{~m}$, Gieenland halibut and rock greanadier in $700-900 \mathrm{~m}$ and deeper (Tables 2-4). In different divisions these species inhabited nearly the same depth range (Fig. 1). However, their percentage in catch was different. For example, long rough dab was most numerous in Div. 3 K and accounted for 70% in catches from $0-100 \mathrm{~m}$. In Div. 3 M this species accounted for only 20% in catches from 1M-200 m. Beaked redfish predominated in catches from mid-depth in Div. 3 M . The percentage of Greenland halibut in catches from deep waters was higher in Div. 3K than in other divisions, Rock grenadier prevailed in catches from deeper than 1000 m .

Species composition in catches varies within the year as well as between years owing to changing environmental conditions and redistribution of fish to deeper or shallower waters. For example, in separate years relative numbers of cod and beaked redfish in catches from 201-300 m varied by tens of times compared to other years (Fig. 2). Such variations in the catch size were associated with different distribution of fish in the mid-water and blased the results from trawl and trawl-acoustic surveys and sometimes brought about underestimation of stock size.

In SA $0,2,3$ gradual redistribution of grenadier; halibut and redfish to deeper waters, noted earlier, reduced their accessibility to bottom trawls (Savvatimsky, 1986,1987;

Chumakov, Savvatimsky, 1987). It was also noted, that a reduction of biomass and abundance of cod, long rough dab, witch and Greenland halibut reported by Canada trawl surveys in Divs. $2 J$ and $3 K L$ in 1985 was due to distribution of fish at lower bottom temperatures than in the previous years (Baird; Bishop, 1986). Redistribution of fish to deeper waters was evident from variation of the mean catch, abundance and biomass of witch in Divs. 3K,3L, 3N in the period from 1983 to 1988. Relative catch size during this time increased during fishing in deep waters and decreased in shallower depths (Fig.3). For example, in 1983 over 50% of witch in number and by biomass dwelt in shallow waters, whereas by 1988 the witch were found to be distributed chiefly in deep waters (Fig.4)

Variations in mean catch of main comercial species per hour tow during trawl surveys in the Newfoundland area in different years are rather significant (Tables 5,6)。By 1984-1985 mean catch of cod in Divs. 3KI, 3NO and beaked redfish in Divs. 3 LNO, 3 M increased, and catches of long rough dab and dab in Divs. 3 INO decreased. These variations may, probably, be associated with changes in hydrological conditions. However, an attempt at correlating the variations in mean catch with changes of the mean bottom temperature had fielded no definitive relationship. Different results were obtained from comparison of the mean catch of cod in Divs. 3KL and 3NO with the area occupied by waters of specific temperatures. This relationship established from a $17-y e a r$ data series was characterized by reliable coefficients of correlation at the significance level $\mathrm{P}=0.05$. Mean catches of cod in Div. 3KI were correlated to the area occupied by waters of $2-3^{\circ} \mathrm{C}$ in the same divisions, correlation coefficient was $R=-0.676$, i.e. the smaller the area with the above temperatures, the larger cod catches were (Table 7). One more relationship was established: the larger the area with bottom temperatures below normal in Div. 3 KL , the greater mean catches of cod were obtained in Div. 3NO, correlation coefficient $R=0.637$. Catch size of beaked redfish on the Flemish Cap Bank depended on the area occupied by waters with temperatures above the norm in Div. 3 KL : the larger the area, the greater the catches were (correlation coefficient $\mathrm{R}=0.692$) .

Hydrological conditions exert influence not only on the distribution of fish and catch size, but also on the year-class strength. A correlation of the mean number of cod.at age 1-6 per standard tow during Canada surveys in Div. 3NO in the period from 1972 to 1982 (Table 8) to the area occupied by waters of certain temperatures produced reliable. cor-
relation coefficients at the significance level $\mathrm{P}=0.05$ (Table 9). For example, the mean number of cod at age 1 in Divs. 3NO depended on the area occupied by waters with temperatures much above the norm in Div. 3L (correlation coefficient $R=0.798$). The larger the area occupied by waters of $2-3^{\circ} \mathrm{C}$ in Divs. 3 NO , the greater the catch of cod at age 2 ($R=0.839$), at age $3(R=0.733)$ and $1-3$ years $(R=0.829)$ was in the same divisions. The larger the area occupied by waters with temperatures above the norm, the larger the number of cod at age 6 was in the catch from Divs. 3NO ($\mathrm{R}=0.748$) 。

Soviet trawl survey data provide evidence of the correlation between the area occupied by cold waters in Div. 3L and the number of juvenile cod on the Flemish Cap (teable 9). If the area occupied by bottom waters with temperatures much below the norm increases in Div. 3L, the number of cod (mean catch per hour tow) of respective year-classes at age 1,2,3 on the Flemish Cap increases too (correlation coefficient $\mathrm{R}=0.902, \mathrm{R}=0.846$, $\mathrm{R}=0.908$, respectively). Oceanographic conditions in both divisions,are under the decisive influence of the Labrador Current. Thus, our results are in conformity with the inference, that cooling of waters in the Labrador Current enhance the probability of production of strong year-classes of cod (Borovkov, 1980).

REFERENCES

Savvatimsky P.I. MS. 1986. Changes in Composition of the Bottom Fish Catches at Different Depth Along the Continental Slope in NAFO Subareas 0,2 and 3 in 1970-85. NAFO SCR Doc. 86/67, Serial No. N1184, 26 p.
Sarvatimsky r.I. 1987. Changes in Species Composition of Trawl Catches by Dopth on the Continental Slope from Baffin Island to Northeastern Newfoundland, 1970-85. NAFO Sci.Coun.Studies, 11: 43-52.
Chumakov A.K., Savvatimsky P.I. MS. 1987. Distribution of Greenland Halibut and Roundnose Grenadier in the Northwest Atlantic in Relation to Hydrographic Conditions in 1968-1986. NAFO SCR Doc. 87/93, Serial No. N1397, 38 p.
Baird J.W., and C.A.Bishop. MS. 1986. Assessment of the Cod Stock in NAFO Divisions 2J3KL. NAFO SCR Doc. 86/47, Serial No. N1163, 65 p.
Baird J.W., and C.A.Bishop. MS. 1988. Assessment of the Cod Stock in NAFO Diviaions 3NO. NAFO SCR Doc. 88/19, Serial No. N1455, 47 p.
Borovkov, V.A. MS. 1980. The effect of atmospheric circulation on the strength of cod year classes off Labrador. NAFO SCR DOc. $80 / \mathrm{VI} / 60$, Serial No. N099, 9 p.
Dementjeva T.F. 1976. Biological substantiation for fisheries forecasts. - M.: Pishchevaja promyshlennost, 206 p. (in Russian)

Composition of research bottom trawl catches in Divs. 3K, 3L, 3M during 1971-1988 (in per cent by weight)

Fable 2. Compoaition of botton trenl oatchel frou difforent deptha in D1v.3世 for 1971-1988 according to research reasel data (in per ount to weight)

Catch composition	Dapthere													
Reinbardtius hipposlossoides	-	6.6	4.4	II. 3	41.2	12.3	15.5	30.1	63.0	61.8	30.0	35.4	31.2	23.9
Hippoglossus hippogloseus	-	-	0.1	0.1	0.2	O.I	-	-	+	-	-	-	-	\ldots
Coryphanoiden rupestria	-	-	-	+	+	+	+	7.3	0.2	24.9	56.9	49.6	61.5	72.8
L'ecrourua borglax	-	+	0.2	0.4	0.5	0.9	1.4	1.7	2.4	2.3	1.4	2.7	4.5	I. 5
Nezumia bairdd	-	-	-	+	+	0.1	0.1	0.I	0.1	-	-	-	-	-
Sebastés montella	-	1.5	23.6	57.5	44.2	76.9	74.2	49.1	24:1	0.2	-	-	0.4	-
Sebestes marinus	-	-	27.6	4.6	0.1	0.6	-	+	-	-	-	-	-	
Anarhichas denticulatus	-	1.3	I.I	1.5	1.9	3.1	2.6	4.9	6.9	2.1	3.1	3.7	I. 2	-
4 norhichas minor	0.2	1.9	0.6	0.6	0.3	0.1	0.2	+	-	-	-	-	-	-
anarbichas lupur	-	0.3	1.6	0.9	0.1	+	0.1	0.1	-	-	-	-	-	-
Rejiforme	0.9	I. 9	0.8	0.9	0.8	0.5	0.3	3.2	0.2	5.3	6.5	5.4	-	0.3
Somatosus microcophalus	-	-	-	0.1	-	-	2.0	-	0.6	\cdots	-	-	-	-
Other Squallformen	-	-	-	-	+	0.6	0.7	1.3	0.3	1.0	1.6	3.2	0.9	-
Antimore roptrata	-	-	-	+	-	0.1	0.1	0.5	0.6	0.9	0.3	-	-	-
Gacus morhua	12.1	13.2	32.6	17.2	5.3	0.9	+	0.1	-	-	-	- -	-	-
Glyptocephalus cynoglonsus	-	0.4	0.5	1.6	2.8	1.5	1.7	0.3	0.6	0.4	-	-	-	
Hippogloasoides platesaoidee	78:5	69.3	6.1	2.5	$1 . ?$	0.2	0.2	0.2	-	-	-	-	-	-
Limanda fermiginea	6.1	+	$+$	+	-	0.1	$+$	\rightarrow	-	-	-	-	-	-
Ljcodes	0.2	2.5	0.4	0.3	0.2	+	+	+	-	-	-	-	-	-
sallotus villosus	-	+	0.2	-	-	-	-	-	-	-	-	-	-	-
Cthers	-	1.0	0.2	0.4	0.7	2.0	0.8	1.0	0.9	I.I	0.2	-	0.3	1.5
Nean catch, kg/hour	265	243	524	646	672	629	1001	584	480	722	604	830	368	687
Number of catches	8	22	450	457	144	35	15	23	IS	6	7	5	8	4

Teble 3. Compooition of botton trael catches from difforont depth in Div. 3l for 1974-1989, according to rebearch vessel data (in par cont by melebt)

Catch compoaition	bepth,									
	0-100 110I-200120I-3001301-4001401-5001501-6001601-7001701-8001801-900!901-100									
Reinhardtius hippoglossoldes	-	0.9	4.7	10.7	10.4	9.5	13.2	II. 4	50.0	16.4
Hippogiossus hippogloasus	+..	-	0.1	0.1	O.I	0.3	0.7	-	-	-
Coryphaenoides rupeatrie	-	+	$+$	$+$	-	0.1	0.4	0.8	-	83.6
Macrourus berglax	+	+	0.7	1.9	1.3	0.9	I.I	I. I	4.0	3.6
Nozumia bairdi	-	+	$+$	0.1	0.4	0.1	0.1	0.1	-	_
Sobastes wentella	+	0.2	B. 0	38.1	63.2	63.9	63.7	76.7	35.0	-
Sebastos marinub	+	$+$	1.0	0.1	$+$	+	+	-	-	_
Anorhichas denticulatue	+	0.3	1.5	I. 7	1.5	1.9	2.3	7.2	5.0	_
Anarhiches minor	+	I. 3	1.9	0.6	0.2	0.6	0.3	-	5.0	-
Anarbichas lupus	+	0.5	2.8	1.7	0.2	0.1	0.1	-	6.0	-
Rajiformes	4.1	4.4	5.5	7.8	. 10.9	I7.I	10.8	0.6	-	_
Somntosus microcephalus	-	-	-	-	0.5	0.3	-	-	-	-
Other Squaliformes	-	-	-	-	-	0.1	2.2	0.5	-	-
Antimora rostrata	-	-	-	-	-	0.1	2.2	0.6	-	-
Gedus morhua	33.3	22.8	47.5	31.3	6.8	0.1	+	-	-	_
Glyptocephelus cynoglossus	0.1	0.3	1.4	2.5	3.0	2.7	3.7	0.4	-	-
Hippoglossoides platessoides	45.6	64.2	22.5	2.6	I.I	1.6	0.4	0.	-	-
Limonda ferruginea	9.6	0.1	+	$+$	+	1.6	0.1	-	-	-
Mallotus villosus	3.8	3.5	1.0	0.1	-	-	O	-	-	-
Ammodytes americanus	3.0	0.2	-	-	-	-	-	-	-	-
Lycodes	0.2	0.9	1.2	0.3	0.1	0.1	+	0.2	-	-
Others	0.2	0.3	0.2	0.4	0.3	0.6	0.8	0.4	-	-
Hoan catch $\mathrm{kg} / \mathrm{hour}$	306	349	401	421	656	899	736	544	100	
Number of catches	250	397	365	210	70	47	35	8	I	2

Table-4. Oompoaition:of_bottomitranl. cstches:from:different depth in:Div.c 3lifor:1971~1988; eccording ito research veseal data:(in pericent:by, me1ght).

Catch composition	Dopth. B :											
	${ }^{1} 101-200 \mid$	201-300	\|301-400		1401-500	\|501-600		1601-700	1701-800	\{801-900!	19010	$\begin{aligned} & 1001 \\ & 1100 \\ & \hline 100 \end{aligned}$
Heinherdtius blppogiossoides	-	0.3	0.5	1.7	1.2	5.6.*	3.4	51.2	14.2	20.1		
Hippogloseus hippogloseus	0.2	0.1	0.1.	+	-	-	-	--	-.	-		
Coryphaenoides rupastris	-	-	0.1	+	0.1	0.6	0.6	39.4	81.3	51.4		
bacrourus berglex.	+	+	O.I	0.3.	0.4 .	1.3	2.7	2.5	1.1.:	11.4		
Nezumia beirdi	+	+	+	0.1	0.1	0.3	0.1	-	- :	1.0		
Sebastes mentella	12.2.	31.1	79.4	88:0	95.8 -	90:3	92.0	6.9	-	4.0		
Sebastes marinus	8.5	25:9 ${ }^{\circ}$	2.2	+	+	$+$	-	-	-	-		
Anarbichas denticulatus	0.7	0.4	0.7	1.0.	0.8	0.7	0.3	-	1.1.	1.9		
nuarhiches minor	1.5	I.2.-	0.7	0.8	0.2	+	--	-	-	-		
inarbichas lupus	7.4	2.9	I.I.	0.2	+	+	+	-	-			
Rajiformes	0.2 .	0.2	0.2 .	0.3	0.2	$0.2{ }^{\circ}$	-	-	-	-		
Somniosua microcephalus.	-...	--	- .	-.	-	-	- .	-	-	-		
Cther Squaliformes	-"	+	-	+	+	-	--	--	-	-		
Antimora rontrats	-	-	-	-	-	-	+	-	-	-		
Gadus morbus	32.7	31.3	12.3	4.0	0.2	-	0.2.	-	-	- -		
Glyptoceptalus cynogloseus	0.4	0.3.	0.1	+	+	-	--	-	-	-		
Mippoglossoides platessoldes	34.6 .	6.25	2.2..	2.7.	0.1..	0.2...	\because	- -	- -	-.		
I, imanda forrugtnea.	-.	+	-*	-.	- .	.	--	-	-	-		
Sotacanthldae	-	-..	0.1.	0.3	0.4	0.1	0.2.	-	-	-		
\therefore thers	\$. 6	0.1	0.2	$0.5{ }^{\text {. }}$	0.5	0.7	0.5	-	2.3	10.2		
Suin catch, kg/hour	255	3815.	674**	716	898	487	508	245	I77*	166		
Nugker of catchos.	I68	416	264	172°	102	70	10	¢	I	3		

Table 5．Mean catches of main commercial fishes in the Newfoundland area

Species	Area	YEAR																	
Tod	3 KI	I60	127	75	35	40	65	66	66	70	74	60	63	70	187	179	123	I2I	152
	$3{ }^{+1} \mathrm{C}$	II6	108	100	IIO	98	90	II2	108	60	36	56	98	IIO	197	274	228	IIC	58
	3 n	80	90	I70	350	540	600	460	200	100	60	40	80	I60	246	179	123	IC8	88
Eoaked redfish	2¢	450	500	600	750	700	480	450	500	680	II50	1500	1300	1000	III3	1139	765	404	$\angle C I$
	ごNC	580	450	460	660	780	840	720	1080	I620	I500	1200	960	720	2556	2208	II39	862	IUI7
	3n	200	300	400	400	300	350	600	I 500	3100	2500	1800	2250	2700	I298	I209	1876	1448	707
Long nough dab	江NC	72350	80	I20	185	200	215	185	110	． 70	80	80	80	88	70	58	49	46	50
			360	380	400	380	480	540	490	400	480	． 480	400	410	365	283	268	260	199
	ご吅	－ 40	44	56	72	IIO	I24	94	36	28	30	32	36	40	－ 35	58	73	54	35
Jab	ZINC	200	225	265	260	230	230	220	200	230	248	260	232	220	208	I54	91	53	3ε

Table 6. Kean catches of main commercial fishes in the Newfoundland area

Species	iArea																		
		1971!1972!1973!1974!1975!1976!1977!1978!1979!1980!1981!1982!1983!1984!1985!1986!1987!1988																	
cod	3 KI	I20	II5	60	30	40	75	63	68	77	100	83	88	I25	227	232	216	187	184
	3NO	79	65	40	50	70	75	100.	95	60	55	80	155	190	184	2I2	200	138	88
	3 m	75	70	60	70	150	290	310	I75	75	60	70	70	60	130	IIO	69	4 I	25
Beaked redfish	3K	180	200	240	280	250	180	180	240	320	460	500	420	400	480	501	339	2 II	191
	3LNC	100	80	100	140	I20	120	140	260	420	380	280	180	120	410	338	217	2 II	212
	3 M	80	I40	130	I20	120	140	240	320	550	600	510	530	510	344	346	481	358	172
$\begin{aligned} & \text { Long } \\ & \text { rough } \\ & \text { dab } \end{aligned}$	3K	12	40	38	54	55	55	48	30	20	25	30	32	28	30.	23	18	17	II
	3LNO	125	110	110	125	130	150	190	160	150	180	210	190	180	170	129	98	77	65
	3M	18	27	45	58	75	84	54	27	18		I8	2 I	2 I	38	42	43	33	22
Dab	3LNO	84	90	104	100	88	89	90	90	100	II2	II4	108	100	9 I	68	42	24	17

Table 7 Linear correlations between mean catch per hour tow (USSR trawl survey data) and area occupied by bottom waters of certain temperatures, 1972-1988

Table 8. Mean number of cod at age 1-6.per standard heul in Canadian traml surveys in Div. 3NO*

$\begin{aligned} & \text { Year- } \\ & \text { class } \end{aligned}$	A GE							
	. !	2	3	I-3	4	5	6	! 4-6
1972	0.07	I. 39	4.70	2.05	I. 83	4.63	0.96	2.47
1973	0.05	3.16	. 2.89	2.03	6.29	2.48	I. 76	3.51
I974	0.46	3.89	9.71	4.69	8.17	7.84	0.44	5.48
1975	0.58	2.35	7.07	3.33	9.25	I. 07	2.32	4.21
1976	0.01	0.71	2.33	I. 02	0.67	I. 83	0.47	0.99
1977	0.55	0.93	I. 38	0.95	I. 58	0.60	0.31	0.83
I978	3.09	5.39	5.39	4.62	3.54	6.87	5.60	5.34
1979	0.01	0.38	I. 18	0.52	3.69	5.29	0.88	3.29
1980	0.35	9.37	17.30	9.01	9.90	2.4 I	I. 62	4.64
I98I	I. 56	6.21	6.20	4.66	6.05	6.46	2I. 25	II. 25
$198{ }^{\circ}$	0.52	3.28	4.47	2.76	7.71	34.86	1.06	I4.54

- According to Baird; Bishop, NAPO, SCR Doc. 88/19, Ser. No. N1455, Table 10

Table 9. Lincur corrulations between mean number of cod at age 1-6 in a research trawl catch (Canada trawl survey data, Div. 3 NO) and area occupied by bottom waters of certain temperatures, 1971-1982

Table 10. Linear correlations between mean number of cod
at age 1-3 from 1972-1987 yearclasses (USSR
trawl survey data) and area occupied by bottom
waters of certain temperatures

Dependent index :Independent index (mean number of : (area occupied by cod at age 1-3 :bottom waters of per standard tow: certain temperatures) in Div. 3KLM) :				$\begin{aligned} & \text { :Corre- } \\ & \text { :lation } \\ & \text { :coeff } \\ & \text { :cient } \\ & : R \end{aligned}$	$\begin{array}{r} \text { :Sample: } \\ \text { : size, } \\ : \mathrm{n} \\ : \end{array}$	$\begin{aligned} & \text { Signifi- } \\ & \text { cance level, } \end{aligned}$
Age 1,	3K	$A / 5=M B N$,	31	0.761	17	0.001
Age 2,	3 K	$\mathrm{A} / 5=\mathrm{MAN}$,	3NO	0.808	16	0.001
Age 3,	3L	$A / E=A N$,	3NO	0.557	15	0.05
Age 1,	3M	$A / O=M B N$,	32	0.902	17	0.001
Age 2,	3M	$\mathrm{A} / \mathrm{S}=\mathrm{MBN}$,	3 L	0.846	16	0.001
Age 3,	3M	$A / 5=N B N$,	32	0.908	15	0.001
AGE: $1+2+3$	3M	$\mathrm{A} / \mathrm{F}=\mathrm{MBN}$,	3L	0.909	15	0.001

Fig. 1 Distribution by depth of major commercial fish in Divs. $3 \mathrm{~K}, 3 \mathrm{~L}, 3 \mathrm{~N}$, trawl survey data for 1971-1988 (smoothed series).

Fig. 2 Mean numbers of cod and redfish Sebastes mentella (in per cent of total catch, by weight) in Div. $3 \mathrm{~K}, 3 \mathrm{I}, 3 \mathrm{M}$ in $201-300 \mathrm{~m}$ depth interval, trawl survey data for 1971-1988 (figures in diagrams - number of tows).

Fig. 3 Mean catch of witch by depth during 1983-1988 in Divs. 3K,3L,3N (smoothed series)

Fig. 4 Abundance and biomass of witch by depth in Divs. 3K,3L, 3N during 1983-1988 (smoothed series)

