NOT TO BE CITED WITHOUT PRIOR REFRENCE TO THE SECRETARIAT

Northwest Atlantic
Fisheries Organization

## SCIENTIFIC COUNCIL MEETING - JUNE 1990

Report of Scientific Council, June 1990 Meeting

## CONTENTS

## Page


II. Fishery Science .......................................................................................................... 3

1. General Fishery Trends ....................................................................................... 3
2. Assessment of Finfish and Invertebrate Stocks ............................................................. 3

Summary Sheets

- Cod in Subarea 1 ............................................................................... 4
. Cod in Division 3M ........................................................................... 5
- Cod in Divisions 3 N and 30 ................................................................... 6
. Redfish in Subarea 1 .............................................................................. 7
Redfish in Division 3M .......................................................................... 8
Redfish in Divisions 3LN ....................................................................... 9
- Silver Hake in Divisions 4VWX ........................................................... 10
- American Plaice in Division 3M ............................................................ 11
- American Plaice in Divisions 3L, 3 N and 30 ......................................... 12
. Witch Flounder in Divisions 3 N and 30 ......................................................... 13
- Yellowtail Flounder in Divisions $3 \mathrm{~L}, 3 \mathrm{~N}$ and 30 ............................... 14

Greenland Halibut in Subareas 0 and 1 ............................................... 15

- Greenland Halibut in Subarea 2 and Divisions 3 K and 3 L ................... 16
- Roundnose Grenadier in Subareas 0 and 1 ............................................ 17
- Roundnose Grenadier in Subareas 2 and 3 ........................................................... 18
. Wolffish in Subarea 1 ........................................................................ 19
- Capelin in Divisions 3 N and 30 ............................................................ 20
- Squid in Subareas 3 and 4 .................................................................. 21

- Shrimp in Denmark Strait ................................................................... 23

3. Response to Questions by the Fisheries Commission .......................... 24
4. Environmental Research ................................................................................... 29

5. Gear and Selectivity ............................................................................ 30
6. Review of Scientific Papers ................................................................ 30
7. Other Matters ....................................................................................... 30
III. Research Coordination ............................................................................................... 31
8. Fishery Statistics ............................................................................................... 31

9. Biological Surveys ........................................................................................... 31


10. Review of STACPUB Membership ..................................................................... 32
11. Review of Scientific Publications ................................................................................................... 32
12. Production Costs and Revenue for Scientific Council Publications ......... 32
13. Promotion and Distribution of Scientific Publications ........................ 32

14. Papers for Possible Publication ............................................................. 33
Page
15. Microfiche Projects ..... 33
16. Other Matters ..... 33
V. Collaboration with Other Organizations ..... 34
17. Joint ICES/NAFO Work $\ddagger$ ng Group on Harp and Hooded Seals ..... 34
18. Fourteenth Session of CWP, February 1990 ..... 34
VI. Future Scientific Meetings ..... 34
19. Annual Meeting and Special Session in September 1990 ..... 34
20. Scientific Council Meeting in June 1991 ..... 35
21. Special Session 1991 ..... 35
VII. Nomination of officers ..... 35
22. Chairman of STACFIS ..... 35
23. STACPUB Membership ..... 35
VIII. Adjournment ..... 35
Appendix I. Report of Standing Committee on Fishery Science (STACFIS) ..... 37
I. General Review ..... 37
24. Opening ..... 37
25. Provisional Catch Data ..... 37
26. General Trends for the Northwest Atlantic ..... 37
27. Fishery Trends by Subarea ..... 38
II. Assessments ..... 39
28. Cod in Subarea 1 ..... 39
29. Cod in Division 3M ..... 46
30. Cod in Divisions 3 N and 30 ..... 47
31. Redfish in Subarea 1 ..... 54
32. Redfish in Division 3M ..... 55
33. Redfish in Divisions 3 L and 3 N ..... 57
34. Silver Hake in Divisions $4 V, 4 W$ and $4 X$ ..... 60
35. American Plaice in Division 3M ..... 65
36. American Plaice in Divisions $3 \mathrm{~L}, 3 \mathrm{~N}$ and 30 ..... 66
37. Witch Flounder in Divisions 3 N and 30 ..... 75
38. Yellowtail Elounder in Divisions $3 \mathrm{~L}, \mathrm{3N}$ and 30 ..... 76
39. Greenland Halibut in Subareas 0 and 1 ..... 81
40. Greenland Halibut in Subarea 2 and Divisions 3KL ..... 83
41. Roundnose Grenadier in Subareas 0 and 1 ..... 85
42. Roundnose Grenadier in Subareas 2 and 3 ..... 86
43. Wolffish in Subarea 1 ..... 88
44. Capelin in Division 3L ..... 88
45. Capelin in Divisions 3 N and 30 ..... 88
46. Squid in subareas 3 and 4 ..... 90
47. Shrimp in Subareas 0 and 1 ..... 90
48. Shrimp in Denmark Strait ..... 94
III. Response to Fisheries Commission Requests ..... 96
49. Cod in Divisions $2 \mathrm{~J}, 3 \mathrm{~K}$ and 3 L , ..... 96
50. Cod in Division 3 M ..... 97
51. Flounders in Divisions $3 \mathrm{~L}, 3 \mathrm{~N}$ and 30 ..... 98
52. On Catches Exceeding TACs ..... 98
53. Stocks of Mesopelagic Species and Atlantic Saury ..... 99
IV. Environmental Research ..... 100
54. Introduction ..... 100
55. Review of Environmental Studies in 1988 ..... 100
56. Overview of Environmental Conditions ..... 100
57. Effects of Climate Change on Fisheries ..... 100
Page
58. Election of Chairman ..... 100
V. Ageing Techniques and Validation Studies ..... 100
59. Reports on the Otolith Exchanges ..... 100
VI. Gear and Selectivity Studies ..... 101
60. Selectivity in Shrimp Trawl ..... 101
VII. Review of Scientific Papers ..... 101
61. Winter Fishing for cod in $3 P n$ and $4 R s$ ..... 101
62. Shrimp at Elemish Cap (Division $3 M$ ) ..... 101
VIII. Other Matters ..... 101
63. Review of Current Arrangements for Conducting Stock Assessment ..... 101
64. Working Group on Shrimp Ageing ..... 101
65. CAFSAC Special Invertebrate Subcommittee on Shrimp ..... 102
66. Special Session 1990 ..... 102
67. Special Session in 1991 ..... 102
68. Theme for Special Session in 1992 ..... 102
69. Adjournment ..... 102
Annex 1. Report of the Subcommittee on Environmental Research ..... 103
70. Chairman's Report ..... 103
71. Marine Environmental Data Service (MEDS) Report for 1989 ..... 103
72. Review of Environmental Studies in 1989 ..... 104
73. Overview of Environmental Conditions in 1989 ..... 105
74. Other Matters ..... 106
75. Acknowledgements ..... 106
Appendix II. Report of Standing Committee on Research Coordination (STACREC) ..... 107
76. Fishery Statistics ..... 107
77. Biological Sampling ..... 108
78. Blological Surveys ..... 109
79. Other Matters ..... 109
80. Acknowledgements ..... 112
Appendix III. Report of Standing Committee on qublications (STACPUB) ..... 113
81. Review of STACPUB Membership ..... 113
82. Review of Scientific Publications Since June 1989 ..... 113
83. Production Costs and Revenue for Scientific Council Publications ..... 114
84. Promotion and Distribution of Scientific Publications ..... 114
85. Editorial Matters Regarding Scientific Publications ..... 114
86. Papers for Possible Publication ..... 115
87. Microfiche Projects ..... 116
88. Other Matters ..... 116
89. Acknowledgements ..... 116
Appendix IV. Agenda for Scientific Council Meeting - June 1990 ..... 117
Appendix V. List of Participants ..... 125
Appendix VI. List of Research and Summary Documents ..... 127

REPORT OF SCIENTIFIC COUNCIL
June 1990 Meeting

## I. PLENARY SESSIONS

Chairman: B. W. Jones . . . . . Rapporteur: T. Amaratunga
The Scientific Councll met at the NAFO Headquarters at 192 Wyse Road, Dartmouth, Nova Scotia, Canada, on $6-20$ June 1990 , to consider the various matters ilsted in its provisional agenda.

The Executive Committee met briefly prior to the opening session of the Council, and the provisional agenda and work plan were reviewed.

Representatives attended from Canada, Cuba, Denmark (Faroe Islands/Greenland), European Economic Community (EEC), German Democratic Republic, Iceland, Japan and Union of Soviet Socialist Republics (USSR), and observers from Food and Agriculture Organization of the United Nations (FAO), Tanzania and the United States of America (USA). The NAFO Executive Secretary and Assistant Executive Secretary were in attendance.

The meeting was called to order at 1015 hr on 6 June 1990.

The Chalrman welcomed everyone to the June 1990 Meeting of the Scientific Council and hoped that it would be a successful one with the council working together in the cooperative spirit. Having been away since ICNAF times, the Chairman asked for the Council's patience as he acquainted himself of the current NAFO practices.

Before addressing matters of the Council, the Chairman called for a few moments of silence In remembrance of three colleagues and friends of the Scientific Council who recently passed away.

Lew Day, the previous Executive Secretary who was active in ICNAF and was involved in setting up NAFO, died on 7 May 1990.

Wilfred Templeman died on 5 April. He was well known in the scientific field and played a role in the establishment of ICNAF and at one time served as Chairman of STACRES.

Dick Wells, a well known scientist in NAFO especially in the field of cod and haddock research, died on 19 December 1989. Dick had at one time served as chairman of the Scientific Council and had been due to act as Convener of the Special Session on Atlantic Cod in 1991.

The Chairman then addressed the adoption of the provisional agenda. A question was raised as to why a review of the Annual Scientific Program was not proposed in the STACREC agenda. The point was made that the item was in the June 1989 agenda to address a specific request from the Fisheries Commission. The Chairman was of the view that there was no standing requirement for an annual review of the Annual Scientific Program. It was agreed to defer a decision on this point until the position could be clarified. The provisional agenda was adopted (see Appendix IV) subject to a decision on including that item.

The Chairman informed the Council that three Tanzanian Government officials, who were presently studying in Canada had requested permission to attend the June 1990 Scientific Council
meetings as observers. The Executive Secretary informed the Council that the Convention permits the Scientific Council to invite non-member government representatives as observers. It was also noted that, at previous Scientific Council meetings, the Council had accepted observers from USA and international organizations without formality. The Council agreed the three Tanzandans should be permitted to attend this specific meeting as observers and requested the Executive Secretary to convey the invitation to them. It also formally agreed on the participation of the USA observers and the expected FAO observer.

The Council was informed that the Executive Secretary held four proxy votes (Cuba, Iceland, Norway and Poland), and that two of those Contracting Parties were likely to have representatives during the course of the meeting.

The Chairman then set out a plan of work with the objective of having the Council report adopted before closing the meeting. A schedule proposed by the Chairman of STACFIS was generally accepted.

The Chairman informed the Council that consideration should be given to the nomination and election of the next STACFIS Chairman for the term of office beginning immediately after the Annual Meeting in September 1990. As the present Chairman had been elected mid-term, as a result of a resignation, the Council may wish to give consideration to the period of appointment as well as seeking nominations for the post.

The session was adjourned at 1130 hr .
The Council reconvened at 0910 hr on 7 June 1990.
The Chairman confirmed that the fisheries Comission reports referring to the Annual Scientific Program did not have a standing requirement for annual reviews or frogress reports from the Scientific Council. Recognizing that sTACREC could decide if annual reviews were necessary, the Council agreed that the STACREC agenda would remain as proposed.

The session was adjourned at 0930 hr .

The Council met again at 0910 hr on 8 June 1990.
The Council reviewed the minutes of the previous sessions and agreed on some modifications.

The Chairman observed that the Tanzanian observers arrived after the last session of the Council and took the opportunity to formally welcome them to the meeting.

The Chairman noted that two valuable meetings had been held since the September 1989 Meeting of the Scientific Council: "Working Group on Progress in Age Determination of pandalus" was hosted by the Marine Research Institute, Reykjavik, Iceland and "Workshop on Silver Hake Database" was hosted by the Greenland Fisheries Research Institute, Copenhagen, Denmarik. He extended the Council's thanks and appreciation to the Directors of the respective Institutes for hosting those meetings.

The session was adjourned at 0925 hr .

The Councll subsequently convened for brief periods to address various agenda items as reported below under the relevant sections. The concluding session was convened at 0900 hrs on 20 June 1990. The Council then accepted the adopted reports of the Standing Committees, and considered and adopted the Scientific Council Report.

The reports of the standing Committees are appended as follows: Appendix $I$, Report of Standing Committee on Fishery Science (STACFIS), Appendix II, Report of Standing Committee on Research Coordination (STACREC), and Appendix III, Report of Standing Committee on Publications (STACPUB).

The adopted Agenda, the lists of research (SCR) and Summary (SCS) documents and the list of participants are given in Appendix $I V, V$ and $V I$, respectively. The Council's considerations on the Standing Committee Reports and the other matters addressed by the Council follow in Sections II-VII.

The meeting was adjourned at 1435 hr on 20 June 1990.

## II. FISHERY SCIENCE (see STACFIS report, App. I)

## 1. General Fishery Trends

The Council noted that provisional nominal catch data for 1989 were not available for EECFrance (Metropolitan) and France (St. Pierre and Miquelon), in spite of this, the following general trends were noted. From provisional statistics for 1988 and 1989 the nominal catch of all fish and invertebrate species in the Northwest Atlantic (Subareas 0 to 6) remained basically unchanged in 1989 at 2.96 million tons and 2.95 miliion tons in 1988 (see Appendix 1, Table 1), although the "groundfish" catch decreased (4\%) from 1.21 miliion tons in 1988 to 1.16 million tons in 1989, the "pelagic fish" catch decreased (6\%) from 665,000 tons to 628,000 tons, the "finfish" catches increased very slightly (18) to 189,000 tons in 1989 from 187,000 tons in 1988 , and "invertebrates" catches increased significantly ( $10 \%$ ) to 981,000 tons in 1989 from 890,000 tons in 1988 . With respect to the nominal catches by Subarea, increases were noted for Subarea 0 (from 6,000 tons in 1988 to 13,000 tons in 1989), Subarea 1 (from 138,000 tons to 173,000 tons), Subarea 2 (from 95,000 to 103,000 tons), Subarea 6 (from 803,000 tons to 894,000 tons) and decreases were noted for subarea 3 (from 678,000 tons in 1988 to 582,000 tons in 1989), Subarea 4 (from 806,000 tons to 793,000 tons) and Subarea 5 (from 425,000 tons to 398,000 tons).
2. Assessment of Finfish and Invertebrate Stocks

The Council noted that STACFIS had reviewed the status of certain stocks in Subareas 0 to 4, as requested by Canada, Denmark (Greenland) and the Fisheries Commssion, and had advised on catch levels corresponding to reference levels of various fishing mortality according to the different requests. Management advice, based on the reference levels, could not be provided for several stocks due to insufficient data. Details of the stock assessments are given in the Report of STACFIS at Appendix $I$, while summaries of assessments are as follows:

SUMMARY SHEET - Cod in Subarea 1

Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | Min Mean | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended TAC | Various options (see special comments) |  |  |  |  |  |  |  |  |  |  |
| Agreed TAC | 62 | 68.5 | 28.3 | 12.5 | 12.5 | 53 | 90 | 110 | 110 | 12.555 | 1982-90 |
| Reported landings | 58 | 33 | 15 | 7 | 16 | $60^{1}$ | $100^{1}$ |  | $100^{1}$ | $7 \quad 32$ | 1979-89 |
| Non-reported catches |  |  |  |  |  | 3 | 3 |  |  |  |  |
| Sp. stock biomass | 55 | 33 | 26 | 41 | 29 | 57 |  |  |  |  |  |
| Recruitment (age 3) | 17 | 13 | 4 | 11 | 500 | 100 | 20 | 20 |  |  |  |
| Mean F (6-8) | 1.05 | 0.73 | 0.53 | 0.13 | 0.22 | 0.63 | 0.40 |  |  | , |  |
| 1 Provisional. |  |  |  |  |  |  |  |  | ight crui | $\begin{aligned} & \sin , 000 \mathrm{t} \\ & \text { tment in mj } \end{aligned}$ | ons <br> liions |
| Catches: | The increase since 1987 was caused by recruitment of the very strong 1984 year-class. Highest catch was in 1962: 451,000 tons. |  |  |  |  |  |  |  |  |  |  |
| Data and Assessment: | Offshore trawl surveys (FRG) conducted since 1982 and Greenland inshore longline surveys since 1987. A standardized CPUE for the Greenland trawl fishery in the period 1975-89. Assessment by VPA. |  |  |  |  |  |  |  |  |  |  |
| Fishing Mortality: | Estimated by VPA. The relative low fishing mortality in 2986 and 1987 caused by depleted stocks and restrictions on the fisheries. |  |  |  |  |  |  |  |  |  |  |
| Recruitment: | 1987-90 as estimated from trawl surveys (FRG) and inshore young-fish survey (Greenland). Values prior to 1987 from VPA (SCR Doc. 90/55). |  |  |  |  |  |  |  |  |  |  |
| State of Stock: | After record low level in the mid-1980s stock has increased by recruitment of the very abundant 1984 and a moderate 1985 year-class but thereafter very small year-classes of 1986-88. |  |  |  |  |  |  |  |  |  |  |
| Forecast for 1990: | If the TAC of 110,000 tons is taken in 1990 , it corresponds to an $F$ of 0.729 . |  |  |  |  |  |  |  |  |  |  |
| Option Basis | Predicted catch (1991) |  |  |  |  |  |  | Predicted SSB (1.1.1992) |  |  |  |
| $\mathrm{F}_{0.1}=0.409$ | 32 (000 tons) |  |  |  |  |  |  | 66 |  |  |  |
| $\mathrm{F}_{90}=0.729$ | 4 |  |  |  |  |  |  | 48 |  |  |  |
| $F_{\max }=1.363$ | 73 |  |  |  |  |  |  | 26 |  |  |  |

Since 1982, no specific TAC has been advised, but a number of management options to let the 1984 year-class grow up before exploiting it, have been advised, and catch levels for options as requested by Denmark (Greenland) have been calculated.

Both the West and the East Greenland stocks are concentrated in the southernmost areas, and in such a situation a combined assessment may be more appropriate and should be considered for future assessments.

Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | M1n | Mean | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended TAC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1983-90 |
| Agreed TAC | 12.4 | 13 | 13 | 13 | 13 | 0 | 0 | 0 | 40 | 0 | 13 | 1977-90 |
| Reported landings | 10 | 13 | 14 | 15 | 8 | $1^{3}$ | $2^{1}$ |  | 33 | 1 | 15 | 1977-89 |
| Non-reported catches |  |  |  |  |  | $7^{2}$ | $40^{2}$ |  |  |  |  |  |
| Sp. stock biomass |  |  |  |  |  |  |  |  |  |  |  |  |
| Recruitment (age ) No estimate available |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean F |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 Provisional. <br> Weights in '000 tons <br> 2 Unreported catches in 1989 believed to be around 40,000 tons Recruitment in millions and in 1988 a value of the same order of magnitude is likely to have been taken. |  |  |  |  |  |  |  |  |  |  |  |  |


| Catches: | Catches ranged from 22,000 to 33,000 tons in late-1970s and have been stable around 12,000 tons for 1980-87. Reported nominal catches were less than 1,000 tons in 1988 and 1989. The 1989 catch was estimated to be around 40,000 tons. |
| :---: | :---: |
| Data and Assessment: | Surveys conducted by the USSR since 1971 indicated that biomass and abundance have declined to a minimum in 1987. Both USSR and EEC surveys show an increase in stock biomass from 1988 to 1989 due to a relatively abundant 1986 year-class. |

## Fishing Mortality:

Recruitment: Survey results indicate a relatively strong 1986 year-class. The 1985 year-class showed some strength in the 1989 EEC survey, but it was not as evident in the USSR survey.

State of the Stock: Exploitable stock biomass was estimated to be between 78,000 and 101,700 tons in 1989. The population is composed mainly of immature fish, with age 3 the most abundant age group.

Farecast for 1991:

| Option Basis | Predicted catch (1991) |
| :--- | :--- |
| $\mathrm{F}_{0.1}=$ |  |
| $\mathrm{F}_{89}=$ |  |
| $\mathrm{F}_{\text {max }}=$ | Predicted SSB (1.1.1992) |
| Recommendation: | A cessation of fishing for cod on the Flemish Cap to allow the spawning <br> stock to rebulid. |
| Special Comments: |  |

Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | M1n | Mean | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended TAC | Same as agreed |  |  |  |  |  |  |  |  |  |  |  |
| Agreed TAC | $17^{2}$ | 26 | 33 | 33 | 33 | 40 | 25 | 18.6 | 40 | 15 |  | 1977-90 |
| Reported landings | 29 | 27 | 37 | 51 | 42 | $43^{1}$ | $30^{1}$ |  | 227 | 17 | 67 | 1959-89 |
| Non-reported catches |  |  |  |  |  |  |  |  |  |  |  |  |
| Sp. stock biomass | 177 | 176 | 176 | 180 | 173 | 105 | 80 | 76 | 180 | 25 | 107 | 1959-90 |
| Recruitment (age 3) | 35 | 47 | 33 | 7 | 4 | 9 | $25^{3}$ | - | 210 | 4 | 65 | 1959-89 |
| Mean F (Ages 6-8) | . 11 | . 19 | . 31 | . 36 | . 23 | . 59 | . 47 | $\rightarrow$ | 1.08 | 0.11 | 0.49 | 1959-89 |
| 1 Provisional. <br> Weights in '000 tons <br> ${ }_{3}$ Excludes expected catches by EEC-Spain. Recruitment in millions <br> 3 Geometric mean - 1977-88. |  |  |  |  |  |  |  |  |  |  |  |  |
| Catches: | Catches declined from a peak of 225,000 tons in 1967 to a low of 15,000 tons in 1978. Since 1974 the maximum catch occurred during 1986 but have subsequently declined. The 1989 catch was about 30,000 tons. |  |  |  |  |  |  |  |  |  |  |  |
| Data and Assessment: | Analytical assessment of catch-at-age data using Canadian and Soviet survey indices in a formulation of the adaptive framework. |  |  |  |  |  |  |  |  |  |  |  |
| Fishing Mortality: | Mean fishing mortality (weighted by population numbers) for ages 6-8 was about 0.47 during 1989. Fishing mortalities on ages 5 and 6 (the weak 1983 and 1984 year-classes) in 1989 were in excess of 1.0 . |  |  |  |  |  |  |  |  |  |  |  |
| Recruitment: | The 1983-85 year-classes are estimated to be the lowest observed in the 31 year time series. These three year-classes are all estimated to be less than 10 million fish. The next lowest year-class in the time series numbers about 21 million fish. |  |  |  |  |  |  |  |  |  |  |  |
| State of Stock: | Population biomass at the beginning of the year was at its lowest level during 1976 ( 65,000 tons). It then increased to 267,000 tons in 1984 and is currently estimated to be 93,000 tons. The reason for the large decline since 1984 is the size of the weak 1983-85 year-classes. |  |  |  |  |  |  |  |  |  |  |  |
| Forecast for 1991: | Cat | h ass | ed for | 1990 | the | of 1 | , 600 | ons ( | $=0$. |  |  |  |


| Option Basis | Predicted catch (1991) | Predicted sSB (1.1.1992) |
| :--- | :---: | :---: |
| $F_{0.1}=0.25$ | 13,600 | 65,800 |
| $F_{\max }=0.40$ | 20,800 | 60,200 |
| $F_{89}=0.47$ | 24,000 | 57,800 |

## Recommendation:

| Special Comments: | The provisional nominal catch for Div. 3NO as reported in NAFO Scs Doc. |
| ---: | :--- |
|  | $90 / 21$ was somewhat higher than that used in the current assessment. The |
|  | difference of approximately lof resulted from an update of Spanish palr |
|  | trawl catches from 15,277 tons to 17,904 tons. This information was not |
|  | provided in sufficient time for incorparation in the current assessment, |
|  | however, this omission is likely to have only a marginal effect on the |
|  | estimation of population size for 1989. |

SUMMARY SHEET - Redfish in Subarea 1


SUMMARY SHEET - Redfish in Division 3M

Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | Mln | Mean | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended TAC | 20 | 20 | 20 | 20 | 20 | 20 | 20 | $<50$ | $<50$ | 16 | 22 | 1974-90 |
| Agreed TAC | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 50 | 50 | 16 | 22 | 1974-90 |
| Actual landings | 20 | 20 | 20 | 29 | 44 | $23^{1}$ | $27^{1}$ |  | 52 | 1 | 19 | 1959-89 |
| Non-reported catches | No estimates |  |  |  |  |  |  |  |  |  |  |  |
| Sp. stock blomass |  |  |  |  |  |  |  |  |  |  |  |  |
| Recruitment (age ) | No information available |  |  |  |  |  |  |  |  |  |  |  |
| Mean F |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 Provisional. | Weights in 1000 tons Recruitment in millions |  |  |  |  |  |  |  |  |  |  |  |
| Catches: | Averaged 20,000, tons or less from 1979 to 1985 and increased thereafter to 44, 000 tons in 1987. Catches deciined again in 1988 and 1989, but catches by non-member countries are increasing but unknown. |  |  |  |  |  |  |  |  |  |  |  |


|  | Catch-at-age data available, SPA carried out but difficult to evaluate. <br> Catch rates appear stable in recent years. General production analyses are not possible because of the lack of trends in these data. <br> Research vessel survey trawling data from both USSR and EEC indicates stability between 1988 and 1989. USSR trawl-acoustic results suggest relative stability from 1987 to 1989 at about $350,000-400,000$ tons. |
| :---: | :---: |
| Fishing Mortality: | No estimate available. |
| Recruitment: | Relative strong year-class of 1980 now recruiting to fishery. Year-class of 1983 also appears relatively strong. |
| State of Stock: | Appears stable in recent years, based on both commercial catch rates and survey data. |

Forecast for 1991:

| Option Basis | Predicted catch (1991) | Predicted SSB | (1.1.1992) |
| :---: | :---: | :---: | :---: |
| $F_{0.1}=$ |  |  |  |
| $\mathrm{F}_{19}$ | No information available |  |  |
| $F_{\max }=$ |  |  |  |
| Recommendation: | set at 43,000 tons, e rom combined trawl-acou | to $F_{0.1}$ catch $s$ by USSR. | of 1987-89 |

```
SUMMARY SHEET - Redfish in Divisions 3LN
```

Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | Min | Mean | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 28 | 16 | 23 | 1974-90 |
| Agreed TAC | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 28 | 16 | 23 | 1974-90 |
| Reported landings | 20 | 15 | 21 | 43 | 71 | $45^{1}$ | $24^{2}$ | - | 71 | 8 | 24. | 1959-89 |
| Non-reported catches ${ }^{2}$ | - | - | - | - | 8 | 8 | $N \mathrm{~N}^{3}$ |  | 8 | 8 | 8 | 1987-88 |
| Sp. stock blomass |  |  |  |  |  |  |  |  |  |  |  |  |
| Recruitment (age ) |  |  | No information available |  |  |  |  |  |  |  |  |  |
| Mean F |  |  |  |  |  |  |  |  |  |  |  |  |


| 1 | Provisional. | Weights in ' 000 tons |
| :--- | :--- | :--- |
| Estimated by STACFIS for non-members who do not report to NAFO. | Recruitment in millions |  |
| NA - not available. |  |  |

Catches: $\quad$| Average catch was about 20,000 tons prior to 1985. In 1986 , landings |
| :--- |
| doubled to 43,000 tons and increased again in 1987 to 71,000 tons. Catches |

Data and Assessment: Catch-at-age available from 1978-89. SPA results cannot be calibrated due to short time series. Catch rates in both divisions show no trend with time but this may not be indicative of stock status. Exploitation rates at reference levels applied to USSR trawl-acoustic data.

Eishing Mortality: No estimate avallable

Recruitment: No estimate available but in relative terms appears to be poor in Div. 3L.

State of Stock: Considered to be in poor condition based on declining survey biomass estimates since 1983 to the present low levels as well as an indication of poor recruitment at least in Div. 3L.

Forecast for 1991:


SUMMARY SHEET - Silver Hake in Divisions 4VWX

Source of Information:


Recommendation: TAC for 1991 be set at 100,000 tons.

Special Comments: Noted success from otolith exchanges and a meeting between the age readers from USSR and Canada. STACFIS recommends the production of a manual documenting the established methods of ageing silver hake otoliths. Further, STACFIS encourages the continuation of the juvenile silver hake survey.

## SUMMARY SHEET - American Platce in Division 3M

Source of Information:



## Forecast for 1991:




- SUMMARY SHEET - American Plaice in Divisions 3LNO

Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | MIn | Mean | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended TAC | 55 | 55 | 49 | 55 | 48 | 28 | 30.3 | 24.9 | 60 | 24.9 | 48.0 | 1974-90 |
| Agreed TAC | 55 | 55 | 49 | 55 | 48 | $40^{1}$ | 30.3 | 24.9 | 60 | 24.9 | 48.4 | 1974-90 |
| Reported landings | 38.5 | 37.6 | 49.5 | 60.3 | 55.0 | $41.4^{2}$ | $40.5^{2}$ | - | 60.3 | 38.5 | 47.3 | 1974-89 |
| Non-reported catches |  | 1.8 | 4.7 | 4.3 | 0 | 0.1 | 3.1 | - | 4.7 | 0 | 2.3 | 1984-89 |
| Sp. stock biomass | 136 | 148 | 143 | 136 | 109 | 94 | 96 | 100 | 181 | 94 | 141 | 1974-89 |
| Recruitment (age 5) | 168 | 186 | 201 | 210 | 195 | 218 | $213^{3}$ |  | 294 | 168 | 215 | 1974-89 |
| Mean F (ages 9+) | 0.24 | 0.29 | 0.37 | 0.48 | 0.49 | 0.38 | 0.38 |  | 0.49 | 0.19 | 0.32 | 1974-89 |
| 1 Effective TAC was 33,585 tons. <br> Weights in 000 tons <br> 2 Provisional. <br> Recruitment in millions <br> ${ }^{3}$ Geometric mean (1974-88). |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Catches: | Highest catches for this stock occurred in the late-1960s with a peak catch of 94,000 tons taken in 1967. Catches were stable at about 50,000 tons during the 1970 s. Overall catches declined from an 18 year high of about 65,000 tons in 1986 to about 44,000 tons in 1989. |  |  |  |  |  |  |  |  |  |  |  |
| Data and Assessment: | Analytical assessment of catch-at-age data using the Adaptive framework with Canadian CPUE and RV survey data both on an age-by-age basis. |  |  |  |  |  |  |  |  |  |  |  |
| Fishing Mortality: | Age 9t weighted F..(by population numbers) increased from about 0.22 in 1977-80 to about 0.49 in 1986-87. The 1989 estimate of age $9+F$ is 0.38 . |  |  |  |  |  |  |  |  |  |  |  |
| Recruitment: | Relatively stable throughout the $1974-88$ period with a range of 168 to 294 million fish. Recent year-classes (age 5 in 1985-88) have averaged just over 200 million. |  |  |  |  |  |  |  |  |  |  |  |
| State of Stock: | The age $8+$ population has been declining steadily since 1979 ( 419 million) to 1ts lowest level in 1988 (244 million). The 1989 estimate is about 7\% higher than 1988 at about 261 miliion fish. |  |  |  |  |  |  |  |  |  |  |  |
| Forecast for 1990: |  | assum assum | $\begin{aligned} & \text { ig a } c \\ & \text { ig a } c \end{aligned}$ | ch in <br> ch in | $\begin{aligned} & 990= \\ & 990= \end{aligned}$ | $\begin{aligned} & 4,900 \\ & 0,000 \end{aligned}$ | $\begin{aligned} & 1990 \mathrm{~T} \\ & \text { likely } \end{aligned}$ | $\text { AC) } \mathbf{F}$ catc | $\begin{aligned} & 0.3 \\ & F= \end{aligned}$ | $0.54$ |  |  |


| A) option Basis | 1 | Predicted catch (1991) | Predicted SSB (1.1.1992) |
| :--- | :---: | ---: | :--- |
| $F_{0.1}=0.27$ | 25,800 | 136,700 |  |
| $F_{09}=0.60$ | 51,700 | 113,400 |  |
| $F_{\max }=0.51$ | 45,200 | 119,200 |  |


| B) Option Basis | Predicted catch. (1991) | Predicted SSB (1.1.1992) |  |
| :--- | :---: | :---: | :---: |
| $F_{0.1}=0.27$ | 22,900 | 124,600 |  |
| $F_{89}=0.60$ | $\ddots$ | 45,900 | 104,100 |
| $F_{\text {max }}=0.51$ | 40,100 | $109,200$. |  |

Recommendation:
Special Comments: Because of the shift in exploitation to younger ages; a yield-per-recruit analysis was conducted to determine more appropriate reference fishing mortality levels. The-average weights and partial recruitment values were from the 1987-89 period. The $F_{0.1}$ and $F_{\max }$ reference values are 0.27 and 0.51 respectively.

SUMMARY SHEET - Witch Flounder in Divisions 3 N and 30

Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | Min Mean | Years |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Recommended TAC | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 7 |
| Agreed TAC | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 5 | 7 |
| Reported landings | 4 | 3 | 9 | 9 | 8 | $6^{1}$ | $4^{1}$ |  | 9 | 2 | 6 |

Non-reported catches


Sp. stock biomass
Recruitment (age )
Mean F


Fishing Mortality: Unknown

Recruitment: Unknown

State of Stock: Stock size could not be firmly established, however, it appears to have declined in recent years.

Forecast for 1991:

| Option Basis | Predicted catch (1991) |
| :--- | :--- |
| $F_{0.1}=$ |  |
| $F_{s 9}=$ |  |
| $F_{\max }=$ |  |
| Recommendation: $\quad T A C$ of 5,000 tons to remain in effect. |  |

Source of Information:

|  | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | Min Mean | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended TAC | 19 | 17 | 15 | 15 | 15 | 15 | 5 | 5 | 40 | 517.2 | 1974-90 |
| Agreed TAC | 19 | 17 | 15 | 15 | 15 | 15 | 5 | 5 |  |  |  |
| Reported catches | 10.5 | 14.9 | 24.0 | 24.5 | 16.3 | 16.2 | 6.5 | - | 24.5 | 6.515 .9 | 1974-89 |
| Reported landings | 10.5 | 16.7 | 29.0 | 30.2 | 16.3 | $16.3{ }^{1}$ | 7. $6^{1}$ |  | 30.2 | 7.616 .7 | 1974-89 |
| Non-reported catches | 0 | 1.8 | 5.0 | 5.7 | 0 | 0.1 | 1.1 | - | 5.7 | . $0 \quad 2.3$ | 1984-89 |
| Sp. stock blomass |  |  |  |  |  |  |  |  |  |  |  |
| Recruitment | No information available |  |  |  |  |  |  |  |  |  |  |
| Mean F |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{1}$ Provisional. |  |  |  |  |  |  |  |  | Weig $\operatorname{Rec}$ | $\begin{aligned} & \text { sin } 00 \\ & \text { tment in } \end{aligned}$ | tons illions |
| Catches: | Catches peaked in 1972 at 39,000 tons, declined rapidly, and stabilized at 10,000-15,000 tons for most of the 1970 s and early-1980s, and were about double the TAC during 1985-86 as effort increased in the Regulatory Area in Div. 3 N . The reduced catch of 7,600 tons in 1989 , the lowest recorded in the time period observed, was due malnly to reduced allocations. |  |  |  |  |  |  |  |  |  |  |
| Data and Assessment: | No analytical assessment possible. Data from Canadian catch rates and Canadian and Soviet RV surveys were used to determine trends in stock abundance. |  |  |  |  |  |  |  |  |  |  |
| Fishing Mortality: | No information. |  |  |  |  |  |  |  |  |  |  |
| Recruitment: | The 1984 and 1985 year-classes appear to be stronger than the 3 preceding poor year-classes, but did not appear to be as strong in 1990 compared to 1989. |  |  |  |  |  |  |  |  |  |  |
| State of Stock: | The information from 1989-90 in the RV survey and CPUE indices pointed to a sifghtly more optimistic view of this stock compared to the two previous assessments. The stock is still at a low level, however, there is improved recruitment from the 1984-85 year-classes, and the size of the 1982-83 year-classes appeared to be larger in 1989-90 compared to 1987-88. |  |  |  |  |  |  |  |  |  |  |

Forecast for 1991:

| Option Basis | Predicted catch (1991) Predicted SSB (1.1.1992) |
| :---: | :---: |
| $F_{0.1}$ |  |
| $\mathbf{F}_{69}$ | No information available |
| $F_{\text {max }}$ |  |
| Recommendation: | 7,000 tons TAC advised for entire stock. |
| Special Comments: | STACFIS again expressed concern about the removals of large quantities of |
|  | Juvenile yellowtail in the Regulatory Area, particularly as it appears that |
|  | small mesh gear is being used in some yellowtail directed fisheries. |
|  | Although impossible to quantify, itwas noted that continuation of the current exploitation pattern in these fisheries would result in a |
|  | substantial decline in yield-per-recruit. |
|  | STACFIS also emphasized that this fishery will be impossible to manage if unregulated catches by non-member countries increase from the low levels of 1988-89 to the levels estimated in 1985-86. |

SUMMARY SHEET - Greenland Halibut in Subareas 0 and 1

Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | Min Mean | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended TAC | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | $25 \quad 25$ | 1983-90 |
| Reported landings | 9 | 7 | 10 | 9 | 8 | $9^{1}$ | $9^{1}$ |  | 10 | 79 | 1983-89 |
| Non-reported catches |  |  |  |  |  |  |  |  |  |  |  |
| Sp. stock blomass |  |  |  |  |  |  |  |  |  |  |  |
| Recruitment (age) | No information available |  |  |  |  |  |  |  |  |  |  |
| Mean F |  |  |  |  |  |  |  |  |  |  | . |
| 1 Provisional. |  |  |  |  |  |  |  |  | Weig <br> Recr | ts in ${ }^{\prime} 000$ itment in | $\begin{aligned} & \text { tons } \\ & \text { millions } \end{aligned}$ |
| Catches: | 868 of the catch was taken in an inshore longline and gillnet fishery, while the remaining part was taken in an offshore trawl fishery. |  |  |  |  |  |  |  |  |  |  |

Data and Assessment: Results from two bottom-trawl surveys. No analytical assessments.

Fishing Mortality: No information available.

Recruitment: No information available.

State of Stock: Only a part of the inshore components in subarea 1 is fully exploited, while the exploitation level of the offshore component is insignificant.

Forecast for 1991:

| Option Basis | Predicted catch (1991) |
| :--- | :--- |
| $F_{0.1}=$ |  |
| $F_{89}=$ |  |
| $F_{\max }=$ | Predicted SSB (1.1.1992) |

## Recommendation:

Special Comments:

TAC be maintained at a level of 25,000 tons.
Considerations were given to the biological and practical implications of combining stock assessments for Subareas 0,1 and 2 and Divisions 3 KL . From a biological point of view, there is no reason to maintain the separate assessments for the area, but at present practical limitations impede such a combined assessment.

Advises was given that any expansion of the fishery should be directed towards areas outside the exploited areas.

```
SUMMARY SHEET - Greenland Halibut in Subarea 2 and Divisions 3KL
```

Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | Min | Mean | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended TAC | 55 | 55 | 75 | 100 | 100 | 100 | 100 | 50 | 100 | 30 | 58 | 1974-90 |
| Agreed tac | 55 | 55 | 75 | 100 | 100 | 100 | 100 | 50 | 100 | 30 | 58 | 1974-90 |
| Reported landings | 28 | 25 | 19 | 16 | 31 | $19^{1}$ | $20^{2}$ |  | 39 | 16 | 27 | 1974-89 |
| Non-reported catches |  |  |  |  |  |  |  |  |  |  |  |  |

Sp. stock blomass
Recruitment (age)
Mean $F$

| ${ }^{1}$ Provisional. | Weights in ' 000 tons Recruitment in millions |
| :---: | :---: |
| Catches: | Peaked at 38,500 tons in 1978 and declined to an average of 20,000 tons during the last 5 years. |
| Data and Assessment: | An analytical assessment was performed according to a STACFIS recommendation in June 1989 but was considered unacceptable until migratory patterns, at least, can be quantified. |

Fishing Mortality: Unknown.

| Recruitment: | The 1984 and 1985 year-classes appear good and should contribute significantly to the 1991 fishery. |
| :---: | :---: |
| State of Stock: | Stock biomass.estimated to be relatively stable during 1987-89 at a level of about half that estimated in 1984 on which a TAC of 100,000 was recommended in 1986. |
| Forecast for 1991: |  |
| Option Basis | Predicted catch (1991) Predicted SSB (1.1.1992) |
| $\mathrm{F}_{0.1}{ }^{-}$ |  |
| $F_{19}=$ | N/A |
| $\mathrm{F}_{\text {max }}=$ |  |
| Recommendation: A TAC of 50,000 tons |  |
| Special Comments: | cussion on combined assessment for Greenland halibut in Subareas 0 , and Div. 3KL, see Sumary Sheet for Greenland halibut in Subareas 0 |

SUMMARY SHEET - Roundnose Grenadier in Subareas 0 and 1

Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | Min | Mean | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended TAC | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 14 | 8 | 8 | 1975-90 |
| Agreed TAC | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 14 | 8 | 8 | 1975-90 |
| Reported landings | 0.07 | 0.05 | 0.06 | 0.09 | 0.32 | $0.12^{1}$ | $+1$ |  | 12 | $+$ | 0.4 | 1967-90 |
| Non-reported catches |  |  |  |  |  |  |  |  |  |  |  |  |
| Sp. stock biomass |  |  |  |  |  |  |  |  |  |  |  |  |
| Recruitment (age ) | No information available |  |  |  |  |  |  |  |  |  |  |  |
| Mean F |  |  |  |  |  |  |  |  |  |  |  |  |



Forecast for 1991:


SUMMARY SHEET - Roundnose Grenadier in Subareas 2 and 3

Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | Min | Mean | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended TAC | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 35 | 11 | 22 | 1974-90 |
| Agreed TAC | 11 | 11 | 11. | 11 | 11 | 11 | 11 | 11 | 35 | 11 | 22 | 1974-90 |
| Reported landings | 4 | 4 | 5 | 7 | 8 | $6^{1}$ | $5^{2}$ |  | 75 | 4 | 16 | 1967-89 |
| Non-reported catches |  |  |  |  |  |  |  |  |  |  |  |  |
| Sp. stock biomass |  |  |  |  |  |  |  |  |  |  |  |  |
| Recruitment (age ) |  |  |  | infor | tion | ailabl |  | , |  |  |  |  |
| Mean F |  |  |  |  |  |  |  |  |  |  |  |  |

1 Provisional

Catches: Catches have been below 10,000 tons since 1978. Landings increased somewhat in 1986-87, but deciined again in 1988 and 1989.
Data and Assessment:

| Recruitment: | No estimate available. |
| :--- | :--- |
| State of Stock: | Not possible to evaluate. |
| Forecast for 1991: | Predicted catch (1991) |
| Option Basis No information available <br> $F_{0.1}=$  |  |
| $F_{09}=$ |  |

Recommendation: TAC for 1991 remain at precautionary level of 11,000 tons.

Special Comments: At present, SPA analysis does not appear to be possible for this stock because of inadequate calibration indices. Specialized surveys to include deeper waters are necessary.

SUMMARY SHEET - Wolffish in Subarea 1

Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | Min Mean | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended TAC | 5-6 | 5-6 | 5-6 | 5-6 | 5-6 | 5-6 | 5-6 | 5-6 |  |  |  |
| Agreed tAC |  |  |  |  |  |  |  |  |  |  |  |
| Reported landings | 3 | 2 | 2 | 2 | 2 | $2^{1}$ | $1^{1}$ |  | 4 | 12 | 1981-89 |
| Non-reported catches |  |  |  |  |  |  |  |  |  |  |  |
| Sp. stock blomass |  |  |  |  |  |  |  |  |  |  |  |
| Recruitment (age ) |  |  | No 1 | format | n ava | able |  |  |  |  |  |
| Mean F |  |  |  |  |  |  |  |  |  |  |  |
| 2 Provisional. |  |  |  |  |  |  |  |  | Weig <br> Recr | $t s$ in ${ }^{\prime} 000$ itment in | $\begin{aligned} & \text { tons } \\ & \text { millions } \end{aligned}$ |
| Catches: | Catches are composed of two species. The fishery is partly a small-scale directed fishery and partly a by-catch in the trawl fishery for cod. |  |  |  |  |  |  |  |  |  |  |
| Data and Assessment: | As more biological data and separate catch statistics for the two species are needed, no assessment was carried out. |  |  |  |  |  |  |  |  |  |  |

## Recruitment:

## State of Stock:

Forecast for 1990:

| Option Basis | Predicted catch (1991) | Predicted SSB (1.1.1992) |
| :--- | :--- | :--- |
| $\mathrm{F}_{0.1}=$ |  |  |
| $\mathrm{F}_{\mathrm{Bg}}=$ |  |  |
| $\mathrm{F}_{\max }=$ |  |  |
| Recommendation: $\quad$ The TAC for 1991 should be $5,000-6,000$ tons. |  |  |

Special Comments:

SUMMARY SHEET - Capelin in Divisions 3 N and 30

Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | M1n | Mean | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended TAC | 0 | 0 | 0 | 0 | 10 | 10 | 28 | 30 | 30 | 0 | 7 | 1979-90 |
| Agreed TAC | 0 | 0 | 0 | 0 | 10 | 15 | 28 | 30 | 30 | 0 | 10 | 1979-90 |
| Reported landings | 0 | 0 | + | 0 | 1 | $7^{1}$ | $10^{1}$ |  | 15 | 0 | 31 | 1981-88 |
| Non-reported Catches |  |  |  |  |  |  |  |  |  |  |  |  |
| Sp. stock biomass | 244 | 85 | 169 | 522 | 227 | 544 | 29 |  | 522 | 29 | $303^{2}$ |  |
| Recruitment (age ) |  |  |  |  | o esti | ates |  |  |  |  |  |  |
| Mean F |  |  |  |  | No esti | ates |  |  |  |  |  |  |


| 1 Provisional. | Weights in 000 tons |
| :--- | :--- |
| In some years, these were averages of USSR and Canadian | Recruitment in millions |
| surveys and in other years only Canadian estimates were |  |
| were available. See special comments. |  |

Catches: Peak catches in 1975 of 132,000 tons. Fishery was closed during $1979-86$.

Data and Assessment: Acoustic surveys of the spawning stock.

## Eishing Mortality: No information.

Recruitment: No direct estimates of recruitment but patterns of year-class strength have appeared to be similar to Div. 3L stock.

State of Stock: Mean stock size 1981-88 was about 303,000 tons. USSR acoustic surveys during 1975-77 indicated mean biomass of 912,000 tons.

## Forecast for 1991:

Option Basis $\quad$ Predicted catch (1991) Predicted SSB (1.1.1992)
$F_{0.1}=$
$F_{\text {日 }}=$
$F_{\text {max }}=$

Recommendation:
An exploitation rate of $10 \%$ of mature biomass is recommended and this would indicate a catch of 30,000 tons in 1991.

Special Comments: Acoustic survey by Canada during 1989 recorded lowest biomass estimate on record ( 29,000 tons) but this was believed to be an underestimate since survey may have missed the peak of spawning.

Source of Information:


## Fishing Mortality: No information available.

Recruitment: No information available.

State of Stock: Dependent on one year-class only. Low availability in recent years.

Forecast for 1990:

| Option Basis | Predicted catch (1991) | Predicted SSB (1.1.1992) |
| :---: | :---: | :---: |
| $F_{0.1}=$ |  |  |
| F89 = |  |  |
| $\mathrm{F}_{\text {max }}=$ |  |  |
| Recommendation: |  |  |

```
SUMMARY SHEET - Shrimp in Subareas 0 and 1
```

Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | Min | Mean | Years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Recommended TAC } \\ & (1000 \text { tons }) \end{aligned}$ | 29.5 | 29.5 | 36 | 36 | 36 | 36 | 44.5 | 50 | 50 | 29.5 | 37.5 | 1983-90 |
| Agreed TAC ${ }^{1}$ | 34.6 | 34.9 | 42.1 | 42.1 | 40.1 | 40.1 | 40.1 | 44.9 | 44.9 | 34.6 | 40.5 | 1983-90 |
| Reported landings ${ }^{2}$ | 46.8 | 43.4 | 54 | 63.1 | 63.7 | $60.1^{3}$ | $68.0^{3}$ | - | 68.0 | 43.4 | 57.0 | 1983-90 |
| Non-reported catches |  |  |  |  |  |  |  |  |  |  |  |  |
| Sp. stock biomass |  |  |  |  |  |  |  |  |  |  |  |  |
| Recruitment (age ) No information available |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean F |  |  |  |  |  |  |  |  |  |  |  |  |
| TAC for offshore fishery in Subareas $0 \& 1$ <br> Weights in ' 000 tons <br> (south of $71^{\circ} \mathrm{N}$ ). Effective TACs for Div. |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 Including inshore catches in Subarea 1 of about 7,500 tons up to 1986 and $6,000,9,900$ and |  |  |  |  |  |  |  |  |  |  |  |  |


| Catches: | Increased to about 50,00 tons in 1980-84, then inc | about 45,000 |
| :---: | :---: | :---: |
| Data and Assessment: | Trawl surveys, general assessment. | No analytical |
| Fishing Mortality: | No information available. |  |
| Recruitment: | No information available. |  |

## State of Stock:

## Forecast for 1991:

| Option Basis | Predicted catch (1991) | Predicted SSB (1.1.1992) |
| :--- | :--- | :--- |
| $F_{0.1}=$ |  |  |
| $F_{89}=$ | No information avallable |  |
| $F_{\max }=$ |  |  |

## Recommendation:

TAC for 1991 not to exceed 50,000 tons (for Subarea 0 and offahore Subarea 1 south of $71^{\circ} \mathrm{N}$ ). TAC for 1991 not to exceed 2,500 tons north of $71^{\circ} \mathrm{N}$.

Special Comments: Concern over possible increasing discard rates.

SUMMARY SHEET - Shrimp in Denmark Strait
Source of Information:

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | Max | M1n | Mean | Years |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Recommended TAC | 4.2 | 4.2 | 5 | - | - | - | 10 | 10 | 10 | 4.2 | 6.7 | $1983-90$ |
| Agreed TAC |  |  |  |  |  |  |  |  |  |  |  |  |

Sp. stock biomass
Recruitment (age ) No information available
Mean $F$

| 1 On Greenland side of midline only. |  |
| :--- | :--- |
| 2 Not including Greenland fishery north of $66^{\circ} 30^{\prime} N$. | Weights in 000 tons |
| 3 Provisional. |  |
| Catches: | Increased from less than 400 tons in 1978 to around 12,500 tons in $1988, ~$ <br> then decreased to approximately 10,700 tons in 1989 |
| Data and Assessment: | General biological data and fishing data, biomass estimates fron trawl <br> surveys, and general production model. No analytical assessment. |

Fishing Mortality: Not known
Recruitment: Not known

State of Stock: | Biomass estimate at the 1985-88 average in 1989 . No apparent trends |
| :--- |
| observed in biomass estimates. Shift in size composition toward smaller |
| (male) shrimp. |

Forecast for 1991:

| Option Basis | Predicted catch (1991) |  |
| :--- | :--- | :--- |
| $F_{0.1}=$ |  |  |
| $F_{89}=$ |  |  |
| $F_{\max }=$ |  |  |

Recommendation: TAC of 10,000 tons advised for 1991.
Special Comments: STACFIS expresses its concern over the lack of information on discard
3. Responses to Questions by the Fisheries Commission
a) Cod in Divisions $2 \mathrm{~J}, 3 \mathrm{~K}$ and 3L (SCR Doc. 90/23)

The Scientific Council was requested to: continue to provide information, if avallable, on the stock separation in Div. $2 J+3 K L$ and the proportion of the biomass of the cod stock in Div. $3 L$ in the Regulatory Area and a projection if possible of the proportion likely to be available in the Regulatory Area in future years. Information is also requested on the age composition of that portion of the stock occurring in the Regulatory Area.

A comprehensive study of stock discrimination of Div. $2 \mathrm{~J}+3 \mathrm{KL}$ cod was reviewed at the 1986 annual meeting (NAFO Sci. Coun. Rep. 1986, pages 121-124). The conclusions derived from that review were reiterated during the June 1989 meeting (NAFO Sci. Coun. Rep. 1989, page 111). No new analyses are currently available on this subject and hence previous conclusions remain unchanged. The council notes, however, that analyses on the structure of the Div. $2 J+3 K L$ stock as well as the potential for assessing the entire management unit in smaller areas are ongoing. Estimates of the proportion of the biomass of cod in Div. 3 L in the Regulatory Area were updated with the 1989 Canadian RV survey information. Results are similar to those previously reported and are included in the following table:

| Season RV survey conducted | Years RV survey conducted | Range of proportions of biomass occurring In the Regulatory Area (\%) | Average proportion (\%) |
| :---: | :---: | :---: | :---: |
| Winter | 1985-86 | 23.8-26.8 | 25.3 |
| Spring | 1977-89 | 0.4-6.1 | 2.7 |
| Autumn | 1981-89 | 0.5-7.7 | 2.9 |

Autumn surveys in all three Divisions $(2 \mathrm{~J}, 3 \mathrm{~K}$ and 3 L ), conducted by Canada since 1981, continue to indicate that the proportion of the cod biomass in the Regulatory Area at that time of year is less than $1 \%$, on average, of the entire Div. 2J+3KL cod biomass. The average Divisional proportion of cod biomass derived from these surveys is as follows:

| Division | Relative Proportion $(\%)$ |
| :---: | :---: |
| 2 J | 41 |
| 3 K | 31 |
| 3 L | 28 |

With the assumption that the relative distribution between Divisions in autumn was similar to that of other times of the year, it was previously concluded that "the proportion of the entire Div. $2 \mathrm{~J}+3 \mathrm{KL}$ cod blomass estimated to occur in the Regulatory Area is less than $10 \%$ in winter and less than $5 \%$ on average,
throughout the year". With the previous data series updated, this conclusion remains unchanged. It might also be reasonable to assume that, because proportions of cod biomass occurring in the Regulatory Area in Div. 3L exhibit no annual trends, proportions expected to occur would be about the same as those observed.

Age compositions derived from Canadian RV surveys in areas inside and outside 200 miles were also updated. The results of these comparisons are the same as those reported last year: during spring and autumn, when only a small portion of the Div. 3L cod biomass occurred outside 200 miles, a proportionately larger number of younger fish occurred in the Regulatory Area than the area inside 200 miles. During winter, when the maximum proportion of the Div. 3L biomass occurred in the Regulatory Area, age compositions for the area inside and outside the 200 mile zone are similar.

Cod in D1v. 3M
The Fisheries Commission asked the Scientific Council, with respect to cod in Div. 3M, to comment on: the appropriateness of establishing a minimum target level for the biomass, and to comment on the role of exploratory fisheries in providing data for stock assessment purposes.

Establishing a minimum level. for the exploitable biomass is not an appropriate target to judge the status of a stock, while spawning stock biomass is the relevant variable to be taken into account. The question on the spawning stock biomass was considered in last year's response to Fisheries Commission (NAFO Sci. Coun. Rep., 1989, page 112). The spawning stock biomass estimated for 1989 was judged to be below any desirable size, despite available survey data indicating that exploitable biomass could be at a level of 85,000 tons, which was the target previously chosen by the Fisheries Commission (FC Doc. 83/IX/4). The present stock is composed mainly of lmmature fish and a substantial increase of the spawning blomass is not expected to occur before 1991 , when the relatively abundant 1986 year-class becomes partially mature. This may never occur if fishing effort continues at the present level.

On the role of exploratory fisheries in providing data for the stock assessment purposes, the Scientific Council response given last year was in the light of moratorium on the Flemish Cap cod fishery which was expected to be effective (NAFO Sci. Coun. Rep., 1989, page 138). The Council notes that a cod fishery took place In 1989 estimated at 40,000 tons and, presumably, is also taking place in ig90. In
the light of this, catch-effort and sampling data of the fleets operating in the Flemish Cap need to be collected. If these data are available to the Council, together with the present survey data, they would be the bulk of the input for future analytical assessments of the Flemish Cap cod. The time series data on longline CPUE for Earoe Island vessels for the years 1973-75 were supplied as SCR Doc. $90 / 43$, however, those values were not used in determining stock status.
c) Flounders in Divisions $3 \mathrm{~L}, 3 \mathrm{~N}$ and 30

With respect to flounders in Div. 3LNO, the Scientific Council was requested to: provide advice on management options that would reduce the extent to which the fisheries reduce the potential yield due to harvest of small fish. The Council noted that there were large numbers of fuvenile flatfish removed in the Regulatory Area in 1989. The following tables show the comparison between the Canadian, Spanish and USA fisheries for 1) yellowtail flounder and 2) American plaice in Div. 3LNO in 1988 and 1989.

Yellowtail flounder

|  | Catch ( $t$ ) | Catch 1988 (millions of fish) | Mean wt. (kg) of fish in catch | Catch (t) | $\begin{array}{r} \text { Catch } 1989 \\ \text { (millions of fish) } \end{array}$ | Mean wt. (kg) of fish in catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Canada | 10,614 | 19.6 | 0.54 | 5,007 | 9.8 | 0.51 |
| EEC-Spain | 3,205 | 24.0 | 0.13 | 1,126 | 12.4 | 0.09 |
| USA | $861$ | 1.8 | 0.48 |  |  | 0.44 |
| American platce |  |  |  |  |  |  |
|  |  | 1988 |  | 1989 |  |  |
|  | Catch(t) | Catch <br> (millions of fish) | Mean wt. (kg) of fish in catch | Catch (t) | Catch <br> (millions of fish) | Mean wt. (kg) of fish in catch |
| Canada | 26,900 | 37.9 | 0.71 | 27,900 | 39.9 | 0.70 |
| EEC-Spain | - 8,900 | 15.9 | $0: 56$ | 10,600 | 38.2 | 0.28 |
| USA | 1,400 | 1.7 | 0.82 | 1,100 | 1.3 | 0.85 |

The peak lengths in the Spanish catches of flatfish in Div. 3 NO in some months in 1989 were $18-22 \mathrm{~cm}$. Selectivity studies for American plaice indicate that the 25\% retention length for 130 mesh is 27 cm . The Scientific Council concluded that the effective mesh size used in the spanish fishery for flatfish in Div. 3No was probably much smaller than the NAFO regulation minimum size, and may have been as small as 60 mm .

Information from the Canadian fleet in 1988 showed that the discard rate of yellowtail flounder was less than $3 \%$ in all areas and that the discard rate for American plaice was at a similarly low level in almost all areas. The mesh size used by the Canadian offshore fleet is 135 mm , and the minimum acceptable size for flatfish is 28 cm .

The obvious way to reduce the loss in potential yield due to the harvest of small fish is to ensure that the regulations determining the minimum effective mesh size are adhered to. Juvenile flatfish surveys have repeatedly shown that small flatfish are concentrated on the southern Grand Bank, with a high proportion of these small fish occurring in the Regulatory Area. At the present time, closed areas and/or seasons are not possible to define without detailed information on the time, place and length frequency distribution of catches of juvenile flatfish In the Tall of the Bank area. This information was requested by scientific Council in 1989 (NAFO Sci. Coun. Rep. 1989, page 137). With the exception of some Information on the location of Canadian catch in $1986-88$ and the discard rate in the Canadian fleet in 1988 , both on a scale larger than $1^{\circ}$ by $1^{\circ}$ squares, there were no data provided at the June 1990 meeting.
d) On Catches Exceeding TACS

The Scientific Council was asked: with respect to stocks from which catches have recently been significantly in excess of the NAFO TACs, analysis is requested on the effect such catches have had in determining present stock status.

The Scientific Council notes that TACs have been significantly exceeded in recent years for the following stocks occurring in the Regulatory Area and where TAC advice is provided by the Scientific Council:

|  | 1986 |  | 1987 |  | 1988 |  | 1989** |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TAC agreed | Catch |
| Cod 3M | 13 | 15 | 13 | 8* | 0 | 40* | 0 | 40* |
| Cod 3no | 33 | 51 | 33 | 42 | 40 | 43 | 25 | 33 |
| Redfish 3M | 20 | 29 | 20 | 44 | 20 | 23 | 20 | 27 |
| Redfish 3LN | 25 | 43 | 25 | 79* | 25 | 53* | 25 | 24 |
| A. plaice 3 M | 2 | 3.8 | 2 | 5.6 | 2 | 2.8 | 2 | 3.9 |
| A. plaice 3LNO | 55 | 65* | 48 | 55 | 40 | 42* | 30.3 | 44* |
| Yellowtail 3LNO | 15 | 31 | 15 | 16 | 15 | 16 | 5 | 7.6* |
| Witch 3NO | 5 | 9 | 5 | 8 | 5 | 6 | 5 | 4 |

[^0]** Provisional, apart from those with an asterisk.


#### Abstract

The above catches are the nominal catches as officially reported to NAFO together with non-reported catches where these are available. Non-reported catches occurred in other years and stocks than those with an asterisk but no estimates could be made.


Exceeding TACs has little effect on the abllity to conduct the assessments provided that information on total catch and effort together with sampling data is made available.

The catches of non-members are difficult to both qualify and quantify. For instance, for cod in Div. 3 M , although reported catches give the appearance that the moratorium has been respected, a figure of 40,000 tons has been estimated from catch and effort data of non-member countries pair trawlers fishing for cod in Flemish Cap, and from sightings of fishing boats reported by the Canadian Department of Fisheries and Oceans including single and pair trawlers. But due to the lack of precise knowledge on catches-at-age by fleet component for several years, an analytical assessment was not possible. The present status of that stock was evaluated from research survey data: Simultaneously, it is believed that in 1989 some proportion of the cod catches actually taken in Div. $3 M$ are reported in Div. 3L, despite the moratorium in Div. 3L.

For other stocks, such as redfish in $D \pm v .3 M$, the lack of data concerning the fishery activities of non-member countries hampered the usefulness of an analytical assessment. For determining the present stocks status, the effect of under/over-reporting and misallocating catches to areas will consequently bias the analytical stock assessments like sequential population analysis.

It is therefore recommended that initiatives should be taken to obtain more accurate catch and effort data as well as sampling data from the fisheries in the Regulatory Area in order to assess the stocks.

Stocks of Mesopelagic Species and Atlantic Saury
The Scientific Council was asked to: review avallable data on stocks of mesopelagic species and on Atlantic saury that might occur in the Regulatory Area, and to provide advice on possible management measures for these stocks.

With respect to Atlantic saury, the Council noted investigations conducted in late-1960s and 1970 s revealed that some stock of Atlantic Saury (Scomberesox saurus) existed in the southern part of the NAFO area. During the June 1990 Scientific Council Meeting, no information was presented on the assessment and biology of this fish. Specialized investigations were needed to find out to what extent the Atlantic saury stock could sustain a pelagic fishery within and outside the 200-mile zone. The Council could provide no management advice at the present time.

With respect to mesopelagic species, the Council noted that several USSR investigations were done on the distribution of mesopelagic fish (mainly four species: Benthosema glaciale, Maurolicus muelleri, Notoscopelus elongatus, Ceratoscopelus maderensis) in the continental shelf slope area off Labrador and Newfoundland in 1981-87. Some results of those investigations on the species and length-age composition of the catches and on the density of the species distribution in Subareas 2 and 3 covered by surveys in 1981-87 were presented to the Scientific Council NAFO SCR documents during 1983-88. No information on the mesopelagic species were presented during the June 1990 Meeting of the Scientific Council. The Council agreed that the available information on the stocks of the mesopelagic species seemed to be Insufficient to provide advice on possible management measures.

## 4. Environmental Research

The Council noted that the Environmental Subcommittee of STACFIS had met on 12 June 1990 with M. Stein as Chairman. The total number of documents specifically addressing environmental issues had increased substantially from the previous year and the Subcommittee had additionally reviewed blologically oriented papers which had environmental data. The subcommittee had discussions on a wide range of subjects including a special consideration on the present state of climate models and possible implications for fish and fisheries if global warming occurred.

The Council noted that the term of office of the Chairman of the Environmental Subcommittee ends after the September 1990 Meeting, and endorsed the results of the election held by STACFIS which re-elected M. Stein for another two-year term. The full report of the Subcommittee is given in the STACFIS Report (Annex 1).

## 5. Ageing Technigues

The Council was pleased to note that the ageing of silver hake otoliths by canadian and USSR readers was now in good agreement and endorsed the STACFIS recommendation that a manual on established methods of ageing be prepared by the age readers.

The Council noted the 1990 exchange of American plaice otoliths from Div. 3L and 3 M and the different levels of inter-reader agreements. The Council agreed with the STACFIS recommendation that further exchanges of American plaice otoliths from Div. 3L and 3 M be conducted.

The Council noted the problems of discrepancies between scale and otolith age determinations found by Greenland halibut age readers from Canada, EEC-Portugal, EECSpain, Greenland, GDR and USSR and agreed with the STACFIS recommendation that future
exchanges should include both otoliths and scales accompanied by photographs to identify and resolve discrepancies.
6. Gear and Selectivity

The Council noted a preliminary study of selectivity in shrimp trawls was discussed.
7. Review of Scientific Papers

The Council noted that two papers which were not reviewed by STACFIS during the general assessments, were reviewed and summarized separately.
8. Other Matters
a) Review of Current Arrangements for Conducting Stock Assessment with Respect to Designated Experts

The Council noted that STACFIS would review the current arrangements at the September 1990 Meeting, particularly with respect to the status of preliminary assessment reports prepared by Designated Experts.
b) Working Group on Shrimp Ageing

The Council noted that the meeting was held in Reykjavik, Iceland in October 1989 as planned and the report was reviewed by STACFIS. The Council was pleased with the progress made on analytical types of assessment.
c) CAFSAC Special Invertebrate Subcommittee Meeting

The Council noted that. STACFIS received the conclusions from the CAFSAC review of assessments of some shrimp stocks.
d) Special Session in September 1990

The Council was pleased that submissions for the Special Session on "Management under Uncertainties Related to Biology and Assessments", with J. Shepherd as convener, had improved recently with 20 in hand at present.
e) Special Session in September 1991

The Council was pleased that, after the sad untimely death of $R$. Wells (Canada), the plans for the Special Session on "Atlantic Cod: the Understanding on Physiology, Dynamics, Ecology and Environmental Relationships" was progressing well. The Council noted that $H$. Hovgard (Denmark) had agreed to convene the session and new ideas on theme and specific topics were being considered. The Council endorsed the decision by STACFIS to dedicate the special session in memory of R. Wells.
f) Spectal Session in September 1992

The Council agreed that the theme would be decided at the September 1990 Meeting.
III. RESEARCH COORDINATION (See STACREC report, App. II) The Council observed that an EEC proposal to harmonize the computer file format for presentation of STATLANT data would have Implications to NAFO and that STACREC would be updated on the progress of this proposal.
c) The Council endorsed the recommendations by STACREC that a) an invitation be extended to the Coordinating Working Party (CWe) to hold the Fifteenth Session of CWP at NAFO Headquarters from 8-14 July 1992, and b) in order to prepare for that meeting, the Assistant Executive Secretary attend the Ad hoc Inter-Agency Consultation meeting which precedes the 79 th Statutory Meeting of ICES, in October 1991.

Biological Sampling
The Council noted that the next publication of the list of Biological Sampling Data would to cover the period 1985-89.
3. Biological Surveys
a) It was noted that STACREC was presented with the inventories of surveys conducted in 1989 and of surveys proposed for 1990 and early 1991. The Council noted that the stratifled-random surveys conducted by FRG at west Greenland in 1988 had been omitted inadvertently from the inventory of blological surveys for 1988 (NAFO sci. Coun. Rep., 1989, page 126). The Council also noted that STACREC had reviewed a list of surveys, by stock, which had been tabled for discussion with respect to the format for such an inventory. It was agreed that the list would be published as an SCS document (SCS

Doc. $90 / 22$ ) and similar compilations would be made annually by the designated experts for stocks reviewed by STACFIS.
b)

The Council took note of the 6 new strata which had been added to the Gulf of st. Lawrence in Div. 4RST.
c) The Council was pleased the final report of the STACREC Working Group on Survey Design and Procedures was prepared and presented by the convener of the working Group, and recognized its value as a reference document.
4. Other Matters

The Council observed that the List of Fishing Vessels for 1989 was to be published this year, but that data are outstanding from 12 countries or components.
IV. PUBLICATIONS (see STACPUB report, App. III)

1. Review of STACPUB Membersh1p

The Council supported STACPUB in expressing gratitude to $J$. Messtorff for his long standing and valuable contributions to STACPUB, and joined in wishing him well in his retirement.

The Council nominated and elected M. Stein (EEC) to foin STACPUB as his replacement.
2. Review of Scientific Publications

The Council noted that Journal Volume $9(1)$ and $9(2)$ were published as planned with publication dates of September 1989 and December 1989 respectively, and that Studies Number 13 and Number 14 were published as planned in November 1989 and May 1990 respectively. The Council was also pleased to note that the Scientific Council Reports was once again published and distributed on schedule in December 1989.
3. Production Costs and Revenue for Scientific Council Publications

The Council noted that, compared to 1989, at least one additional issue of the Journal is due to be published within the next year and agreed that possible extra production costs should be considered during fiscal planning, particularly in view of the additional cost of the new cover of the Journal.
4. Promotion and Distribution of Scientific Publications

The Council was pleased to note that the turn-around time of publication of papers in both the Journal and Studies had improved. Along with the new appearance of the Journal the Council hoped distribution would improve. The council noted that the new cover for the Journal will begin with the next issue, representing a decade of NAFO Journal publications.

The Council was encouraged that the invited paper by A. T. Pinhorn and R. G. Halliday was in its final stages of review for publication, and was also pleased that both J. Messtorff and Sv. Aa. Horsted had agreed to write invitational papers in the near future. The Council agreed with STACPUB that future special status issues of the Journal should use the format of Journal Vol. 4 issued in 1983.

## 5. Editorial Matters

The Council noted that all September 1989 Special session papers were under editorial consideration for publication in a special issue of the Journal by M. J. Fogarty (Convener), and hoped the publication would be completed in the near future. The Council agreed with STACPUB that the general editorial process should be reviewed in relation to turn-around times. The Council also agreed with the STACPUB decision to defer consideration of the appointment of an additional Associate Editor for Vertebrate Fisheries Biology until the September 1990 meeting.

The Council noted that M. J. Grosslein had expressed his wishes to end his service as Associate Editor due to other commitments. The Council took the opportundty to extend the expression of gratitude and appreciation for his years of service and devotion to Scientific Council matters.

The Council endorsed the invitation to Dr. R. K. Misra, Department of Fisheries and Oceans, Science Branch, Halifax, Canada to join the Editorial Board.
6. Papers for Possible Publication

The Council noted that submission of papers in 1989 had improved substantlally.
The Council noted that STACPUB had considered all 91 SCR documents and 22 SCS documents presented to this meeting and invited authors of 6 papers to submit them in a suitable form for consideration for publication in the Journal or studies. The Council reiterated that authors whose papers were not selected by STACPUB could still submit their papers for consideration.

The Council also noted that STACPUB had agreed to invite the convener of the STACREC Working Group on Survey Design and Procedures to consider preparing the "Final Report of the STACREC Working Group on Survey Design and Procedures" (SCS Doc. 90/20) for publication in studies.
7. Microflche Projects

The Council noted that 13 sets of ICNAF microfiche documents had been sold (7 in 1987 , 3 In 1988 and 3 in 1989) and the ICNAF Microfiche Project would require that seven more sets be sold to recover its full cost.
8. Other Matters

The Council noted that STACPUB had reviewed a proposal from the convener of a USSR-Canada Scientific Bilateral agreement symposium entitled "Biology and Fishery for Capelin in the

Northwest Atlantic" to be held in St. John's, Newfoundland, during 27-30 November 1990 , and because of its relevance to NAFO, decided to invite the conveners to submit suitable papers with the objective of publishing them in a single issive of the Journal. The Canadian convener, J. Carscadden, would be invited to serve as a special editor to expedite peer-review and editing of the papers.

## V. COLLABORATION WITH OTHER ORGANIZATIONS

1. Joint ICES/NAFO Working Group on Harp and Hooded Seals

As was decided at the September 1989 meeting of the Scientific Council, the Chairman conveyed the Council's agreement to the ICES proposal for a foint Working Group on harp and hooded seals. As a result, a resolution was passed at the 1989 statutory Meeting of ICES to establish such a joint ICES/NAFO Working Group. This will replace the existing ICES working Group.

The Working Group administration will be coordinated by ICES with respect to membership, appointment of chairmen, printing and distribution of reports, etc.

No meeting of the Working Group has been scheduled for 1990. Contracting Parties to either NAFO or ICES or to regulatory commissions which might desire advice on harp and/or hooded seals in a particular geographical area would be required to refer their requests to the organization having furisdiction over or interest in that area. Advice based on reports of the Joint Working Group would be provided by the Advisory Committee on Fisheries Management in the case of the ICES Fishing Area and by the Scientific Councll of NAFO in the case of questions pertaining to the NAFO area.
2. Fourteenth Session of CWP, February 1990

The Council was pleased to note that the Assistant Executive Secretary, Chairman of STACREC, and representatives from USSR attended the CWP Session held in Paris in February 1990. The Council noted that a Report on NAFO Statistical Program, Publications and ADP had been presented at the CWP Session by the Assistant Executive Secretary and that STACREC had reviewed the Report of the Fourteenth session of the CWP issued by the CWP Secretary.

## VI. FUTURE SCIENTIFIC MEETINGS

1. Annual Meeting and Special Session in September 1990

The Council would meet in conjunction with the Annual Meeting of NAFO in Halifax, Canada, during 10-14 September 1990. The meeting would be preceded by the special Session on "Management under Uncertainties Related to Biology and Assessments" which would be held during 5-7 September 1990 at the same location. The Council was hopeful more papers would be submitted for that meeting.
2. Scientific Council Meeting in June 1991

The Council noted the tentative dates (from Friday, 7th to Friday, 21 st June) proposed at the September 1989 Meeting would be inconvenient for overseas travellers.

The Council instead proposed, subject to confirmation at the September 1990 Meeting, that the Scientific Council together with its Standing Committees and Subcommittee would meet during 5-19 June 1991 in Dartmouth, Canada. The meeting would deal with requests for scientific advice on fisheries management and with other fishery-related research, publication and statistical activities.
3. Special Session 1991

The Council could not conflrm the dates nor the place for the special session which is scheduled to be held in conjunction with the Annual Meeting of NAFO in September 1991. The Council agreed to postpone the decision to September 1990 until the dates and the place for the Annual Meeting were finalized.

## VII. NOMINATION AND ELECTION OF OFFICERS

1. Chairman of STACFIS

The Chairman had requested Sv. Aa. Horsted to solicit views of Council members on the appropriate period of sexvice for the next STACFIS Chairman appointment and to obtain possible names for nomination. Sv. Aa. Horsted reported that he had consensus on both aspects. The preferred term of appointment of two years beginning at the end of the September 1990 Annual Meeting of the Scientific Council was accepted by the Council. He also brought the nomination of $D$. B. Atkinson for the office. The Chairman, noting there were no other nominations, declared D. B. Atkinson as duly elected next Chairman of STACFIS.
2. STACPUB Membersh1p

The Council was informed that a nomination was required for a person to replace J. Messtorff when he retires after this meeting. The Chairman of STACPUB proposed that M. Stein be considered. There being no other nominations, M. Stein was appointed to fill the vacancy. Having discussed this matter with him before, the Chairman was happy to announce that M. Stein would fill that post.
VII. ADJOURNMENT

The Chairman observed that the Scientific Council would be losing the two most senior representatives, J. Messtorff and Sv. Aa. Horsted, as they were retiring this year.

On behalf of the Council, the Chairman thanked J. Messtorff for his long and dedicated services extending back to ICNAF times, and for the many valuable contributions he had made to the Council, both as a senior scientist and while he was an office holder. The Council joined
the Chairman in wishing $J$. Messtorff the very best wishes for a long and happy retirement. While he expressed hope that Sv. Aa. Horsted would attend the next Scientific Council Meeting in September 1990, he noted that some of the participants present were not likely to come to that meeting, and on their behalf conveyed the same thanks and best wishes to Sv. Aa. Horsted. The Chalrman adjourned the meeting thanking the Chairmen of the Standing. Committees, especially H . Lassen for effectively conducting the long and stressful STACFIS meetings, the Secretariat for their hard work associated with the meetings, and all the participants for their contributions.
Sv. Aa. Horsted personally extended his appreciation to J. Messtorff and thanked everyone at the meeting for their well wishes.
J. Messtorff, as the senior member of the Council, congratulated the Chairman for running the meetings successfully, and personally thanked everyone for their kind wishes.

The Committee met at NAFO Headquarters, Dartmouth, Nova Scotia, Canada, 6-20 June 1990, to consider and report on matters that were referred to it by the Scientific Council, particularly with regard to provision of scientific advice on the management of certain finfish and invertebrate stocks (see Agenda). Representatives attended from Canada, Cuba, Denmark (Faroe Islands/Greenland), European Economic Community (EEC), German Democratic Republic (GDR), Iceland, Japan and Union of Soviet Soctalist Republics (USSR) and observers from the Food and Agriculture Organization of the United Nations (FAO), Tanzania and the United States of American (USA).

Various scientists assisted in the initial preparation of draft reports that were considered by the Commdtee. The report of the Subcommittee on Environmental Research (Chairman: M. Stein) is summarized in Section IV and given in detail in Annex 1 below.

## I. GENERAL REVIEW

1. Opening

The Chairman welcomed the participants to the 1990 June meeting of STACEIS.
STACFIS was informed of a minor computer bug found and corrected in the software for catch-rate standardization (APL STANDARD). The bug was in a seldomly used option in the output procedure and STACFIS noted that it had not used this option until the bug was discovered.

SCR $90 / 48$ which discusses the ADAPT methods and was considered together with the assessment of silver hake in Div. $4 V W X$. However, the discussion was general, concerning linear or logarithmic residuals, which age-groups should be included in the analysis, etc. STACFIS agreed that underlying assumptions should be addressed whenever the ADAPT or any other tuning method was used.

STACFIS discussed the use of multiplicative models in standardizing catch-rate data with reference to $S C R$ Doc. $90 / 50$. Using the sllver hake database as an example, the paper suggested that when the design matrix was lll-conditioned, the estimated standardized catch rates can vary grossly with fust minor changes in the input data. STACFIS noted that in such cases, the numerical method used to find the solutions should be specially tailored. Much more seriously, even if the correct numerical solutions were obtained, the usefulness of such estimates was doubtful.
2. Provisional Catch Data

STACFIS noted that provisional nominal catch data for 1989 , submitted to the Secretariat in STATLANT 21A reports showed data were not available for EEC-France (Metropolitan) and France (St. Pierre and Miquelon). The Committee agreed that a table containing provisional nominal catches for 1989 should be complled by the Secretariat with indications of its deficiencies. STACREC agreed that an addeundum to the document be issued when these data become available.

STACREC noted that the tabulation of provisional data for 1989 indicating its deficiencies was presented to the Scientific Council in SCS Doc. 90/21.
3. General Trends for the Northwest Atlantic

While recognizing EEC-France (M) and France (SP) data were missing, the following provisional observations from STATLANT $21 A$ reports were noted in the reported catches. The provisional overall catch (round fresh weight) of all finflsh and invertebrate stocks was 2.96 million (metric) tons in 1989, generally similar to the 1988 catch of 2.95 million tons. The total "groundfish" catch which represented $39 \%$ of the overall catch in 1989 was 4\% less than in 1988 ( 1.21 and 1.16 million tons in 1988 and 1989 respectively). Decreases were noted for cod (2\%), haddock (17\%), redfish (10\%), pollock (10\%), witch (19\%), and yellowtail (33\%) and increases noted for silver hake ( $16 \%$ ) and American plaice (3\%). The total "pelagic" catch which represented 218 of the overall catch in 1989 decreased (68) from 665,000 tons in 1988 to 628,000 tons in 1989, where herring decreased 178 and menhaden increased 4\%. The total "finfish" catch which represented 6\% of the overall catch in 1989 increased very slightly (1\%) to 189,000 tons in 1989 from 187,000 in 1988 , while increases were noted for capelin (7\%), "other finfish" declined generally (8\%). The total catch of "invertebrates", which represented $33 \%$ of the overall catch in 1989 increased significantly (10\%) to 981,000 tons in 1989 from 890,000 tons in 1988. Increases were noted for squids ( $68 \%$ ), clams (10\%), scallops (14\%), shrimp (15\%), crabs (17\%), lobsters (2\%) with a decline in "other molluscs" (19\%).

Table 1. provisional nominal catches ('000 tons) by subarea for 1988 and 1989. (t Indicates less than 500 tons.)

| species | SA 0 |  | SA 1 |  | SA 2 |  | 5A 3 |  | SA 4 |  | SA 5 |  | SA 6 |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1988 | 1909 | 2964 | 1939 | $19 t 1$ | 1989 | 1988 | 1989 | 2908 | 1989 | 1988 | 1989 | 2988 | 1989 | 1988 | 1919 |
| Cod | - | - | 61 | 100 | 59 | 56 | 303 | 262 | 158 | 153 | 47 | 43 | $+$ | 1 | 628 | 615 |
| Haddock | - | - | - | + | - | - | 11 | 9 | 16 | 16 | 9 | 5 | + | $\underline{-}$ | 36 | 30 |
| Redfishes | - | - | 1 | 1 | 1 | + | 95 | 74 | 54 | 62 | 1 | 1 | + | - | 153 | 138 |
| Sllver hake | - | - | - | - | - | - | + | + | 74 | 88 | 11 | 10 | 5 | 7 | 91 | 106 |
| Red hake | - | - | - | - | - | - | + | + | + | + | 1 | 1 | $+$ | $+$ | 2 | 2 |
| Pollock | - | - | + | - | - | - | 5 | 3 | 41 | 42 | 17 | 12 | $+$ | $+$ | 63 | 57 |
| American pladce | - | - | - | - | + | 3 | 47 | $49^{\circ}$ | 12 | 11 | 3 | 2 | + | + | 63 | 65 |
| Witch flounder | - | - | - | - | + | + | 12 | 10 | 6 | 5 | 3 | 2 | + | + | 21 | 17 |
| Yellowtail flounder | - | - | - | - | - | - | 15 | 7 | 1 | 2 | 4 | 5 | + | 1 | 21 | 14 |
| Greenland halibut | + | 1 | 10 | 9 | 6 | 6 | 13 | 15 | 8 | 5 | - | - | - | $\underline{-}$ | 36 | 35 |
| Other flounders | + | - | + | $+$ | + | + | 6 | 1 | 7 | 7 | 13 | 11 | 12 | 6 | 38 | 26 |
| Roundnose grenadier | + | + | $+$ | + | 1 | + | 6 | 5 | - | - | - | - | - | $-$ | 5 | 7 |
| White hake | - | - | - | - | - | + | 4 | 3 | 9 | 11 | 6 | 6 | + | $+$ | 19 | 19 |
| Wolffishes | - | - | 2 | 1 | + | + | 1 | 1 | 1 | 1 | 1 | 1 | - | - | 6 | 4 |
| Other groundfish | - | - | 3 | 1 | + | + | 2 | 1 | 4 | 4 | 14 | 16 | 6 | 5 | 28 | 25 |
| Atlantic herring | - | - | - | - | $+$ | + | 16 | 9 | 254 | 208 | 40 | 41 | 1 | + | 311 | 257 |
| Atlantic mackerel | - | - | - | - | - | - | 4 | 2 | 20 | 18 | 5 | 3 | 38 | 49 | 67 | 72 |
| Atlantic menhaden | - | - | - | - | - | - | - | - | - | - | 20 | 9 | 252 | 275 | 272 | 284 |
| Other pelagics | - | - | - | - | - | - | 2 | 2 | 1 | 1 | 4 | 6 | 8 | 6 | 15 | 15 |
| Capelin | - | - | $+$ | + | 17 | 22 | 90 | 90 | 5 | 7 | - | - | - | - | 111 | 119 |
| Other finfish | - | - | 2 | + | 1 | 2 | 27 | 18 | 17 | 19 | 9 | 12 | 21 | 18 | 76 | 70 |
| Squids | - | - | - | - | - | - | $+$ | 4 | 1 | 3 | 11 | 11 | 11 | 19 | 22 | 37 |
| Clams | + | - | - | - | - | - | - | 2 | 7 | 12 | 47 | 44 | 311 | 344 | 365 | 402 |
| Scallops | - | - | - | - | + | + | 8 | 3 | 33 | 50 | 94 | 93 | 54 | 69 | 190 | 216 |
| Other molluscs | - | - | - | - | - | + | - | $+$ | 2 | 2 | 35 | 29 | 44 | 34 | 81 | 66 |
| Shrimp | 6 | 12 | 59 | 60 | 9 | 13 | 2 | 3 | 14 | 15 | 3 | 4 | 1 | 1 | 95 | 109 |
| Crabs | - | - | - | - | + | + | 9 | 8 | 22 | 15 | 4 | 5 | 36 | 55 | 71 | 83 |
| Lobsters | - | - | - | - | - | - | 1 | 1 | 39 | 37 | 20 | 21 | 2 | 3 | 62 | 63 |
| Other invertebrates | - | - | - | - | - | - | - | - | + | + | 3 | 5 | 1 | 1 | 4 | 6 |
| Total | 6 | 13 | 138 | 173 | 95 | 103 | 678 | 582 | 806 | 793 | 425 | 398 | 803 | 894 | 2952 | 2955 |

## 4. E1shery Trends by Subarea

a) Subarea 0

The total nominal catch of all species in 1989 was 13,000 tons, over double the 6,000 tons caught in 1988 . The catch consisted mainly of shrimp.
b) Subarea 1

The total catch of all species increased (25\%) to 173.000 tons in 1989 from 138,000 tons in 1988. Cod and shrimp were the dominant species with $58 \%$ and $35 \%$ of the catch respectively and Greenland halibut (5\%) the next highest.
c) Subarea 2

The total nominal catch of all species increased (8\%) to 103,000 tons in 1989 from 95, 000 tons in 1988. This was due to increases in capelin (298) and shrimp (44\%) although there was a slight decline in cod (5\%).
d) Subarea 3

The total catch continued to decline in 1989 (14\%) to 582,000 tons from 678,000 tons in 1988 . This was due mainly to a decrease in cod (14\%) which represented 45\% of the Subarea 3 catch. Declines were also noted for redfish ( $22 \%$ ), yellowtail flounder (53\%), herring (44\%), "other finfish" (33\%) and scallops ( $62 \%$ ) but there were slight increases in American plaice (4\%). Greeniand halibut (15\%) and squid (from 272 tons to 3,888 tons) and clams (from no catch to 1,759 tons).
e) Subarea 4

The total nominal catch of all species decreased slightly (1.6\%) to 793,000 tons In 1989 from 806,000 tons in 1988 . Decreased catches were noted for cod (3\%), herring ( $18 \%$ ), crabs ( $32 \%$ ) and increased catches were noted for redfishes (15\%), silver hake (19\%), scallops (52\%). Cod (19\%) and herring (26\%) continued to be the dominant species, followed by silver hake (11\%), redfishes ( $8 \%$ ), and scallops (6\%).
f) Subarea 5

The total nominal catch declined (6\%) in 1989 to 398,000 tons from 425,000 tons in 1988. There were decreases noted for "groundfish" (8\%), "pelagics" (14\%) due mainly to decreases in menhaden (55\%), and "invertebrates" (2\%). Increases were noted for "other finfish" (33\%) but these species did not represent substantial portions of the catch.
g)

Subarea 6
The total nominal catch increased (11\%) in 1989 to 894,000 tons from 803,000 tons In 1988. Increases were noted for mackerel (29\%), menhaden (9\%), clams (11\%), scallops ( $28 \%$ ) and crabs (53\%), and decreases were noted for "other flounders" (50\%) and nother molluscs" (33\%).

## II. ASSESSMENTS

1. Cod in Subarea 1 (SCR Doc. $90 / 28,29,30,31,32,33,34,55,74 ; \operatorname{SCS} 90 / 14$ ).
a) Introduction

The fishery for cod in Subarea 1 is partly an offshore fishery carried out by large trawlers, and partly a coastal and fjord fishery, in which the maln part of the landings usually is taken by pound nets.

During the 1955-68 period, when the major part of the catch was taken by nonGreenlandic vessels, catches fluctuated between 234,000 and 451,000 tons (1962). Catches declined gradually after 1968 to a low of 33,000 tons in 1976, after a number of years of recruitment failure. Recruitment of the very abundant 1973 year-class in $1976-77$ resulted in increased catches up to 1979. During 1980-83. catches fluctuated between 53,000 and 58,000 tons but decreased thereafter by about 50\% each year to a low level of only 6,600 tons in 1986 , the lowest catch on record since ICNAF began compiling statistics. Catches and TACs in recent years are given in Table 2. After 1987 when no directed trawl fishery was allowed in the first ten months, fishing by trawlers was allowed in 1988 under quotas set by the Greenland Home Rule authorities.

The nominal catch in 1989 was about 103,000 tons, which is a $78 \%$ increase compared to the 1988 catch and nearly fifteen times the record-low catch of 1986 . The increase during the period 1987 to 1989 reflects the recruitment of the very abundant 1984 year-class.

Table 2. Cod in Subarea 1: catches and TAC for the entire area and catch-per-unit effort for Greenland trawlers (500-999 GRT) in Div. ID and 1E.

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Trawlers | 16 | 14 | 29 | 42 | 20 | 7 | 1 | $40^{2}$ | $40^{1}$ | $73^{2}$ |  |
| Other vessels | 38 | 39 | 27 | 21 | 13 | 8 | 6 | $12^{2}$ | $22^{1}$ | $30^{1}$ |  |
| Total (000 tons) | $54^{2}$ | 53 | 56 | 58 | 33 | 15 | 7 | $16^{1}$ | $62^{2}$ | $103^{1}$ |  |
| TAC (000 tons) | $20^{2}$ | 50 | 62 | 62 | 68 | 28.3 | 12.5 | 1.25 | 53 | 90 | 110 |
| CPUE (tons/hr) | 1.08 | 2.90 | 1.93 | 1.23 | 0.89 | 0.7 | - | $1.61^{1}$ | $2.87^{1}$ | $4.33^{1}$ |  |

1 Provisional data.
2 Estimates used for assessments.
b) , Commercial Fishery Data

1) Catch-per-unit effort for Greenland trawlers

Catch and effort data for Greenland trawlers in 1975-89 have been carefully scrutinized and the earlier figures have been revised. In 1989, the trawlers operated only in Div. $1 \mathrm{D}, 1 \mathrm{E}$ and $1 F$. The distribution of effort showed that the fishery shifted southward. The overall catch-per-unit effort increased from 2.9 t/hour in 1988 to 4.3 thour in 1989. The catch per unit effort in the second quarter of the year was the highest on record for these trawlers.

Catch rate data have been analyzed using a multiplicative model including effects of year, division and month (SCR Doc. 90/28). The data consist of logbook records from 6 sister trawlers owned by the Greenland Home Rule Government, which on average over the period analyzed account for about 90\% of the total effort in the Greenlandic trawl fishery for cod. The CPUEindex standardized to 1989 for $1975-89$ is shown in Figure 1.


Fig. 1. Cod in Subarea 1: CPUE in natural log units from multiplicative model, with error bars ( $\pm 2 \times \mathrm{S} . \mathrm{E}$.$) .$

Age composition
Catch statistics for the Greenlandic fishery are now collected on a gearbasis, but data are at present only available which allow catches to be split into trawl catches and catches by other gears (inshore catches mainly).

Greenland trawl catches were well sampled throughout the year. All samples from other gears were pooled, regardless of month and division, and used to convert the total inshore catch into numbers. For trawl catches of the Federal Republic of Germany (FRG) and the United Kingdom (UK), samples from the FRG commercial fishery were used as their length frequency distributions differed from those of the Greenland trawl catches.

Greenland trawl catches were dominated by age-group 5 ( 968 by numbers) throughout the year and in all areas. The dominance of age-group 5 was aiso evident in the FRG catches (80\%) with age-group 4 as the next most abundant (18\%). Some of this difference may be due to discarding of age-group 4 fish by Greenlandic trawlers, as a part of that age-group was still below the minimum landing size of 44 cm in Greenland.

In the inshore catches, age-groups 5 and 4 dominated with 77\% and 21\% by numbers, respectively.

Overall, the 1984 year-class accounted for $86 \%$ by numbers ( $88 \%$ by weight), whereas the 1985 year-class accounted for $12 \%$ by numbers (SCR Doc. 90/74, Table 5.2)
Weight-at-age data.
During the 1979-85 period, mean weight at age decreased, but increased again in 1986 and 1987, only to decrease in 1988 and further in 1989. Overall mean weight in the landings increased from 1.14 kg in 1988 to 1.24 kg in 1989. conducted in late autumn since 1982 by the FRG. Cod biomass and abundance
estimates for the total survey area off west Greenland are given in Table 3.

Table 3. Cod in Subarea 1: Estimate of total biomass and abundance (with 95\% confidence intervals) and mean welghts (W) from autumn surveys off West Greenland, 1982-89.

| Year | Tons | Number $(\prime 000)$ | W $(\mathrm{kg})$ |
| :---: | ---: | ---: | ---: |
| 1982 | $189,934 \pm 37.0 \%$ | $109,039 \pm 36.1 \%$ | 1.65 |
| 1983 | $98,843 \pm 28.5 \%$ | $59,362 \pm 26.5 \%$ | 1.67 |
| 1984 | $24,945 \pm 39.7 \%$ | $16,104 \pm 39.1 \%$ | 1.55 |
| 1985 | $31,860 \pm 60.1 \%$ | $52,466 \pm 33.3 \%$ | 0.61 |
| 1986 | $76,220 \pm 30.8 \%$ | $134,716 \pm 31.8 \%$ | 0.57 |
| 1987 | $464,286 \pm 47.0 \%$ | $582,868 \pm 42.6 \%$ | 0.80 |
| 1988 | $547,566 \pm 42.1 \%$ | $563,601 \pm 42.3 \%$ | 0.97 |
| 1989 | $349,812 \pm \ldots \ldots$ | $342,452 \pm \ldots$ | 1.02 |

From 1982 to 1984, the survey results revealed a drastic decline in cod biomass and abundance which was observed not only for the whole survey area but for all Divisions. The total survey biomass and abundance, however, increased considerably after 1984 and particularly in 1987 due to increased recruitment, mainly of the outstanding 1984 year-class. In 1988, the survey biomass of age 4 and younger cod increased by 122,000 tons. The biomass of age 5 and older fish, however, decreased by 39,000 tons.

The survey results of 1989 revealed a pronounced decrease in abundance by 221 million fish ( $39 \%$ ), together with an obvious southward displacement of the stock with 91\% of the total survey abundance occurring in Div. $1 E$ and $1 F$. This decrease was caused mainly by a reduction in the abundance of the 1984 year-class. The abundance estimate for NAFO Div. $1 E$ has been revised since the ICES Working Group on Cod Stocks off East Greenland met in February 1990 (SCR Doc. 90/74).

Since 1987, Greenland has conducted annual inshore longline surveys at the same time as the trawl surveys were undertaken (SCR Doc. 90/29). Inshore abundance of cod above 35 cm has been calculated by converting longline catch per unit effort to swept-area estimates.

The survey in 1989 was carried out in inshore areas of Div. 1B, 1C, 1D and 1E. The inshore component was estimated to be $21 \%$ of the total in 1989, consistent with the results of previous years' survey.

During June-July 1989, Greenland carried out a gillnet survey on young cod in inshore areas of Div. 1B, 1D and 1F (SCR Doc. 90/30).

In Div. 1B, catches were dominated by $2-$ and 3 -year old cod with a substantial amount of older fish as well. In Div. 1D 2-year old cod dominated, and few older fish were caught, whereas catches of young agegroups in Div. 1F were very low.

Based on this survey, the 1987 year-class was estimated to be about $70 \%$ of the 1985 year-class, and the 1988 year-class seemed to be poor.

Studies of migrations of cod by otolith types
Studies of otolith types, intended to quantify the migration rate of cod between West and East Greenland, were reported (SCR Doc. 90/34). The method was based on the assumption that the structure of annuli in any otolith was influenced by the growth rate and thereby by the environmental conditions under which each growth zone in the otolith was formed. Each growth zone in the otolith was classified using three structure types (called A, B and C). Almost all young cod (1-3 years old) off East Greenland showed type B and/or type $C$ zones, whereas most young cod off West Greenland showed type A zones. Therefore, it seemed likely that older cod at East Greenland which showed type A in their inner growth zones were immigrants from West Greenland. The study showed that the proportion of cod with type A zones at East Greenland increased by age which indicated that cod occurring at East Greenland and of East Greenland origin were gradually being mixed with fish of West Greenland origin. However, the well known migration to Iceland of cod from West Greenland as well as from East Greenland may influence the proportions of otolith types at East Greenland.

Based on typing of otoliths from the 1984 and 1985 trawl surveys an emigration rate with coefficients increasing with age up to age 7 were estimated (SCR Doc. 90/31). A VPA using these emigration coefficients,
instead of a constant coefficient of 0.15 for age groups 5 and older as was used in the VPA by the ICES Working Group this year, was presented. The emigration rates obtained for the 1984 and 1985 data may not be valid for the stock in 1989. Data of otolith types exist from recent years trawl surveys and these data should be included in future analyses to reflect year-to-year variations of the coefficients of emigration.

Origin and larvae drift of year-class 1984 and 1985
Results of satellite-tracking of four drifting buoys connected with drogue at 100 m depth, deployed in May 1988 off East Greenland, indicated the possibility of larvae drift from East Greenland to Southwest Greenland and the possible temporal and spatial distribution. However, those results were difficult to interpret in relation to larvae drift of the year-classes 1984 and 1985 because the drift was not measured in the year of the larvae stage of those year-classes, and because the drift of the buoys occurred over a period during which larvae would grow up to a size when they have active movements. Nevertheless, drift buoy experiments based on large number of drifters may be useful in future to evaluate the origin of new yearclasses.

## Distribution Pattern of the Stock

The important 1984 and 1985 year-classes started recruiting to the fisheries in 1987 and 1988, respectively. In the last two months of 1987 , when offshore fishing was again allowed and in 1988 , offshore fishing at West Greenland took place in the very southern part of Div. 1C, and in Div. 1D and 1E, with Div. 1D as the most important area. In 1989, Div. IE was by far the most important Division, and it was furthermore noted that the catch and effort decreased in Div. 1D, thus indicating a southward displacement of the bulk of the fishable stock.

The survey results of the FRG showed the same trend. The survey biomass of Div. $1 D$ decreased dramatically from 1988 to 1989, whereas there was a considerable increase for Div. 1E and 1F. Furthermore, the survey biomass at East Greeniand increased by 98,000 tons from 1988 to 1989 , and the major part was found south of $63^{\circ} \mathrm{N}$.

From 1988 to 1989, length compositions and mean weights were rather stable in the survey stock at West Greenland whereas mean weight increased and length composition shifted toward larger fish in the survey stock at East Greenland. This Indicated that the migration from West to East Greenland was mainly of larger fish of the 1984 year-class.

The reasons for the displacement which took place during 1989 are not known.

## Estimation of Parameters

Natural mortality was assumed to be 0.2 for age 5 and older fish. For age-groups 3 and 4 , the natural mortality was increased to 0.3 to account for discarding. An emigration coefficient of 0.15 was applied for age-groups 6 and older to account for emigration to East Greenland. This value was chosen because it produces the number of emigrants which on average over the years is necessary to account for the immigrants to East Greenland, as calculated by the ICES Working Group on cod stocks off East Greenland in its reports. Previously, a migration coefficient of 0.05 was applied for cod age $6+$ based on interpretations of former tagging experiments. However, in some years higher values have been applied, e.g.. 0.30 for 1986.

The stock distribution in 1989 indicated that the 5 -year-old cod (1984 year-class) have shown a considerable migration from west Greenland to East Greenland. Therefore, it was decided to apply an emigration coefficient of 0.25 to age 5 fish in 1989.

Tuning a VPA using ADAPT with linear defined residuals revealed that the solution was strongly dependent on just two observations. Using ADAPT with logarithmic residuals was hampered by very large variations in observations for year-classes which were very poor.

The stock is dominated by the 1984 year-class and to a lesser extent by the 1985 year-class. Consequently any projection will be largely determined by the assumption of the total mortality in 1989 for the 1984 year-class. From the surveys, $Z$ is estimated as being 0.85 which suggests that the terminal for 1989 for that year-class should be $0.40(F=Z-M-E)$. This value tallies with the accepted estimate of 500 milli on of the 1984 year-class at age 3 , the VPA estimate being 570 million. Lower terminal $F s$ and hence lower 2 values would suggest a very high year-class strength of the 1984 year-class which is thought unrealistic. The estimates of $F$ of 0.40 is considered high but not unrealistic and was used for VPA and projections. For age groups 3 and 4 the terminal Fs were taken from the partial recruitment applied in the 1986 assessment (NAFO Sci. Coun. Rep., 1989,
page 51) multiplied by $F=0.40$ as applicable to the fully recruited age-groups.
Assessments Results
In previous assessments (except in 1989) STACFIS used uncorrected survey abundance estimates in two consecutive years and catches between the times of the surveys to arrive at estimates of fishing mortality and emigration. Due to variability in the survey results this method resulted in bigh variation between years in the resultant estimates of emigration rate.

In 1989, STACFIS decided to correct the survey abundance by a factor taking a possible overestimation of abundance from surveys into account. Recent trends in spawning stock biomass and fishing mortalities were estimated by the ADAPT method. This year it was decided to assess the West Greenland stock by a VPA incorporating the period 1975-89 and age-groups 3 to 12+.

The fishable biomass of the $4+$ group from the VPA (sum of each year-class biomass as multiplied by the relative $F$ shown in Table 4) for the years 1975 to 1989 has been plotted against the annual indices derived from the multiplicative analysis of CPUE in Figure 2 and a linear relation is apparent.

Table 4. The parameters used to project catch and biomass are as follows:

| Age | Yearclass | Stock size ('000) 1 Jan 1990 | M + E | $\begin{gathered} \text { Relative } \\ \text { F } \end{gathered}$ | Mean Weight $(\mathrm{kg})$ | Percent Mature |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1987 | 20,000 | 0.3 | 0.039 | 0.52 | 1 |
| 4 | 1986 | 1,013 | 0.3 | 0.52 | 0.72 | 3 |
| 5 | 1985 | 41.294 | 0.45 | 1 | 1.27 | 6 |
| 6 | 1984 | 113,646 | 0.45 | 1 | 1.67 | 8 |
| 7 | 1983 | 1,099 | 0.35 | 1 | 2.31 | 65 |
| 8 | 1982 | 163 | 0.35 | 1 | 3.71 | 90 |
| 9 | 1981 | 321 | 0.35 | 1 | 4.21 | 98 |
| $10+$ | $<1980$ | 1,195 | 0.35 | 1 | 4.72 | 100 |



Fig. 2. Cod in Subarea 1: biomass ('000 tons) calculated from VPA vs annual CPUE index from Greenland Home Rule Government trawlers. West Greenl and, 1975-89.

1986 year-class. Both in the trawl survey and in the young-cod survey this yearclass shows a northerly distribution (Div. 1D and north thereof). The abundance is low in all surveys and the 1986 year-class is expected to be low. The conventional figure for poor year-classes of 20 million fish at age 3 has therefore been used for this year-class in the projections.

1987 year-class. This year-class shows a very low abundance in Div. $1 F$ in both surveys, but higher abundance in the northern Divisions. The young-cod index shows a high value of $70 \%$ of the 1985 year-class, and according to this, the year-class might account for some 70 million fish at age 3. This is in contrast to the trawl survey results which projects only 7 million fish at age 3. It is the first time that the two surveys have shown disagreement. In both surveys last year, this year-class showed low densities. As a cautious approach, and because the offshore area might be given higher weight than the inshore area, the value of 20 million fish at age 3 for poor year-classes has been used in the projections.

1988 year-class. Very few fish of the 1988 year-class were caught in the two surveys, and in Div. 18 only. This indicates that the year-class is poor. The conventional figure of 20 million fish at age 3 has been used in the projections.

1989 year-class. Few 0-group fish were caught in the trawl survey in Div. 1F, and little inflow of larvae from Iceland can be expected as the Icelandic 0-group survey gives an index value of almost zero for the East Greenland area. This yearclass is, therefore, expected to be small. An initlal value for poor year-classes of 20 million fish at age 3 has been used in the projections.
h) Projections of Catch and Stock Size for 1991-94

The parameters used to project catch and blomass are shown in Table 4. Stock size at 1 January 1990 is taken from the VPA. The natural mortality and the mean weights are the same as those used for the VPA. The fishing pattern, 1.e. the relative Fs, is that used in 1989. For emigration (E) a value of 0.25 for the 1984 year-class is used for this year-class throughout the period projected. Furthermore, the same $E$ value is applied to the 1985 year-class at age 5 and older as this year-class also has a very southern distribution. E value of 0.15 has been applied to the other year-classes as was done in the VPA. The fraction of mature fish in age-group 3 and 4 which are mature are as in last year's projections, while the values used for age-groups 5 and 6 (year-classes 1984 and 1985, respectively) are 8\% and 6\%, respectively, as observed in March 1990 in Div. 1F. Because of these low proportions of mature fish of these two year-classes, the percent of mature fish for age-group 7 is set to the mean between the value for age-groups 6 and 7 from last year's projections. The same procedure has been used with regard to both age groups 8 and 9 (1.e. mean of last year's values for agegroups 7 and 8, and 8 and 9 , respectively).

The parameters in Table 4 were used to calculate a yield-per-recruit curve (Fig. 3) from which $F_{0.1}$ and $F_{\max }$ were estimated as 0.409 and 1.363. $F_{\max }$ was, however, not well defined.


Fig. 3. Cod in Subarea l: yield-per-recruit curve.

All projections are carried out assuming the catch in 1990 to be 110,000 tons, the TAC set by Greenland. This catch, if taken, would correspond to a fishing mortality of $\mathrm{F}=0.729$, which is more than double the value projected last year for a catch in 1990 of 112,000 tons. The reason for this change is mainly that the mean weight of the 1984 year-class has not increased in 1989 as much as expected in last year's projections. Furthermore, the migration to East Greenland in 1989 has been higher than expected, and the catch in 1989 was also higher than the one assumed in last year's projections.

The results of the projections of catches in 1991 for a range of fishing mortalities are given in Fig. 4.


Fig. 4. Cod in Subarea 1: calculated yield in 1991 and spawning stock biomass (SSB) at beginning of 1992 for various levels of fishing mortality in 1991.

Various management options are illustrated, viz. constant $F$ values of 0.729 (the $F$ generated by the 1990 fishery by a catch of 110,000 tons), $F=0.409\left(F_{0.1}\right)$ and $F=$ $1.363\left(\mathrm{~F}_{\max }\right)$, and steady annual catches of 90,000 (TAC of 1989) and 110,000 tons (TAC of 1990). Furthermore, the two fixed-catch options mentioned subject to the constraint that $F$ should not be allowed to exceed 0.60 in any year have also been shown. The projections are similar for the two last options mentioned, because the $F$ values exceed 0.60 already in 1990.

All projections are carried forward to include catches in 1994 and spawning stock biomass (SSB) at the beginning of 1995 (Table 5).

The projections show that the catch will decrease rapidly in the coming years. Applying a fishing mortality in 1991 equal to $F_{90}$ results in a decrease of the catch in 1991 to 49,000 tons and further decreases would occur in the following years if such a fishing level is maintained. However, exploitation at the lower level of $F_{0.1}$ in 1991 does not lead to any noticeable increase in catch level in 1993 and 1994. Although the SSB will increase in the nearest future for F-values below $F_{90}$ it would stay at a rather low level. If the TAC of 110,000 tons is taken in 1990, catch levels of 90,000 or 110,000 tons do not seem possible in 1991 and would leave no prospect for a viable fishery thereafter.

Table 5. Cod in Subarea 1. projections of annual age $3+$ biomass ( $\mathrm{B} 3+$ ), spawning stock biomass at the beginining of the year, and catch and fishing mortality ( $F$ ) during the year for different management strategies (weights in ' 000 tons).

| year | Parameter | Stable fishing mortality |  |  | $\frac{\text { Stable catch level }}{\text { TAC-90 }} \frac{\text { TAC-1 }}{}$ |  | Stable catch level but $F$ never above 0.6 TAC-90 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | F (90) | F(0.1) | Fmax |  |  |  |
| 1990 | B3+ | 263 |  |  |  |  |  |
|  | SSB | 29 |  |  |  |  |  |
|  | F(S-10) | 0.729 |  |  |  |  |  |
|  | Caten | 110 |  |  |  |  |  |
| 1991 | B3+ | 127 | 127 | 127 | 127 | 127 | 127 |
|  | SsB | 59 | 59 | 59 | 59 | 59 | 59 |
|  | F(5-10) | 0.729 | 0.409 | 1.363 | 2.229 | 5.909 | 0.6 |
|  | catch | 49 | 32 | 73 | 90 | 110 | 43 |
| 1992 | B3+ | 85 | 107 | 56 | 37 | 20 | 93 |
|  | Ss8 | 48 | 66 | 26 | 11 | , | 54 |
|  | F(5-10) | 0.729 | 0.409 | 1.363 |  | <tac | 0.6 |
|  | catch | 31 | 27 | 28 |  |  | 30 |
| 1993 | B3+ | 56 | 81 | 35 |  |  | 65 |
|  | 538 | 23 | 45 | 7 |  |  | 29 |
|  | F(5-10) | 0.729 | 0.409 | 1.363 |  |  | 0.6 |
|  | Catch | 19 | 19 | 14 |  |  | 19 |
| 1994 | $83+$ | 44 | 64 | 30 |  |  | 50 |
|  | SsB | 11 | 26 | 2 |  |  | 15 |
|  | F(5-10) | 0.729 | 0.409 | 1.363 |  |  | 0.6 |
|  | Catch | 15 | 18 | 11 |  |  | 16 |
| 1995 | ssb | 6 | 17 | 1 |  |  | 9 |

1) Future Assessment

In the present situation when both the West and the East Greenland stocks are concentrated in the southernmost areas the border line at Kap Farvel between the NAFO and ICES management areas is of little biological relevance. Cod east of this line may be cod from West Greenland which have been displaced only temporarily, whereas spawning migration to Iceland is not considered to be so. In the present situation it is difficult to provide advice for two separate stocks, and management may best be achieved by setting TACs for East Greenland and West Greenland based on a combined assessment.
2. Cod in Division 3M (SCR Doc. $90 / 22,40,43,53,68 ; \operatorname{SCS}$ Doc. 90/05, 12, 13)
a) Introduction

1) Description of the fishery

The cod fishery of the Flemish Cap is traditionally a directed fishery for Portuguese trawlers and gill-netters, Spanish pair-trawlers and Faroese longliners. Cod is also caught as by-catch in redfish and flatfish fisheries. The fleet fishing at Flemish Cap is not substantially different from that flshing on the Grand Bank outside of the 200-mile Economic Zone. The fleet includes vessels from non-contracting parties

A moratorium on the Elemish Cap cod fishery was agreed by the Fisheries Commission for 1988 and 1989 as a consequence of the low level of stock biomass. Despite the moratorium, cod catches increased in 1989 to an estimated level of around 40,000 tons. In 1988 the situation is less clear.
i1) Nominal catches
From 1974, when a TAC was established, to 1979, catches ranged from 22,000 to 33,000 tons when TACs were 25,000-40,000 tons. Catches had been at that level or higher for the ten previous years. The TAC was set at a level of 13,000 tons in the period $1980-87$ and meanwhile the reported nominal catches were about 12,000 tons. Since 1988, when the moratorium was established, the reported catches were less than 1,000 tons. TACs and reported nominal catches for the last years are as follows ('000 tons):

|  | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TAC | 40 | 13 | 12.7 | $12.4^{1}$ | $12.4^{1}$ | 13 | 13 | 13 | 13 | 0 | 0 | 0 |
| Catch | 30 | 10 | 14 | 13 | 10 | 13 | 14 | 15 | 8 | $1^{2}$ | $1^{2}$ |  |

[^1]Catch and effort data from one non-member country's pair-trawler fishing for cod in Flemish Cap were available. Sightings of boats fishing on the Flemish Cap reported by the Canadian Department of Fisheries and Oceans (DFO) include single and pair-trawlers. Based on this information catches were thought to be around 40,000 tons in 1989 and a value of the same order of magnitude is likely to have been taken in 1988. It is also thought that the fishing effort in 1990 could be equal to the 1989 level or even higher.

Sampling data for 1989 were available for Portuguese (first to third quarter) and Spanish stern trawlers (fourth quarter). Catches are dominated by 4-year-old cod (1985 year-class). No sampling data were available from paif trawlers that fished the main portion of the catch.
11) Research vessel data

Biomass and abundance estimates were avallable from research vessel trawl surveys conducted by USSR from 1977 to 1989. Both abundance and biomass have a minimum trawlable estimate in 1988 with 26.7 miliion fish, and 7,720 tons. In 1989 the abundance estimate was 170.9 million fish and 36,500 tons blomass, both of them somewhat above the long-term average for the 1977-89 period. Acoustic estimates of cod biomass indicate that about $50 \%$ of the total stock biomass was distributed pelagically, i.e., these fish were out of the reach of bottom survey gear. Total biomass estimates increased from 34,200 tons in 1988 to 78,300 tons in 1989.

A bottom trawl survey was conducted by the EEC in 1988 and 1989. As for the USSR survey, cod age 3 (1986 year-class) was the most abundant age group, but abundance of large size cod was somewhat higher. Bottom trawlable biomass estimates increased from 37,000 tons in 1988 to 103,600 tons in 1989. The increase in abundance of most year-classes also observed must be due to increased availability in 1989 compared to 1988.

Exploitable biomass (age $3+$ ) was estimated to be between 78,000 and 101,700 tons in 1989. A target biomass of 85,000 tons was proposed in 1985 to increase TAC beyond 12,965 tons (FC Doc. 88/IX/4).

## Estimation of Parameters

Analytical assessments of the stock have not been conducted since 1984 because of perceived inadequacies in the commercial fishery database (NAFO Sci.Coun. Rep., 1986, page 51). This situation remains unchanged for the current assessment.

Spawning stock biomass was assumed in the past to be equal to the biomass of fish six-years-old and older. According to USSR data, about $50 \%$ of fish became mature having reached the length of 54 cm (males) or 60 cm (females), with mean age of 4.8 years. Immature fish constitute the main portion of the stock. It was calculated that mature fish constitute between $3.9 \%$ (USSR survey) and $5.8 \%$ (EEC survey) of the total abundance in 1989.
d) Prognosis

The low level of biomass estimated in USSR survey in 1987, as well as in 1988 for both the USSR and EEC surveys, is due to several consecutive weak year-classes (1982, 1983 and 1984). The stock biomass increased in 1989 as a consequence of the recruftment of the relatively abundant 1986 year-class. The 1985 year-class also showed some strength in the 1989 EEC survey, but this was not evident in the USSR index. The 1987 year-class appears weak in both surveys. The spawning stock biomass remains at a low level, and STACFIS advises that there should be no fishing for cod in Div. 3M until the spawning component of this stock shows evidence of recovery from the present depressed level. The estimated catch of 40,000 tans in 1989 indicates that the cod fishing moratorium was never effective.

Although STACFIS continues to recommend a cessation of fishing cod in Div. 3M, it is realized that a substantial catch will continue to be taken. The absence of detalled catch and sampling data from these fisheries will continue to make the evaluation of the status of the cod stock in Div. 3M difficult.
3. Cod in Divisions 3 N and 30 (SCR Doc. 90/05, 72, 73; SCS Doc. 90/12, 13)
a)

Introduction

1) Description of fishery

Nominal catches from this stock declined from a peak of about 227,000 tons in 1967 to a low of about 15,000 tons in 1978. Catches subsequently
increased and, with the exception of the high catch in 1986 ( 51,000 tons), averaged about 41,000 tons from 1985 to 1988 (Fig. 5). Reported catches for 1989 were approximately 30,000 tons $^{1}$. For the period since 1978, catches have been taken predominantly by Canada and EEC-Spain. The Canadian catch has been taken primarily by otter trawlers, mainly from within the Canadian 200-mile fishery zone while Spanish catches, mainly by pair trawlers, have been taken in the Regulatory area. Canadian catches were stable at about 19,000 tons from 1985 to 1988 but declined to 13,000 tons in 1989. Catches by EEC-Spain have been stable at approximately 16,000 tons since 1986 while those by EEC-Portugal have declined.


Fig. 5. Cod in Div. 3NO: trends in nominal catch and fishing mortality for 1959-89.

Estimates of the cod catch in Div. 3NO by non-member, non-reporting countries were not available for 1989. Catches by EEC-Portugal decreased from 6,900 tons in 1986 to about 900 tons in 1989 while those by the USSR, which ranged between 3,000 and 4,000 tons during the early-1980s, was only 5 tons in 1989. Catches by other member countries decreased from 2,300 tons in 1987 to 117 tons in 1989. These decreases in catch by countries mainly fishing outside the 200 -mile zone are related to lower abundance and decreased availability of cod in that area. It is therefore expected that catches of cod in DIV. 3NO by non-member, non-reporting. countries would be

1 The provisional nominal catch for Div. 3 NO as reported in NAFO SCS Doc. $90 / 21$ was somewhat higher than that used in the current assessment. The difference of approximately 10 . resulted from an update of spanish pair trawl catches from 15,277 tons to 17,904 tons. This information was not provided in sufficient time for incorporation in the current assessment, however, this omission is likely to have only a marginal effect on the estimation of population size for 1989.

Inconsequential during 1989. Furthermore, Korean vessels, which have reported substantial catches of flounders in 1988, have not reported any cod catch.

Nominal catches
Recent TACs and catches ('000 tons) are as follows:

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TAC | 26 | 26 | $17^{1}$ | $17^{1}$ | 26 | 33 | 33 | 33 | 40 | 25 | 18.6 |
| Catch | 20 | 24 | 32 | 29 | 27 | 37 | 51 | 42 | $43^{2}$ | $30^{2}$ |  |

1 Excludes expected catches by EEC-Spain.
Provisional data.

In the most recent assessment of this stock (NAFO Sci. Coun. Rep., 1989) catch-rate indices were not used in the calibration model (ADAPT) because they were not considered to be reflective of stock abundance. The two main concerns were the defindtion of directed effort for Canadian otter trawlers which take a large portion of their cod catch as by-catch in the American plaice fishery, and the fact that the variable Spanish catch-rate data only relate to a portion of the stock.

These issues have not been resolved and as such, catch-rate indices were not used for calibration in the current assessment. STACFIS considered that these issues may not be resolved in the near future and concluded that commercial catch rates have limited usefulness as calibration indices for this stock.

## Research survey data

Stratified-random research vessel surveys have been conducted by Canada in Div. 3N for the 1971-90 period, with the exception of 1983, and in Div. 30 for the years 1973-89 with the exception of 1974 and 1983. To account for incomplete coverage in certain years, estimates of abundance for nonsampled strata were obtained using a multiplicative analysis. In general, biomass and abundance increased from the late-1970s to the mid-1980s with a subsequent decline. Recent estimates of abundance (1989-90) are lower than any previously observed for this stock. The large declines in abundance are attributed to a succession of very weak year-classes. The 1983 and 1984 (age 5 and 6 in 1989) year-classes are considered to be weaker than any previously observed and in addition, the data indicate that the 1985 year-class (age 4 in 1989) is also at a low level. Biomass in both Divisions increased sharply from 1982 to 1984 , was somewhat stable from 1984 to 1986 and increased sharply again in 1987, especially in Div. 30. Estimates decreased substantially in 1988 for both Divisions with those for Div. 30 showing a further large blomass decrease in 1989. Preliminary results for 1990 indicate that both biomass and abundance are similar to 1989 levels. The decline in biomass has been relatively smaller than that for abundance due to growth in the older age-groups.

Canadian survey data were analyzed relative to biomass, abundance and age compositions occurring both inside and outside the 200 -mile boundary. It was found that a higher percentage of the total 3NO biomass occurred outside the 200 -mile line in the earlier years (6-29\% from 1973 to 1982) than in the later period (3-10\% from 1984-89). Comparisons of percent survey catch-at-age indicated similar age compositions both inside and outside the 200 -mile line from 1973 to 1982 and a predominance of younger ages outside the 200 miles from 1984 to 1989 . The relatively lower level of total blomass as well as the proportionately lower numbers of older fish outside the 200 mile boundary in years since 1982 are likely to be the result of higher rates of exploitation in that area compared to the area inside the boundary.

Surveys by the USSR were conducted on a stratified-random basis from 1983 to 1989. Surveys from the 1977-82 period used a different methodology but were reanalysed to make that series comparable with the recent period. The abundance and biomass estimates generally increased from 1979 to 1985 but have since decreased substantially. The abundance estimate for 1989 was the lowest in the time series. Cod of ages 3 to 4,7 and 8 made up the bulk of the catches.

Acoustic estimates from the $1987-89$ USSR surveys indicated that $11 \%$, 71\% and $27 \%$ respectively of cod numbers were distributed pelagically.

## Catch-at-age data

Biological sampling data from the Canadian otter trawl, seine and gillnet fisheries as well as Spanish pair trawl and portuguese gillnet fisheries were used to estimate the age composition of the commercial catch in 1989. The 1981-83 year-classes (ages 6-8) were most numerous in the canadian catch, the 1978-80 year-classes (ages 9-11) in the portuguese fishery and the 1984-86 (ages 3-5) in the Spanish fishery.

Average weights-at-age were avallable from the Canadian, Portuguese and Spanish fisheries. With the exception of those for ages 3 and 4 , average welghts were higher in 1989 than in 1988 . A sum of products check indicated that the calculated catch in 1989 was less than $1 \%$ different than the reported catch.
c) Estimation of Parameters

## 1) Sequential population analysis

As indicated in Section $b(i)$ of this report, the catch-rate indices available were not used because, for the reasons stated, they were not considered to reflect stock abundance. Consequently, it was decided to use only survey results for callbration.

Canadian and USSR research vessel (RV) survey data were analyzed in a single formulation of the adaptive framework (ADAPT). In the 1989 assessment of this stock, data for some years for each series were excluded from an analysis using ADAPT because they had been considered anomalous. For the current assessment it was decided to include data for all years in both RV series and determine anomalies from the residual patterns. The ADAPT formulation used is described in Section $f$ below.

Previously, it had been established that intercepts were not significant and hence were not included in this analysis. With the exception of age 3 abundance, all estimated parameters were significant, however, the coefficients of variation (CV) on most other abundance estimates were high, ranging between $44 \%$ and $48 \%$. All of the research vessel slopes were estimated with CVs around 0.30. Residuals indicated a great deal of annual variation in the data for both the Canadian and USSR results. In some years all residuals were negative while in other years the opposite was true. These patterns were to be expected given that a number of surveys which were considered anomalous and were deleted in the 1989 assessment were reintroduced in this year's analysis. Although none of the correlations between estimated parameters were greater than 0.50 , there was some relationship between catchabilities for the Canadian and USSR RV at the same age. Population numbers at January 1 indicated that 1983-86 yearclasses at age 3 were the four lowest in the series (Fig. 6) while fishing mortalities on younger ages ( 4 and 5) were high.

Preliminary formulations of ADAPT indicated that flat-topped partial recruitment produced catchability estimates for $R V$ that increased with age through the oldest age. The catchabilities for the USSR index showed a similar pattern. RV catchabilities should be at least stable if not declining, through older ages. It was demonstrated that a fishing mortality on the oldest age (12), set at about $40 \%$ of that on ages $7-10$ produced stable catchabilities for older ages in the RV indices.

Data for both Canadian and USSR RV indices were also analyzed in separate formulations of the adaptive framework. The Canadian data on its own indicated that the 1989 population was considerably larger than that estimated in the combined analysis, however, none of the population estimates were significant, and the CVs on the estimated slopes were quite high (40\%-50\%).

For the analysis using only the USSR data, estimated abundance for ages 5-8 were significant and all CVs on estimated slopes were about 30\%. In this analysis, however, the estimated population for 1989 numbered only 17 million fish. A population of this size in 1989 implied fishing mortailities on ages 5 and 6 in excess of 2. Fishing mortalities at those levels had never previously been observed for this stock. STACFIS concluded that neither the Canadian or USSR survey results on their own were appropriate to estimate the size of the stock in 1989, however, when both indices were included in a single analysis the results appeared reasonable, i.e. most parameter estimates were significant and estimated fishing mortalities were in the range of those previously observed.


Fig. 6. Cod in Div. 3NO: trends in $S S B$ and SPA abundance at age 3 for 1959-89.

Fishing mortality and population estimates for the period 1959-76 were obtained by setting fishing mortality on the oldest age (12) equal to the weighted (by population numbers) $F$ for ages 7-10, while that for 1977-89 was set at $40 \%$ of the weighted $F$ at those same ages.

## Yield-per-recruit

The most recent yield-per-recruit analysis for this stock was conducted during the 1988 assessment. Input data included average weights-at-age from the commercial fishery from 1977-87 and partial recruftment estimates for the period 1977-86. The latter were flat topped and the age range from 3 to 20 was considered appropriate.

In the current assessment a yield-per-recruit analysis was conducted based on a dome shaped partial recruitment. The exploitation pattern of the fishery appeared to have changed in that younger fish were being more heavily exploited. Partial recruitment and average weights-at-age estimates used were averages over the period 1982-88. The age 3 partial recruitment value for 1987 was not included in the average for that age because it was a higher than normal value on a very weak year-class. Some recent analysis of yield-per-recruit on cod stocks in Canadian waters indicated that ages to age 16 were appropriate and those were used in the present analysis. The reference fishing mortality levels estimated were $F_{0.1}=0.25$ and $F_{\text {max }}=0.40$ (Fig. 7) with yield-per-recruits of 1.03 and 1.08 kg respectively.

The age 3 abundance derived from ADAPT using RV data was not precisely estimated and consequently the size of this year-class was set at the 1977-88 geometric mean at age 3 of about 25 million fish. This would suggest that the 1989 age $3+$ population numbers were about 53 million fish.

Estimates of stock size now indicate that the mean $3+$ biomass for this stock increased from 64,000 tons in 1975 to 259,000 tons in 1984 and has subsequently


Fig. 7. Cod in Div. 3NO: yield-per-recruit for a range of fishing mortalities.
declined to approximately 100,000 tons in 1989. The major reasons for the decline is the size of the weak 1983-85 year-classes. These year-classes are each estimated to be less than one half the size of the lowest previously observed year-class. Fishing mortalities on the fully recruited ages (6-8) (Fig. 5) have been high and were above $F_{\text {max }}$ in 1988 (0.59) and 1989 (0.47), $F$ on ages 3 and 4 in 1989 were the highest since the mid-1970s.

## Catch Projections

The parameters which were used to project stock size are given in Table 6. The partial recruitment used was the average for 1982 to 1988. The value for age 3 in 1987 was not included in the average for that age because the value obtained was higher than normal for a weak year-class. Average weights-at-age were an average of values from 1987 to 1989. The 1987 and 1988 year-classes at age 3 in 1990 and 1991 were set at the 1977-88 geometric mean of approximately 25 million fish. The 1990 catch was assumed to be the 1990 TAC of 18,600 tons.

Table 6. Cod in Div. 3NO: parameters used in projections of stock biomass and catch.

| Age (yr) | ```Stock size 1 Jan 90 ('000)``` | Mean weight (kg) |  | Percent Mature | Partial Recruitment |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mean Annual | Start of Year |  |  |
| 3 | 25,000 | 0.58 | 0.46 | 0 | 0.10 |
| 4 | 19,022 | 0.93 | 0.73 | 4 | 0.36 |
| 5 | 4,178 | 1.43 | 1.15 | 22 | 0.83 |
| 6 | 467 | 1.95 | 1.67 | 64 | 1.00 |
| 7 | 521 | 2.80 | 2.34 | 94 | 1.00 |
| 8 | 2,293 | 4.38 | 3.50 | 99 | 0.71 |
| 9 | 3,827 | 6.49 | 5.33 | 100 | 0.69 |
| 10 | 1,524 | 8.05 | 7.23 | 100 | 0.68 |
| 11 | 1,276 | 9.56 | 8.77 | 100 | 0.57 |
| 12 | 1,301 | 11.97 | 10.70 | 100 | 0.33 |
| 13 | 664 | 12.70 | 12.33 | 100 | 0.30 |
| 14 | 0 | 13.15 | 12.92 | 100 | 0.30 |

Profections of catch for 1990 and spawning stock biomass for January 1,1992 are given in Table 7 and Fig. 8 . The projected 1991 catches for $F_{0.1}=0.25$ and $F_{\max }=$ 0.40 are 13,600 tons and 20,800 tons respectively. The TAC of 18,600 tons for 1990 now implies a fully recruited fishing mortality in that year of 0.37 .

Table 7. Cod in Div. 3NO: Projections of catch and spawning stock biomass (SSB) at various reference levels of fishing mortality assuming catch in 1990 of 18,600 tons.

| SSB (1.1.1991) |
| :--- | :---: | :---: | :---: |
| (tons) |$\quad$| Reference fishing |
| :---: |
| mortality levels |$\quad$| Catch (1991) |
| :---: |
| (tons) |$\quad$ SSB (1.1.1992) | (tons) |
| :--- |
| 69,200 |



Fig. 8. Cod in Div. 3NO: projection of catch for 1991 and spawning biomass (SSB) at 1 January 1992.

During the last assessment of this stock, the 1983 and 1984 year-classes at age 3 were estimated to be about one half the strength of the lowest previously observed age 3 estimate. The current assessment suggests again that these year-classes are very weak and even smaller than that previously estimated. As well, the size of the 1985 year-class was estimated to be similarly weak. The size of these yearclasses was about one third the next lowest year-class ( 22 million) and similarly of the 1977-88 geometric mean recruitment ( 25 million fish) . During the 1977-88 period age groups 6-8 contributed approximately $50 \%$ of the catch biomass. It is projected that the 1983-85 year-classes at ages 6-8 in 1991 will only contribute about $10 \%$ of the total catch biomass for that year.

## Parameters:

- year-class estimates
$N_{1,1989} \quad i=3-11$
- calibration coefficients for RV numbers

| $\left.K_{(C a n}\right)_{1}$ | $1=3-11$ |
| :--- | :--- |
| $K\left(\right.$ USSR $_{1}$ | $1=3-11$ |

Structure:

| - | Natural mortality was assumed $=0.20$ |
| :--- | :--- |
| - | Error in catch-at-age assumed negligible |
| - | F on oidest age (12) was calculated as $40 \%$ of the weighted |
|  | (by population numbers) $F$ for age-groups $7-10$ |

Input:

| - | $C_{1, t}$ | $1=3-12$ |
| :--- | :--- | :--- |
| - | $R^{\prime}(\mathrm{Can})_{1, t}$ | $i=3-12$ |
| - | $\operatorname{RV}(\mathrm{USSR})_{1, t}$ | $i=3-12$ |

Objective Function:

- Minimize

$$
\begin{aligned}
& \sum_{1 t} \sum_{\left[\text {obs }\left(\ln R V(C a n)_{i, t}\right)-\operatorname{pred}\left(\ln \operatorname{RV}(\operatorname{Can})_{1, t}\right)\right]^{2}+}^{\sum_{i t} \sum_{\left[\text {obs }\left(\ln R V(U S S R)_{1, t}\right)-\operatorname{pred}\left(\ln \operatorname{RV}(U S S R)_{i, t}\right)\right]^{2}}}+.
\end{aligned}
$$

Sumuary:
$\begin{array}{llr}\text { Number of observations }= & 225 \\ \text { Number of parameters } & =27\end{array}$
4. Redfish in Subarea 1 (SCR Docs. 90/39, 46, 65, 88; SCS Doc. 90/14)


No data available.

Adult Sebastes marinus (golden redfish). Blomass and abundance estimates for Sebastes marinus are derived from the stratified-random bottom trawl surveys conducted by the EEC-FRG since 1982. These results indicate a continuous decline of the adult stock component inhabiting Div. 1D-F from a level of 74,000 tons and 129 million fish to only 6,000 tons and 13 million fish in 1989.

Adult Sebastes mentella (beaked redfish). Stratified-random bottom trawl surveys, conducted jointly by Japan and Greenland and covering depths of 400-1500 $m$ in Div. $1 \mathrm{~A}-\mathrm{D}$ in 1988 and 1989, gave biomass estimates for Sebastes mentella of 5,700 and 3,100 tons respectively.Adult sebastes mentella occur in deptis exceeding 400 m . These depths were insufficiently covered by the survey which was primarily designed for cod. Hence, survey estimates were downward biased. The estimates remained fairly stable until 1988, averaging about 3,000 tons and 7 million fish. In 1989 almost no adults were caught but small juvenile specimens were obtained in the survey catches throughout the survey area and total biomass and abundance estimates were only 1,000 tons and 19 million fish (mean weight 55 g ). The Japan-Greenland surveys estimated 200 tons for $S$. marinus in both 1988 and 1989.

Juveniles. In the northern part of the survey area (Div. 1. B+C), covered by the EEC-FRG, predominantly small juvenile redfish (both species) below 20 cm were distributed. Maximum blomass and abundance estimates have been obtained since 1982, and estimates of 10,000 and 9,000 tons and 159 and 130 million fish were obtained in 1986 and i987, respectively. In 1989 the area of distribution of small redfish was extended further south, however, the total biomass and abundance estimates for both redfish species combined were only 2,000 tons and 43 million fish.

Stratified-random shrimp surveys conducted by Greenland in 1988 and 1989 covered a far larger area, also including part of Div. 1A. Biomass and abundance estimates for small juvenile redfish amounted to 23,000 tons and 250 milli on fish in 1988. No estimates were available for 1989. The redfish by-catch in the commercial offshore shrimp fishery in 1989 was estimated at about 6,000 tons ( $9-16 \%$ of the total shrimp catch).
c) Catch Projections

In view of comparatively low catch levels in recent years the considerable decline of the fishable stock biomass and abundance as observed from survey estimates can obviously not be attributed to the cod fishery. Large amounts of juvenile redfish in the northern part of subarea 1 were caught by the shrimp fishery and this adversely affects recruitment. Whether small year-classes are a result of a small spawning stock is not known at present.

By-catch regulations for the shrimp fishery could become advisable if considerable proportions of the biomass of juvenile redfish continue to be caught. As long as catches of the adult stock component remain limited to by-catches of fisheries directed to other species, no TAC is advised by STACEIS.
5. Redfish in Division 3 M (SCR Doc. $90 / 08,68 ; \operatorname{SCS}$ Doc. $90 / 05,12,13,17$ )
a) Introduction

From 1979 to 1985, catches were at or below the TAC Level ( 20,000 tons). Catches began to increase in 1986, and more than doubled the TAC in 1987. Provisional data for 1989 indicate a catch of about 27,000 tons, up from about 23,000 tons in 1988 but down from about 44,500 tons in 1987 . For the past number of years, this fishery has been prosecuted mainly by EEC-Portugal and the USSR. Cuba has taken about 1700 tons annually. In 1989, the majority of the catch was taken by EEC-Portugal (48 \%) and USSR (51 \%). There has been an increase in the presence of vessels from non-member non-reporting countries in recent years, but their catches cannot be quantified. Reported catches and TACs ('000 tons) for the recent period are as follows:

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TAC | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| Catch | 16 | 14 | 15 | 20 | 20 | 20 | 29 | 44 | $23^{1}$ | $27^{2}$ |

[^2]Catch and effort data were available from ICNAF and NAFO Statistical Bulletins for the period 1967-87. These data and preliminary data for 1988 were analyzed using a multiplicative model to derive an estimate of standardized catch rate and effort. Figure 9 shows that catch rates increased from 1959 to 1961 , then declined until about 1967 after which they agaln increased. After peaking in 1970, they declined until about 1973 and have remained fairly stable since then. STACFIS reiterated that while the catch rates may not be indicative of stock abundance, the lack of any changes since 1973 may indicate a general stock stability (NAFO Sci. Coun. Rep. 1989, page 64).


Fig. 9. Redfish in Div. 3 M : standardized catch rates from ICNAF and NAFO data.


#### Abstract

Catch-rate information from two Portuguese stern trawlers in 1989 indicated an increasing trend from January to May ( 0.383 to 1.485 tons/hr) followed by a decline through August (0.524 tons/hr) (SCS Doc. 90/12).

Catch-at-age data


A single commercial length frequency available from the 1989 Spanish fishery (SCs Doc. 90/13) was bi-modal, with peaks at 17 and $26-27 \mathrm{~cm}$. The estimated catch-at-length from the Portuguese fishery was also bi-modal, but with modes at 25 and about 32 cm (SCS Doc. 90/12).

Catch-at-age estimated from the USSR fisheries were available for 1978-89 (SCR DOC. 90/08). In 1989, the modal age was 8 . STACFIS noted that data were available from 1968 to 1978 but were not presented. Also, the fish weight-at-age matrix was not available. STACFIS recommends that catch-atage and weight-at-age data from 1968 onward be provided for future assessments.

## Research data

The results of research survey by EEC in 1989 were presented (SCR Doc. $90 / 68$ ). The total biomass was estimated to be about 137,000 tons, only slightly less than the estimate of about 158,000 tons in 1988 . The results of the USSR combined trawling and acoustic survey (SCS Doc. 90/05) also suggested stability between the revised estimate for 1988, and that of 1989 (379,000 and 366,000 tons respectively). The results of USSR trawling surveys from 1983 through 1989 demonstrated a great deal of variability
over the time period. It was noted previously (NAFO Sci. Coun. Rep. 1989, page 64) that the proportion of the redfish biomass up in the water column above the swept area of the trawl may vary from year to year. In 1987, the percentage above the trawl was estimated to be about $70 \%$. This was determined to be $90 \%$ in 1988 , and $87 \%$ in 1989. Biomass estimates from the various surveys ('000 tons) are as follows:

|  |  | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :--- | :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| USSR | Trawl | 155 | 132 | 52 | 310 | 106 | 47 | 83 |
|  | Acoustic | - | - | - | - | 322 | 322 | 283 |
|  | Total | - | - | - | - | 428 | 379 | 366 |
| EEC | Trawl | - | - | - | - | - | 158 | 137 |

Both the EEC and USSR survey results in 1989 indicated the presence of a relatively strong year-class, probably that of 1985 . These fish were about $14-17 \mathrm{~cm}$ in 1989. STACEIS noted that this year-class did not appear to be as strong as that of 1980.
c) Estimation of Parameters

1) Sequential population analysis

Separate SPA analyses incorporating a fixed estimate of natural mortality of 0.1 , and variable $M$ over all ages were available. The relationship between fishing mortality and effort was used to calibrate the SPA, and correlation coefficients ranged from 0.44 to 0.76 for ages 6-19. The results suggested a relatively stable stock biomass.

As was the case in 1989 (NAFO Sci. Coun. Rep. 1989, page 65) however, STACFIS was unable to evaluate these analyses because details of the effort series used for calibration were not available, nor were sufficient details of the calibration process (e.g. regression plots) or partial recruitment. This is a recurring problem, and STACFIS recommends that details of the calibration process in tuning SPA be provided in the future. In addition, it was noted that the lack of data concerning the fishing activities of non-member non-reporting countries hampers the usefulness of SPA.
d) Prognosis

In 1989, STACFIS noted that the results of the 1988 USSR combined trawling-acoustic survey suggested a population size well above the long term average and noted that this may suggest that yields of $50,000-85,000$ tons at $F_{0.1}$ and $F_{\text {rax }}$ respectively could be taken (NAFO Sci. Coun. Rep. 1989, page 66). However; because of reservations concerning the survey results, stacFis advised establishing the TAC below these reference levels. The results from both the EEC and USSR surveys in 1989 suggested stability in the stock, and catch-rate data since 1973 tend to support this. The average biomass determined from revised combined trawling and acoustics estimates from USSR surveys for 1987-1989 is 391,000 tons. Applying the same rational as was used last year, catches at reference fishing mortalities of $F_{0.1}$ and $F_{\max }$ would be 43,000 and 78,000 tons respectively. As such catch levels are much higher than the long-term productivity of the stock at $F_{0.1}$ and $F_{\text {max }}$. STACFIS advises that the 1991 TAC should be set at 43,000 tons.
6. Redfish in Divisions 3L and 3N (SCR Doc. 90/09, 87; SCS Doc. 90/05, 08, 12, 15, 16, 17, 21)

## a) Introduction

The average nominal catch from this stock for the period $1959-89$ was about 24,000 tons. In the early- to mid-1980s, landings averaged about 19,000 tons and between 60-80\% of the total was taken in Div. 3 N . In 1986 , reported landings doubled to 43,000 tons with $65 \%$ taken in Div. 3L. The increase in catch in 1986 was due to the greater participation of EEC-Portugal in both Div. $3 L(13,000$ tons) and Div. 3 N ( 8,000 tons). The USSR also took most of their landings from Div. 3L in 1986. Catches increased again in 1987 to the highest reported historically at 71,000 tons. This can be attributed to further increased catches by EEC-Portugal in Div. 3L (7,000 tons more than 1986), increases by USSR ( 8,000 tons) and substantial catches by South Korea (16,000 tons). In 1988 landings declined to about 45,000 tons. Preliminary landings for 1989 indicate a further reduction to about 24,000 tons.

Canadian surveillance estimates for non-member countries fishing in the Regulatory Area, who do not report catches to NAFO, are as follows:

| Country | 1987 | 1988 |
| :--- | :--- | :---: |
| Cayman I'slands | 4,500 | 3,000 |
| Panama | 3,000 | 3,900 |
| St. Vincent's |  | 1,000 |

No estimates were available for 1989 but catches should be less than in 1988 (about 8,000 tons) due to a shift of effort to Div. 3M according to surveillance observations. Recent nominal catches and TACs ('000 tons) are as follows:

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TAC | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
| Nominal Catch | 16 | 24 | 22 | 20 | 15 | 21 | 43 | 71 | $45^{1}$ | $24^{1}$ |  |

1 Provisional data.
b)

Input Data

1) Commercial fishery data

Catch and effort data were obtained from ICNAF and NAFO Statistical Bulletins for the 1959-87 period. These were combined with preliminary NAFO data for 1988 and preliminary Canadian data for 1988 and 1989. These were utilized in multiplicative analyses to derive standardized catch-rate series for each Division separately because it has been shown previously that there were somewhat different patterns in each of the Divisions in recent years (NAFO Sci. Coun. Rep., 1987, page 51). Effort data from EECPortugal in hours were not avallable in the NAFO database for 1986 to 1988 , the period coinciding to the increase in catches, particularly by that country. STACFIS considers the availability of these data to be important and notes that EEC-Portugal scientists are planning to complle these data in the future.

Although there was considerable interannual variability in both series, no overali trends with time were apparent. The lack of trends in either Division may indicate a general stability of the stock over the 1959-89 period.

Commercial length frequencies suggest the main proportion of fish caught in Div. 3 L were in the $27-37 \mathrm{~cm}$ range while in Div. 3 N the majority represented the $21-27 \mathrm{~cm}$ range.

Commercial catch-at-age data were available for the fishery from 1978 to 1989 (SCR Doc. 90/09). Age 7 dominated in the catch in 1989. It was noted that these data are actually avallable as far back as 1968. STACFIS recommends that the entire time series of catch-at-age and weight-at-age be made avallable.

## Research survey data

A survey conducted by Canada in Div. 3L in January of 1990 estimated the total biomass to be only about 13,000 tons (SCR Doc. 90/87). This was below the 1986 estimate of 30,000 tons based on a survey in the same area and at the same time. Estimates of stock size from USSR trawl surveys from 1983 to 1989 in Div. 3LN (SCS Doc. 90/05) showed much interannual variability but indicated a decline in both abundance and biomass (Fig. 10) since 1983, from about 125,000 tons to about 11,000 tons in 1989. Trawlacoustic survey results for Div. 3LNO combined for 1988 and 1989 indicated a dramatic decline in both numbers and biomass (Fig. 10) from 1988 to 1989 , decreasing from about 362,000 tons to 104,000 tons (SCS Doc. 90/05). Such a change in redfish population size could not be explained by neither the biology of the species nor the magnitude of the fishery. The acoustic data indicate a considerable portion of the biomass to be above the trawl swept area in 1988 and 1989, although these proportions are variable from 798 in 1988 to 63\% in 1989. In last year's assessment the USSR trawl-acoustic survey results were available for Div. 3 LN and STACFIS recommends that trawl-acoustic information be presented by Division, if possible, or at least by stock area as was done in 1989.


Fig. 10. Redfish in Div. 3L and 3N: total biomass estimates from USSR bottomtrawl surveys from 1983 to 1989 and from trawl-acoustic surveys in Div. 3LNO from 1987 to 1989.


#### Abstract

Length compositions from the USSR bottom trawl surveys from 1983 to 1989 indicated quite different population structures for each Division (SCR Doc. 90/09). The data from Div. 3 N suggested relatively good recruitment in this portion of the stock with fish of $14-16 \mathrm{~cm}$ present in 1989 . However, STACFIS could not evaluate the strength of this recruitment, as these frequencies were presented in terms of relative percentages at length for each year. There is no indication of recent good recruitment in Div. 3L.

Estimation of Parameters


## 1) Sequential population analysis

SPA of the Div. 3LN redfish was available (SCR Doc. 90/08) but STACFIS was unable to evaluate the results. It was noted however that the results of the analyses suggested a steady increase in biomass from 1978 to 1989 , contrary to the trends from available indices (no change in CPUE; decline from research vessels).

General production model
General production analysis has not been considered appropriate for this stock because there was not significant contrast in the catch and effort data for Div. 3L and Div. 3N (NAFO Sci. Coun. Rep., 1989, page 68). The update in the database for this year has not changed this view.

Prognosis
Catch rates are not considered reflective of stock status because of the patchy distribution of this species in this area.

Estimates of Div. 3LN stock size from USSR trawl surveys indicated a substantial decline in trawlable biomass from 1983 to 1989 . STACFIS has noted that this decline was evident even before the very high reported catches were taken from 1986 to 1988.

Estimates of stock size in Div. 3 L based on Canadian bottom trawl surveys in January 1986 and 1990 also suggested a decline and suggested a low population blomass (13,000 tons) similar to USSR bottom surveys for the whole stock (11,000 tons). Total biomass estimates for Div. 3LNO combined (bottom and pelagic) from the 1987-89 USSR trawl-acoustic surveys, although they were only for three years, may indicate a general decline (Fig. 10). These results were available as separate estimates for Div. 3LN and Div. 30 only in 1988 (SCS Doc. 89/08) and indicated equal proportions of biomass in each area. Trawlable biomass estimates from the USSR surveys from 1983 to 1989 indicated, on average, there were equal
proportions in Div. 3LN and 30. Therefore, STACFIS considers that $50 \%$ of the combined Div. 3LNO trawl-acoustic total blomass estimates likely resides in Div. 3LN. Given the rather large fluctuations in the three USSR trawl-acoustic survey estimates, STACFIS considers that an average of these three estimates may be closer to the real situation. Based on last year's yield-per-recruit calculations (NAFO Sci. Coun. Rep., 1989, page 69), applying $\mathrm{F}_{0.1}$ and $\mathrm{F}_{\max }$ exploitation (118 and $20 \%$ respectively) to the average biomass considered to be in Div. 3LN (at 50\% about 123,000 tons) gives yields of about 14,000 and 25,000 tons. It was quite evident that from 1987 to 1989, the proportion of the catch-at-age representing $11+$ ages had systematically decreased following increased catches in the 1986 to 1988 period. There is a strong signal from the survey results indicating a stock decline. Therefore, the present TAC (25,000 tons) appears to be too optimistic and STACFIS advises that the TAC for 1991 should be lowered to 14,000 tons.
7. Stlver Hake in Divisions $4 V$, $4 W$ and $4 X$ (SCR Doc. 90/01, 02, 04, 14, 15, 18, 19, 20, 21, 48, 49, 50; SCS Doc. 90/02)

## a)

## Introduction

The fishery is conducted primarily by large otter trawlers using small-meshed bottom trawls. Recently, Canadian 45 and 65 foot otter trawlers have fished for silver hake. Nominal catches since 1970 ranged from a maximum of 300,000 tons in 1973 to a minimum of 36,000 tons in 1983. Since 1977 catches have generally increased from 37,000 tons in 1977 to 92,000 tons in 1989. Prior to 1977 the fishery was not restricted by season or area, however since 1977 the fishery has been restricted to the months of April through November and to the area seaward of the small mesh gear line (SMGL). Recent catches and agreed TACs are ('000 tons):

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TAC | 90 | 80 | 80 | 80 | 100 | 100 | 100 | 100 | 120 | 135 | 135 |
| Catch | 45 | 45 | 60 | 36 | 74 | 75 | 83 | 62 | $74^{1}$ | $91^{2}$ |  |

1 Preliminary data.
The 1989 commercial fishery was conducted primarily to the seaward side of the SMGL. The total catch of silver hake was the highest seen since 1977. The catch was primarily silver hake, but as the season progressed the by-catch levels for cod, haddock, and pollock increased.

The fishery opened on March 15 (for an exploratory fishery) and was over early in August with most of the allocations taken. The catches fell short of the TAC in recent years because of Canadian allocations to countries or fleets which did not fish for silver hake. However, since 1986 both the USSR and Cuba have usually caught more than $90 \%$ of their respective allocations.

The pattern of the 1989 commercial fishery closely resembled that of previous years. As in 1988, the fishery had an early start, with a small number of vessels fishing in mid-March. Cuba and the USSR were the principal participants, taking 77,000 tons and 14,000 tons, respectively. A small Canadian domestic fishery was pursued, with a catch of approximately 300 metric tons (SCR Doc. 90/19, 20, 21).

The by-catches of pollock, cod, haddock, hakes (Urophycis spp.) and mackerel were low relative to earlier years and were within the allowable rate (SCR Doc. 90/19). In 1989, as in the previous year, extremely dense and stable aggregations of silver hake were observed on the Scotian Shelf slope (SCR Doc. 90/14, 19, 21).

It was suggested that silver hake moved out of the fishing area due to hydrological conditions and food availability rather than due to reaching maturity (SCR Doc. 90/14).
b) Input Data

1) Commercial fishery data

As advised by the STACFIS workshop on the silver hake database in January, 1990, catch rate standardization used an agreed upon series of catch and effort data (SCS Doc. 90/2).

The results of a multiplicative model showed that catch rates have increased irregularly from 1980 to 1989. The catch rate in 1982 was much higher than in adjacent years and is the fourth highest in the series. It was considered unlikely that the drastic change in catch rate seen in 1982 was representative solely of a change in biomass. The 1986 and 1987 catch rates are similar and are slightly higher than those in 1982. The 1988 catch rate is close to the 1984 level while the 1989 catch rate is the
highest in the series. The catch rate since 1982 is at a higher level than was calculated prior to that year.

Observed catch rates for 1989 peaked in mid-March, at 17 tons/hr for the USSR, and 12 tons/hr for Cuba. These catch rates declined steadily as the fishery progressed, falling below 0.5 tons/hr at the end of the fishery in August.

For 1990, preliminary data show observed catch rates in March and April to be substantially lower than those of 1989. In addition, comparisons of length frequency data for 1990 with data for 1989 indicate that a higher proportion of the catch in 1990 is composed of $25-27 \mathrm{~cm} f i s h$ which are approximately age 2 and 3 silver hake.

At the January workshop ageing differences between Canadian and USSR age readers were again noted. Following that meeting, Canadian and USSR age readers met in March, 1990 at PINRO in Murmansk, USSR, to review their respective ageing techniques. The results suggested that current techniques are comparable. The soviet age readers re-aged their 1989 otoliths and presented an age length key which, for ages up to and including age 3, was similar to that presented by Canada. Some differences In otolith interpretations at age group 4 stilil exists. The old fish will however make a negligible contribution to the catch in the forecast year. STACFIS decided to use the catch-at-age for 1977-89 and abundance estimates from Canadian adult surveys, based on Canadian age-length keys, for the assessment of the silver hake stock. The USSR re-aged key for 1989 was not used as it was not separated by sex.

As in the previous assessment, the catch-at-age matrix used separate male and female ages and lengths adjusted to catch. Segregation of sexed samples is supported by SCR Doc. 90/04, which describes the difference in growth between the sexes as significant after age 3 .

For this assessment, the age composition of the catches in 1977 to 1989 were constructed from Canadian observer sampling. The 1989 age composition by numbers in the catch was dominated by the 1985 and 1986 year-classes at ages 3 (36\%) and 4 (32\%).

In size distribution, a modal length of 30 cm was seen through the fishery for silver hake. In June and July of 1989 a second peak of smaller fish appeared, indicating the appearance of age 1 fish in the fishery.

Research vessel indices
The Canadian July survey results were used to estimate numbers and biomass of silver hake from 1977 to 1989. Biomass has declined since 1984 and abundancer in numbers since 1986. The abundance in numbers for 1986 was the highest in the series, while the abundance in 1989 is $76 \%$ of the average estimated from 1977 to 1989. The 1989 survey gave an abundance estimate of the 1985 year-class (age 4) below what had been seen in earlier surveys. This was also found in the 1988 survey, The 1986 and 1987 year-classes appear to be average in the 1989 survey. On average, the indices for 1982 to 1989 have been higher than in the period prior to 1982.

The joint USSR-Canada juvenile silver hake survey has been conducted in a consistent manner since 1981. A standardized method of calculating the index was agreed upon in 1986 (NAFO Sci. Coun. Rep., 1986, page 121) and was used to calculate the following series.

|  | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Number/tow | 579 | 9 | 232 | 43 | 285 | 198 | 102 | 205 | 132 |
| Std. Error | 0.11 | 0.14 | 0.11 | 0.16 | 0.22 | 0.19 | 0.11 | 0.17 | 0.09 |

The juvenile survey indicates that the 1989 year-class is similar in size to the 1987 year-class and is below the strong 1985 year-class. The 1988 and 1986 year-classes are of comparable size.

The 1988 juvenile survey showed high concentrations along the shelf slope (SCR Doc. 90/01). It was noted that this is a slightly different distribution than observed in previous years, however these data were within the core strata (60-78). No comparable distribution maps were presented for the 1989 survey.

Growth
Growth studies of silver hake juveniles from surveys in 1977-88 were reviewed. Dally growth increments were related to length and provided a method to estimate the tentative dates of the main spawiting which was determined to be early July. STACFIS noted that for the weight relationships, the fit was strongly deperident upon the 1985 point. In both the length and weight relationships, the cluster of 1977 and 1978 data were highly influential in determining the shape of the curves.

## Estimation of Parameters:

## i) Sequential population analysis

Several formulations of the adaptive framework (ADAPT) were explored to determine the stock size in 1989. Data from age disaggregated CPUE and surveys were analyzed separately and in combination. These results suggested fishing mortalities in excess of 1.0 for ages $3-9$ and some parameter estimates were not significant. Combining Canadian standardized catch" rates-at-age and research vessel survey datar in a single formülation of the ADAPT gave the best results for all diagnostic tests:

The inftial formulations included a flat-topped partial recruitment pattern as was used in previous assëssments. Using, survey and commércial CPUE data, these produced survey catchability estimates that increased with age through to the oldest age. Such catchabilities should be at least stable if not declining through to the oldest ages. Exploration of the appropriate partial recruitment pattern suggested a dome. Stable catchabilities were achieved by setting $F$ at age 9 to 108 of that on ages 3-5. The need for a dome could also reflect age dependent natural mortality (senescence).

During the model formulation, intercepts were found not to be significant and were not included in this analysis. The accepted formulation includes both: survey' and commercial CPUE indices in a single analysis and is summarized in section f below.

With the exception of the age 1 abuindance; all estimated parameters were significant. All the résearch vessel slopes were significant but the residual pattern indicated annual variation in the data. In some years all the residuals were negative (1977 and 1989) whille in $198 \dot{2}$ they were all positive. This is to be" expected due" to the fluctuations in yearly survey population estimates. To a lesser extent this was true for the catch rate-at-age serfes. Parameter correlation were low.

## Yield-per-recruit:

Previous yield-per-recruit assessments used a partial recruitment that was flat topped at age 3+. $\quad F_{0.1}$ was 0.464 with a corresponding yield-perrecruit of 0.063 kg . The current asséssment indicates an exploitation pattern that is dome shaped with full recruitment occurring at ages 3 to 5 with $F$ on the oldest age (9) about $10 \%$ of this value. The partial recruitment is the average of $1984-88$ and weight-at-age data is the average over 1984-89.

| Age. | Av. Wetght | .PR... |
| :---: | :---: | :---: |
|  |  | .057 |
| 2 | .137 | .035 |
| 3 | .182 | .235 |
| 4 | .224 | 1.000 |
| 5 | .259 | 1.000 |
| 6 | .308 | 1.000 |
| 7 | .411 | .761 |
| 8 | .525 | .381 |
| 9 | .665 | .141 |
|  |  | .078 |

The current analysis estimates $F_{0.1}$ to be 0.72 with a corresponding yl'eld-per-recruit of 0.060 kg . $F_{\text {rax' }}$, like in previous yield-per-recruit analyses for this stock is not well determined.
iii) Size structured analysis

SCR Doc. $90 / 49$ presents a model which is fitted with a non-linear least squares algorithm. Because the author did not have the requisite size-structured catch data available, aged data were converted into length by inverting the age-length key and the length data were in turn converted
into weight-classes. The method also uses recrujtment estimates from surveys and CPUE data. Two illustrative runs were performed, one without and one with survey data in the objective function. An advantage of this method is that it does not require aged data. It may also be used in "hybrid" manner when age data are avallable for the earlier period but not for the most recent year(s).

An illustrative length-based SPA using ADAPT with data from Scotian Shelf silver hake was reviewed. The model was used to perform two illustrative runs: one with a Canadian age-length pattern and one with a Soviet based pattern. The model was fitted to length aggregated survey data. Irrespective of the age-length pattern chosen, the runs suggested that there is little survivorship above age 4, or equivalently to sizes greater than 40 cm .

Historical productivity at F0.1
A method was presented to explore $E_{0.1}$ productivity in relation to historical recruitment. The method was based on earlier work by Rikhter (ICNAF Res. Doc. $74 / 64$ and NAFO SCR Doc. 88/04). These papers outline a method for distributing the productivity of year-classes into relative catches. The method converts a recruitment series into yield by multiplying by the yield-per-recruit $(0.063 \mathrm{~kg} / r e c r u i t)$. The resultant series is the potential yield from these recruits if they had been harvested at $F_{0,1}$. The potential yield is distributed over ages by applying an average (by weight) catch distribution. This distribution takes the place of partial recruitment, growth and natural mortality used in traditional catch projections. The results of the analyses have been in terms of relative potential yield because the recruitment series comes from surveys that have not been corrected for catchability.

This approach was modified by taking the relative recruitment series and converting these values to absolute estimates by applying the calibration coefficient from an ADAPT SPA. These calibration coefficients have been seen to be relatively stable compared to other parameters estimated by ADAPT. For example, the coefficient from the asymptotic partial recruitment run was .099 and one from the domed partial recruitment was .091. The latter value was used for conversions.

When the research survey data age 1 estimates were corrected for gear efficiency, the $F_{0.1}$ yields ranged from 40,000 to 200,000 tons over the period 1983-91. The results were quite variable and the 1983 potnt was considerably lower than any other point in the series. The mean $\mathrm{F}_{0.1}$ productivity was just over 110,000 tons. The same procedure was applied to the recruitment series from the domed SPA run. This series was about half as variable as the estimates based on the survey series alone. The mean $F_{0.1}$ productivity estimate as calculated from the modified approach is about 83,000 tons.

STACFIS noted that the calculation of historical productivity is based on the assumption that the year-classes have been fished at exactly $F_{0.1}$. On the other hand, the results of the SPA imply that higher fishing mortalities had occurred during that time. In addition, the average productivity estimates are based on average growth conditions while the catch projections are generally based on recent trends in mean weight-atage. Finally, the historical productivity estimates are very sensitive to year-to-year variability in survey estimates and, in this particular case, are greatly influenced by the large estimate of the 1985 year-class.

In short, in both methods, $F_{0.1}$ productivity and catch projections are consistent when the same assumptions are made with respect to growth and recruitment.
d) Assessment Results

The surveys indicated that the 1988 year-class is in the range of 1.22 and 1.5 billion fish. The age $1+$ population at the beginning of the year increased from about 1.6 billion fish in 1977 to about 3.7 billion in 1986 and is currently about 3.0 billion fish. The average fishing mortality (weighted by population numbers) for ages $3-5$ has ranged between 0.25 to 0.81 during the $1977-89$ period with no apparent trend. The weighted age $3-5$ fishing mortality for 1989 was estimated to be 0.56 .

## Prognosis

1) General information

STACFIS noted that fishing mortality age $3-5$ of 0.56 was higher than previously estimated when age aggregated calibration techniques were used.

However, the fishing mortalities for 1989 are within the range of mortalities during the $1977-88$ period. The yield-per-recruit analysis suggests that $F_{0.2}$ is 0.72 which indicates that fishing mortalities for 1989 are in the range of $F_{0.1}$. Calculated population size $(2+)$ for 1989 is 280,000 tons. This is 80,000 tons less than that estimated for 1988 when the large 1985 year-class dominated the fishery.

## Catch projections

The population sizes from the ADAPT formulation described previously were used to project catches for 1991. The magnitude of the 1988 year-class at age 1 in 1989 was not well estimated. Both the juvenile and research vessel survey suggests that the size of this year-class is the fourth highest in the respective time series. The fourth highest in the estimated population structure from ADAPT would be the 1983 year-class at age 1 in 1989 (1.47 billion). This value was used as an estimate of the size of the 1988 year-class in 1989. The juvenile survey estimates the size of the 1989 year-class as average. Recruitment has been at a high level since 1982 and that for projection, average recruitment would be most appropriately set using the geometric average of the ,1982-88 age 1 estimates from ADAPT (1.2 billion). STACFIS also noted that the average weights in the most recent years have been increasing and decided that for the purposes of projection, the mean weights for 1989 would be more representative of mean weights in 1991. The catch in 1990 is expected to be 60,000 tons $(F=0.5)$ and this value was used in the catch projections.

Projection of the 1991 population numbers and catch biomass using the above as input indicates that the $F_{0.1}(F=0.72)$ catch in 1991 would be 93,000 tons. Given the uncertainties of the estimates of the sizes for the 1988 and ' 1989 year-classes, STACFIS advises that the TAC for 1991 be set at 100,000 tons.

Adapt Formulation
The parameters used in this model were;
Parameters:

- Year-class estimates

$$
N_{1,1,0 \%} \quad i=1-8
$$

- Calibration coefficients for $R / V$ numbers

$$
K_{1} \quad 1=1-8
$$

- Calibration coefficients for CPUE-at-age numbers/hour

$$
\mathrm{K}_{1} \quad \mathrm{i}=1-8
$$

Structure:

| - | Natural mortality $=0.4$ |
| :--- | :--- |
| - $\quad$ Error in catch-at-age assumed negligible |  |
| - $\quad$ F on oldest age (age 9) set equal to $10 \%$ of weighted (by |  |
|  | population) F on age 3-5 |
|  | Intercepts not fitted |

Input:

- Catch-at-age

$$
\mathrm{C}_{1, \mathrm{t}} \quad \mathrm{i}=1-9 \quad \mathrm{t}=1977-89
$$

- Otter trawl (TC 7) CPUE-at-age

$$
\text { CPUE }_{1, t} \quad 1=1-8 \quad t=1977-89
$$

- Research Vessels

$$
\mathrm{RV}_{1, t} \quad \mathrm{i}=1-8 \quad \cdot \quad \mathrm{t}=1.977-89
$$

- Log of Survey and CPUE

Objective function:

- Minimize

$$
\left.\left.\begin{array}{l}
\sum_{i} \sum_{j}\left[\left(\text { obs.ln } R V_{j, t}-\text { pred. } \ln R V_{j, t}\right)^{2}\right]+ \\
{[(\text { obs.ln CPUE }} \\
j, t
\end{array} \text { - pred.ln CPUE }{ }_{j, t}\right)^{2}\right] \quad, ~ \$
$$

Summary:

- $\quad$ Number of observations $=208$
$-\quad$ Number of parameters $=36$
g) Future Studies

The continuation of the joint Canada-USSR juvenile research vessel surveys is encouraged.
8. American Plaice in Division 3M (SCR Doc. 90/68, 71, 81; SCS Doc. 90/5, 12, 13)
a) Introduction

This stock has been regulated since 1974 , when a TAC of 2,000 tons was agreed. That TAC has been maintained since then with the exception of 1978 , when the TAC was set to 4,000 tons. Until 1985 landings were between 600 and 1,900 tons, with an increase since then due mainly to the EEC catches (Spain and Portugal) resulting in landings between 2,861 and 5,600 tons. The catch in 1989 was 3,895 tons, 3,397 tons of which was taken by EEC-Spain and EEC-Fortugal.

The exploitation level of this stock is not accurately known because of the lack of information of by-catches from vessel fishing cod in this area or catches directed to this species by non-member vessels. Recent tACs and nominal catches ('000 tons) are as follows:

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TAC | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Catch | 1.2 | 0.6 | 1.1 | 1.9 | 1.3 | 1.7 | 3.8 | 5.6 | $2.8^{2}$ | $3.9^{1}$ |  |

## 1 Provisional data.

b) Input Data

## 1) Commercial fishery

Length compositions for the Spanish catches were available for four months in 1988, as well as age compositions for two months in 1989. Age 6 and older dominated the Spanish commercial catches in 1989.
i1) Research vessel surveys
The USSR surveys showed a relatively stable biomass (7, 500-9, 300 tons) from 1983 to 1987, without taking into account the high value obtained in 1986 that was considered an anomaly. Total biomass estimations from the EEC surveys for 1988 and 1989 remained at a stable level, with values of 11,868 and 10,533 recorded along with the presence of a strong year-class from 1986, this year-class will not recruit until 1992.
c) Prognosis

STACFIS noted that both surveys indicate a slight decrease in the biomass from 1988 to 1989. Nevertheless those figures may not reflect a real decline in the total biomass of this stock, due to the observed high variability in the American plaice blomass indices, and STACFIS interpreted those indices as the biomass being stable at around 10,000 tons. Therefore STACFIS advises that the TAC for 1991 be set at 2,000 tons corresponding to an exploitation rate of $20 \%$ of the present biomass level. Previous yield-per-recruit studies have indicated that this exploitation level could correspond to the $F_{0.1}$ level.
d)

Future Studies
STACFIS noted that there are now substantial survey data available on this stock at some national laboratories. STACFIS recommends that survey data, particularly those on age composition, be presented at the June 1991 meeting in order to facilitate a more thorough evaluation of this stock.
9. American Plaice in Divisions 3L, 3 N and 30 (SCR Doc. 90/71, 76, 80; SCS Doc. 90/07, 08, 12, 13)

## a) Introduction

This stock has been exploited consistently since the early-1950s, with the peak catch of 94,000 tons in 1967. Vessels from the USSR took substantial catches during 1965-76, while Canadian vessels accounted for over $90 \%$ of the catch during 1976-82. Starting in 1982, other nations increased their involvement in the fishery, taking catches in the NAFO Regulatory Area on the Nose and Tall of the Grand Bank. These catches escalated rapidly from about 1,200 tons in 1982 to 27,000 tons in 1986, then declined to about 12,000 tons in 1988-89. Overall, catches have deciined from about 65,000 tons in 1986 to about 44,000 tons in 1989. Catches by EEC-Spain (10,895 tons) and Canada (27,892 tons) accounted for almost $90 \%$ of the total in 1989, which was simblar to 1988. The Canadian catch in 1989 was up by 1,000 tons over 1988, but these 2 years had the lowest Canadian catches since 1963. The Spanish catch declined from over 14,000 tons in 1987 to 9,000 tons in 1988, before increasing in 1989. Catches by USA vessels have been relatively stable around 1,200 tons during 1985-89.

The catch in Div. 3L in 1989 was 21, 700 tons, an increase of about 3,300 tons from 1988. This was similar to the catches in Div. 3L during 1983-85, but substantially less than the 33,000 tons removed in 1987. The catch in Div. 3 N was between 16,000-18,000 tons during 1987-89, and was about half the 1986 level, which was close to the highest observed in Div. 3 N . The catches in Div. 30 have been relatively stable around 5,000 tons in the last 5 years.

The 1986 and 1987 catch statistics are now final, and in addition, there were revised estimates of catches by non-reporting, non-member countries from Canadian surveillance authorities. This caused minor revisions to be made to the catches for 1984-85, with increases of about 3,700 tons, 2,300 tons, and 3,400 tons to the catches for 1986,1987 and 1988 respectively. These changes were mainly in the South Korean catches, based on a revised estimate of the amount of American plaice in the catches reported as "unspecified flounder". No survelllance estimates were available for 1989, and South Korea had not yet reported its catch to NAFO for that year. Therefore, a figure of 3,100 tons was assumed for South Korea and the non-reporting countries in 1989, based on the levels of catch estimated for these nations in 1987-88. The catches by countries such as Panama and Cayman Islands, which accounted for an estimated total of over 4,000 tons in 1985 and 1986 , have been estimated as zero during 1987-89, as effort shifted into deeper water for redfish.

Recent TACs and nominal catches ('000 tons) are as follows:

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| TAC | 47 | 55 | 55 | 55 | 55 | 49 | 55 | 48 | $40^{1}$ | 30.3 | 24.9 |
| Catch | 49 | 50 | $51^{2}$ | $39^{2}$ | $39^{2,3}$ | $54^{2.3}$ | $65^{2,3}$ | $55^{2}$ | $42^{2,3,4}$ | $44^{3,4}$ |  |

1 Although the TAC was set at 40,000 tons, Canada reduced its domestic quota to 33,000 tons, therefore the effective TAC was 33,585 tons.
2 Includes a percentage of the "flounder non-specified" catch reported to NAFO by South Korea.
3 Includes estimates of catch based on surveillance reports.
4 Provisional data.
b)

Input Data
i) Commercial fishery data

Catch and effort. Data from the Canadian commercial fishery in Div. 3LNO from 1956 to 1989 were analyzed using a multiplicative model to obtain a catch-rate series. The data were from Canada (N) trawlers, tonnage classes 4 and 5, and the same procedure was followed as in the recent assessments of this stock. As has been noted previously, these were the only catch and effort data avallable for some years (e.g. late-1970s and early-1980s) from which a CPUE series could be calculated. The results showed a continuous decline for the first 20 years of the series to a low level in 1975-77. There was a gradual increase to 1980 , and catch rates remained stable at this level until 1985. In 1986, the CPUE declined by about 25\%, and has remained at this lower level over 1987-89. The current CPUE is at the same level as the previous low observed in the mid-1970s.

Catch-at-age and mean weights-at-age. Catch-at-age was calculated from the length frequencies of the Canadian, Spanish and USA catches in 1989. The major age groups in these 3 fisheries were $9-11,4-6$, and $8-10$ respectively. The proportion of the catch at each age for Canada and USA was similar to that observed in 1988, but the Spanish catch in 1989 contained proportionally more fish at younger ages than in 1988. Approximately $71 \%$ of the Spanish catch in numbers in 1989 was at ages 2-6, compared to less than $1 \%$ at these ages in the Canadian catch. In 1988, the peak ages in the Spanish catch were 6-8, with about $37 \%$ of the catch numbers coming from ages 6 and younger.

To derive the total catch-at-age for 1989, the catch-at-age for EEC-Spain and USA in Div. 3NO was combined and adjusted to reflect a total catch of 12,255 tons, which included the unsampled catches in the Regulatory Area (Tail of the Bank). This was then added to the catch-at-age calculated for EEC-Spain in Div. 3L and Canada in Div. 3LNO. The resulting catch-at-age was bimodal, with peaks at ages $4-5$ (total of 25.6 million fish) and ages $9-10$ (total of 26.4 million fish). Overall, there was about $40 \%$ more fish in the 1989 catch compared to 1988 , even though the nominal catch was only about $5 \%$ higher in 1989. The Spanish fishery caught about 10,600 tons, comprised of about 38 million fish, compared to a catch of 27,900 tons and 40 million fish in the Canadian fishery. The number of older fish (age $11+$ ) in the catch declined in 1989, and was at a level similar to the lowest observed for this stock since 1974.

Some corrections to the 1986-88 catch-at-age were necessitated by the revisions to the catches in these years. In addition, it was decided to adjust the non-sampled catches in Div. 3N to the total non-Canadian catch-at-age, rather than to the total available catch-at-age. This was viewed to be a more reasonable approach in estimating the catch-at-age for the non-reported and non-sampled catches in the Regulatory Area in Div. 3NO. These changes produced more fish at all ages in 1986-87, and proportionally more fish at younger ages in all 3 years, because the available sampling of catches in the Regulatory Area was more skewed toward younger fish than was the overall catch-at-age.

The mean weights at ages $9+$ were relatively stable in recent years, but the weights at ages 5-8 showed a decline from 1987 to 1989. This was likely to be caused by the change in selectivity brought on by the shift in the catch to younger ages over this time period.

The size of American plaice in the Spanish catches, along with information presented on selectivity of mesh sizes for American plaice, indicated that the effective mesh size being used in some fisheries in the Regulatory Area was well below the minimum size, and may be as low as 60 mm . Information from the Canadian fishery in 1988 showed that the discard rates of American plaice were less than $4 \%$ (by number) in almost all areas of the Grand Bank.

Catch-rate-at-age. An index of CPUE-at-age was calculated from the Canadian comercial fishery in Div. 3LNO. This was derived from the Canadian catch-at-age divided by the effort from the Canadian fishery. This effort was calculated from the multiplicative model described earlier, by dividing the estimated annual catch rate by the total Canadian catch. This index shows a lower stock size in 1986-89, particularly at ages 11+ compared to the estimates of the early to mid-1980s.

Fishing effort used to derive the index at age should relate only to offshore catches. The total Canadian catch used, includes about $10 \%$ from inshore areas. It was concluded that the inclusion of this relatively small amount of inshore catch would not be likely to bias the current results, but should be adjusted for the next assessment of this stock.

## Research vessel surveys

Canadian stratified-random groundfish surveys. Data from spring surveys in Div. 3L, 3 N and 30 were available from 1971 to 1990 , excluding 1983 . In Div. 3L, the biomass remained relatively stable from 1985 to 1988 , ranging from 174, 000 tons to 193,000 tons. However, the estimate for 1989 was lower at 153,000 tons and the 1990 value is much lower at about 83,000 tons. In DIv. 3N, the estimate of biomass declined from about 60,000 tons in 1984-85 to about 30,000 tons in 1990. In Div. 30, the biomass fluctuated between 44,000 tons and 77,000 tons in the $1984-90$ surveys, with the 1990 estimate being about 53,000 tons.

To examine the biomass in the NAFO Regulatory Area in Div. 3 N (Fig. 11), all the 200 fathom $(368 \mathrm{~m})$ strata which have all or almost all their area In that zone were selected. These strata showed a decline from a mean value of about 16,500 tons in 1984-85 to a mean of about 6,400 tons during 1987-90. During 1984-86 these strata in the Regulatory Area contalned


Fig. 11. American plaice in Div. 3LNO: strata in the Regulatory Area.
about 26\% of the total biomass in Div. 3N. This figure declined to about 12\% in 1987-88 and rose to about 20\% in 1989-90.

Age-by-age abundance estimates for Div. 3L, 3 N and 30 for the 1971-89 period were derived using multiplicative models to fill in values for strata not fished in a given year. This procedure was the same as that used in the 1989 assessment. Data for 1990 could not be used at this time because the survey was just recently completed and ages were not yet available for the American plaice catches.

In Div. 3L, the abundance in recent years was considerably lower than that observed from 1976 to 1982, when a number of strong year-classes were present in the population. Although the surveys during 1986-88 indicated that the 1979-1981 year-classes were somewhat higher than the preceding few, the estimates of these year-classes in the 1987 and 1988 surveys were still below the estimates observed for strong year-classes at the same ages in earlier surveys. These year-classes did not appear to be strong in the 1989 survey in Div. 3L and it should be noted that the biomass estimate in Div. 3L from the 1990 survey was about $45 \%$ lower than the 1989 survey.

In Div. 3 N , the abundance estimates have shown more fluctuation over the series, but it was again clear that the abundance during 1986-89 was substantially lower than average and was around the lowest level in the $18-$ year series. Unlike Div. 3L, there was no evidence of better than average
recruitment in the 1987 and 1988 surveys in Div. $3 N$, although the 1989 survey indicated that the 1985 year-class was the largest in the series and that the 1984 year-class was above average. The 1990 biomass was down from 1989 to about the 1988 level.

In Div. 30, the estimates of abundance showed even more variability than in Div. 3N; however, 1986, 1988 and 1989 were the lowest three estimates in the 14 -year series. In 1990 the blomass in Div. 30 was close to the mean from 1986-89.

Overall, the abundance in Div. 3LNO combined has declined in recent years to about the level observed around 1973. There was a decline in abundance from about 1 billion fish at ages $6+$ in $1981-82$ to about 500 million fish In 1985-86, after which time the abundance remained at the lower level. In addition, the number of older fish (age $12+$ ) in the.surveys has declined in 1987-89 to the lowest level observed.

From fall surveys in Div. 3L, population estimates in 1986-88 were lower than those from 1981 to 1984. In 1989, the population declined by about a third from the mean 1986-88 level. These surveys also indicated that the biomass in Div. 3L had declined from about 300,000 tons in 1983-84, to about 150,000 tons in 1986-88, and to about 100,000 tons in 1989.

Canadian juvenile flatfish surveys. Stratified-random surveys of Div. 3LNO have been conducted inside the 50 fathom depth contour from 1985 to 1988 and expanded out to 100 fathoms in the 1989 survey. In the 1989 survey the largest catches of fuveniles aged $1-4$ years were taken in the Regulatory Area in Div. 3NO, consistent with previous surveys. Two other sites were identified as areas of major concentrations of juveniles: stratum 339 in Div. 30 in the area known as Whale Deep, and the strata located on the north and northeast slope of Div. 3L in depths up to 90 fathoms. The area of concentration of adult plaice corresponded to the juvenile concentrations.

Abundance-at-age estimates in stratum 360 doubled in 1989 and was the bighest in the time series. These estimates were dominated by the 1985 and the 1986 year-classes (age 3 and 4 years) which made up $56 \%$ of the total abundance. These two year-classes were also dominant in the other areas of the Bank. The 1985 year-class was also indicated to be strong at ages 1,2 , and 3 in the 1986 to 1988 surveys respectively. The total biomass in Div. 3 N increased by $33 \%$ from 1988 to 1989 and about $84 \%$ of the biomass in Div. 3 N was found in stratum 360 in the Regulatory Area.

USSR stratified-random surveys. Results from USSR surveys in Div. 3LNO were avallable for the period 1983-89. After a decline in 1988, the abundance increased in 1989 to the same level as the mean in 1985-87. This value was about half of the mean abundance in 1983-84. The biomass also increased in 1989 to about the level of 1987 . This was about $70 \%$ of the mean blomass in 1985-86, and about 40\% of the mean in 1983-84.

The catch-at-age from 1975 to 1989, the abundance-at-age from the Canadian groundfish surveys, and the CPUE-at-age from the Canadian commercial fishery were used in the Adaptive framework. In the first formulation attempted, the RV survey data were used to estimate population numbers at ages $6-15$. All parameter estimates were significant and the catchabilities (slopes) were relatively stable over ages 9-14. However, the population numbers estimated at ages $9-12$ implied fishing mortalities on these ages which were outside the range of any previously observed, and were therefore not considered to be reasonable. The CPUE data were then used in a separate formulation, also to estimate population numbers at ages 6-15. Again, all parameters estimates were significant, although the coefficients of variation on the abundance estimates were higher than in the formulation with the RV data alone. For the younger ages (6-8), the fits of ln CPUE vs In SPA numbers were poor and took the form of 2 -point regressions, with the 1989 point being separate from the other points. Examination of the population numbers showed the sizes of the 1981-83 year-classes to be substantially lower than historic values and were thus not considered to be realistic.

It was decided to combine the 2 indices into a single formulation of ADAPT (see Section $f$ below). For the RV surveys, ages 6-14 were chosen, and for the C/E, ages $9-14$ were chosen. Ages $15-18$ were excluded from the calibration because there were few fish at these ages in either of the indices, and ages 6-8 were excluded from the CPUE calibration series for the reasons outlined above. All parameters estimates were significant,
with coefficient of variation on the abundance estimates at ages 8-13 of $20 \%$ or less. However, the fits generated patterns of residuals as was seen in the 1989 assessment. There are no high correlations between parameters.

STACFIS concluded that this formulation of ADAPT was the most reasonable. This approach was considered to be better than the one used in 1989, when catch-rate-at-age data were not available and the CPUE calibration used aggregate biomass at ages 12+. In addition, the approach used this year estimated the population sizes within a single ADAPT formulation, as opposed to selecting appropriate population sizes from 2 separate calibrations, as was done in 1989.

Yield-per-recruit
STACFIS noted that the shift in the exploitation pattern to younger ages would have an effect on the reference $F$ levels for this stock and advised that a new $Y / R$ analysis be conducted. It was noted that the most dramatic change in the catch-at-age occurred from 1988 to 1989 . However, it was not considered reasonable to use the parameters from just one year (1989) in a $Y / R$ analysis, as this year may have been anomalous, with the possibility that the fishery in subsequent years would not produce the same exploitation pattern. Therefore, it was more reasonable to average the mean weights-at-age and partial recruitment values over a recent period (1987-89), acknowledging that this reflected neither the long term values for the stock nor the situation in 1989, but was likely to be closer to the present situation. Figure 12 shows the new $Y / R$ analysis, using the mean weights-at-age and partial recruitment values in Table 8 and an age range of 5-16. A similar analysis in. the 1989 assessment used the long-term average weights and partial recruitment is also shown in fig. 12 for comparison. The $F_{0.1}$ reference point is similar in both analyses, but the $F_{\max }$ is 0.51 in the new analysis, compared to 3.1 in last year's. The sensitivity of $F_{\max }$ to changes in the $Y / R$ parameters has been noted previously for this stock.


Fig. 12. American plaice in Div. 3LNO: yield-per-recruit for a range of fishing mortalities from 1988 and 1989 assessments.

Table 8. American plaice in D1v. 3LNO: parameters used in projections of biomass and yield.

| Age | Jan <br> numbers (000) | Average <br> weight <br> (kg) | Partial <br> Recruitment |
| :---: | ---: | :---: | :---: |
| 5 | 213,000 | 0.167 | 0.048 |
| 6 | 162,890 | 0.244 | 0.070 |
| 7 | 134,120 | 0.334 | 0.115 |
| 8 | 93,048 | 0.424 | 0.180 |
| 9 | 77,181 | 0.491 | 0.408 |
| 10 | 46,371 | 0.621 | 0.675 |
| 11 | 24,256 | 0.807 | 1.000 |
| 12 | 9,345 | 1.068 | 1.000 |
| 13 | 4,505 | 1.403 | 1.000 |
| 14 | 2,515 | 1.762 | 1.000 |
| 15 | 1,336 | 2.235 | 1.000 |
| 16 | 569 | 2.923 | 1.000 |
| 17 | 150 | 3.625 | 1.000 |
| 18 | 15 | 4.319 | 1.000 |
| 19 | 5 | 4.500 | 1.000 |
| 20 | 0 | 4.600 | 1.000 |

## Assessment Results

This assessment indicated that fishing mortality (F) increased from a relatively low level in 1983 to a peak in 1987, then declined subsequently (Fig. 13). The Es In 1988 and 1989 were about 0.38 for ages $9+$ and about 0.6 for ages 11+ (fully recruited), with both estimates being weighted by population numbers-at-age. The estimates for $F$ in 1988 were about $20 \%$ higher than those calculated for 1988 in last year's assessment. STACFIS noted the increase in $F$ on the younger ages (5-7) in 1989 and that these values were at or around the highest levels in the series from 1974-89. Population size at older ages (11+) continued to decline, although there was a slight increase in the estimated population sizes at ages 6-10 in 1989 over 1988. The estimated spawning stock biomass (Age 9+, knife-edge) was about the same in 1988 and 1989, at the lowest level since 1974 (Fig. 14). The assessment indicated that there has been a slight increase in recruitment in recent years (Eig. 14) with the 1980 and 1981 year-classes being about 15-20\% larger than those from 1976 to 1978. However, the 1980 and 1981 year-classes were still estimated to be about 25-30\% smaller than those from 1969 to 1971.

## i) General information

Although the catch was lower in 1988-89 than the preceding 3 years, the TAC was exceeded by about $25 \%$ in 1988 and $30 \%$ in 1989. This is of concern, given that some fisheries 10 the Regulatory Area are catching large quantities of juvenile American plaice. STACFIS again cautions that this fishery will be all but impossible to manage if catches by non-member countries increase beyond the levels observed in 1988-89.

1i) Catch projections
The population sizes from the ADAPT formulation described previously were used to project catches for 1990. The population at age 5 in 1989 and 1990 was taken as the geometric mean from 1974 to 1988. The average weight-atage and the partial recruitment were averages from 1987 to 1989 (Table 8).

The partial recruitment values were generally higher at ages 5-11, reflecting the shift in the catch in 1989 to younger ages. However, it was noted that these partial recruitment values were likely to be underestimates of the partial recruitment in 1989 at the youngest ages (56).


Fig. 13. American platce in Div. 3LNO: trends in yleld and 9+ $F$ (weighted by population numbers).


Fig. 14. American plaice in Div. 3LNO: trends in SSB and SPA abundance at age 5.

Tables 9 and 10 show the results of catch projections to 1991 , assuming catches in 1990 of 24,900 tons and 40,000 tons respectively. The first option represents the catch in 1990 equal to the TAC while the second option assumes the catch in 1990 will be similar to the level observed in 1988-89.

Table 9. American plaice in Div. 3LNO: projected catch in 1991 and spawning stock blomass (SSB) on Jan 1, 1992 at various $F$ levels, assuming 1990 catch $=24,900$ tons (Fig. 15).

| SSB, | $\begin{aligned} & \text { Jan 1, } 1990 \\ & \text { (tons) } \end{aligned}$ | $\begin{aligned} & \text { SSB, Jan 1, } 1991 \\ & \text { (tons) } \end{aligned}$ | $1990 \text { Catch }$ (tons) | $\begin{aligned} & 1990 \mathrm{~F} \\ & \text { (Age 11+) } \end{aligned}$ | $F \text { in } 1991$ | $\begin{aligned} & \text { Catch in } 1991 \\ & \text { (tons) } \end{aligned}$ | SSB, Jan 1,1992 (tons) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100,800 |  | 116,400 | 24,900 | 0.31 | $F_{0.1}=0.27$ | 25,800 | 136,700 |
|  |  | $\mathrm{F}_{\text {max }}=0.51$ |  |  | 45,200 | 119,200 |
|  |  | $\mathrm{F}_{\text {gg }}^{\max } \times 0.60$ |  |  | 51,700 | 113,400 |

Table 10. American plaice in Div. 3LNO: projected catch in 1992 and SSB on Jan 1 , 1992 at various $F$ levels, assuming 1990 catch $=40,000$ tons (Fig. 16).

| SSB, | $\begin{aligned} & \text { Jan 1, } 1990 \\ & \text { (tons) } \end{aligned}$ | $\begin{gathered} \text { SSB, Jan 1, } 1991 \\ \text { (tons) } \end{gathered}$ | $\begin{aligned} & 1990 \text { Catch } \\ & \text { (tons) } \end{aligned}$ | $\begin{gathered} 1990 \mathrm{~F} \\ \text { (Age } 11+\text { ) } \end{gathered}$ | $F$ in 1991 | $\begin{aligned} & \text { Catch in } 1991 \\ & \text { (tons) } \end{aligned}$ | $\begin{aligned} & \text { SSB, Jan } 1,1992 \\ & \text { (tons) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100,800 |  | 103,100 | 40,000 | 0.54 | $\mathrm{F}_{0.1}=0.27$ | 22,900 | 124,600 |
|  |  | $F_{\text {anx }}=0.51$ |  |  | 40,100 | 109,200 |
|  |  | $\mathrm{F}_{89}=0.60$ |  |  | 45,900 | 104,100 |

STACFIS concluded that the second option was more realistic and advised that Table 10 be used in providing advice for this stock, pointing out that these 2 options were provided last year, but that the TAC for 1990 had been based on option 1.


Fig. 15. American plaice in Div. 3LNO: projection of catch for 1991 and $5 S B$ at 1 January 1992 (assumed catch for $1990=24,900$ tons).


Fig. 16. American plaice in Div. 3LNO: projection of catch for 1991 and SSB at 1 January 1992 (assumed catch for $1990=40,000$ tons).

STACFIS notes that these projections do not reflect the exploitation pattern of 1989, although they do reflect a shift toward younger fish. It was also noted that there was a catch of about 1,200 tons at ages 3 and $41 n 1989$ and that no estimate of catch at these ages is accounted for in the catch projections.

Parameters:

- Year-class estimates
$\mathrm{N}_{\mathrm{L}} 1989 \quad 1=6,14$
- Calibration coefficients for R/V numbers

$$
q l_{1} \quad i=6,14
$$

- Calibration coefficients for C/E numbers

$$
q 2_{1} \quad i=9,14
$$

Structure:
$-\quad M=0.2$

- Error in catch-at-age assumed negligible
- $\quad$ F on ages $16-18$ set to mean $F$ weighted by population numbers on ages 12-15
- Age 5 estimated by partial recruitment
- Intercepts not fitted

Input:

| - | $\mathrm{C}_{1, \mathrm{t}}$ | $i=5,18$ | $\mathrm{t}=1975-89$ | Catch-at-age |
| :--- | :--- | :--- | :--- | :--- |
| - | $\mathrm{R} V_{1, t}^{\prime}$ | $i=6,14$ | $\mathrm{t}=1975-82,1984-89$ | $\mathrm{R} / \mathrm{V}$ numbers-at-age |
| - | $\mathrm{C} / \mathrm{E}_{1, \mathrm{t}}$ | $\mathrm{i}=9,14$ | $\mathrm{t}=1975-89$ | $\mathrm{C} / \mathrm{E}-\mathrm{at-age}$ |

Objective function:

- Minimize

$$
\begin{aligned}
& \sum_{i t} \sum_{\left[\text {obs }\left(\ln R V_{i t}\right)-\operatorname{pred}\left(\ln R V_{i t}\right)^{2}\right]+}^{\left.\sum_{\left[\text { obs } \left(\ln C / E_{i t}\right.\right.}-\operatorname{pred}\left(\ln C / E_{i t}\right)^{2}\right]}
\end{aligned}
$$

Summary:
$-\quad$ Number of observations $=216$
$-\quad$ Number of parameters $=24$
10. Witch Flounder in Divisions 3 N and 30 (SCR Doc. 90/54, 57; SCS Doc. 90/05, 12, 13)
a) Introduction

Reported catches of witch flounder from 1970-84, ranged from about 2,400 tons in 1980 and 1981 to 9,200 tons in 1972. With increased effort mainly by EEC countries in 1985 and 1986, particularly Eec-Spain and EEC-Portugal, catches rose rapidly to 8,800 and 8,500 tons respectively. This increased effort was concentrated mainly in the Regulatory Area of Div. 3 N . Non-member countries such as the USA, Korea, Cayman Islands and Panama also contributed to increased catches. In 1987 and 1988, the catch was 7,600 and 6,100 tons respectively, and was taken mainly by Canada, EEC (Spain and Portugal) and USSR. With reduced catch rates for flatfish generally outside the Canadian 200 -mile limit, some countries diverted effort towards other species such as redfish, and this may explain some of the reduction in catch in 1987 and 1988 compared to very high levels during 1985 and 1986. The preliminary catch for 1989 was 3,612 tons which is near the lowest in 10 years, however, this would not include any catch from non-reporting countries. For catches reported, the largest portion was taken by EEC followed by Canada. Only 81 tons was reported by USSR in 1989 although historically USSR has been a major prosecutor of this fishery, particularly in Div. 3N. Recent catches and TACs ('000 tons) are as follows:

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TAC | 7 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| Catch | 2 | 2 | 4 | 4 | 3 | 9 | 9 | 8 | $6^{1}$ | $4^{1}$ |  |

1 Provisional data.
b) Input Data

1) Commercial fishery data

Catch and effort statistics for Canada (N) from 1972 to 1988 were available from the fishery conducted in Div. 30. Canadian catch rates declined from 0.72 tons/hr in 1972 to a low of 0.19 tons/hr in 1979. Between 1979 and 1984 catch rates fluctuated from 0.19 tons/hr and 0.67 tons/hr. The catch rates declined somewhat over the $1985-87$ period, but, were still considerably above those levels experienced during the late-1970s. For 1988, on the other hand, the catch rate fell to 0.27 tons/hr near the lowest level for the period with a slight increase in 1989 to 0.31 tons/hr. It is recognized, of course, that for some years the proportion of main species catch on which the figures are based is very low and the precision of such data as indices of stock size is questionable.
ii) Research vessel surveys

Annual estimates of biomass from Canadian surveys in Div. 3 N were most often less than 1,000 tons since 1971 which is generally below the reported catch levels and it was noted that since the surveys did not cover depths beyond 366 m , much of the biomass was not estimated. On the other hand, USSR surveys during 1987-89 indicated that, while biomass estimates were
somewhat higher than those of the Canadian surveys, they were still below reported catch levels although the surveys were conducted to depths of 731 m . It was.clear therefore that the surveys in Div. 3 N were not adequate for witch flounder. Survey blomass estimates were much higher for Div. 30 but showed a higher degree of variability. It was observed that high variations in biomass were generally related to differences in stratified estimates for those strata near the southwestern slope of the Grand Bank. It was therefore considered that the fluctuations in biomass in Div. 30 may be largely a result of distributional changes as fish move in and out of the survey area near the continental slope.

Catch Projections
Considering the commercial fishery data, STACFIS concluded that the stock component in DIv. 30 may have declined since 1985, however, the information was based upon small proportions of the total removals. With the high variability in estimates of blomass from surveys in Div. 30 and concerns expressed regarding the reliability of surveys in Div. 3 N , STACFIS was unable to draw firm conclusions regarding stock size. With the information available, sTACFIS advises that the TAC for 1991 should not be changed from the 5,000 ton level presently in effect.

STACFIS reiterated its concern about the high catch levels in the mid-1980s, particularly in Div. 3 N , and considered that the recent declining trend in catch levels may be a reflection of a reduced stock size.

Future Research
STACFIS reiterates its recommendation that countries fishing the witch flourider stock in Div. 3NO should collect catch and effort information as well as length and age data and present them to NAFO to allow for a better evaluation of the status of this resource. Of particular importance is information on precise locations of commercial activity in order to better interpret survey results.
11. Yellowtail Flounder in Divisions $3 \mathrm{~L}, 3 \mathrm{~N}$ and 30 (SCR Doc. 90/85, 86; SCs Doc̈. 90/05, 13)

## Introduction

Nominal catches increased rapidly from a few hundred tons in 1963-64 to a high of about 39,000 tons in 1972. Vessels from Canada and USSR took almost all of the catch, up to and including 1975, with only Canada taking significant catches during 1976-81. After 1981 several other countries entered the fishery, notably South Korea, EEC (Spain and Portugal), Panama, USA and the Cayman Islands and catches by these fleets increased up to 1986. Catches in the Regulatory Area declined in 1987-89 as effort was directed primarily at redfish. In 1989, the catch was about 7,600 tons, compared to 16,000 tons in the previous 2 years. With the TAC of 5,000 tons restricting catches', the catch by Canada in 1989 was the lowest since 1968. Except for 248 tons taken by Scottish seines, the remainder of the catch by Canada was taken by otter trawls.

The catch by EEC-Spain declined from about 3,200 tons in 1988 to about 1,100 tons In 1989. USA catches continued to decilne and totalled 319 tons in 1989, down from 861 tons in 1988 and almost 3,800 tons in 1985.

Catch statistics for this' stock are not adequate, with as miuch as 8,000 tons of catch (in 1986) being estimated from surveillance reports. Although it is felt that the catch by non-member, non-reporting nations had declined in 1989, it was polnted out that there were no surveillance estimates of catch in 1989 and that an estimate of 100 tons was used for this part of the catch, in addition to an estimate of 1,000 tons for the South Korean catch. Recent TACs and nominal catches ('000 tons) are as follows:

| Year | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| TAC | 18 | 21 | 23 | 19 | 17 | 15 | 15 | 15 | 15 | 5 | 5 |
| Catch | 12 | 15 | $13^{1}$ | $10^{1}$ | $17^{1,2}$ | $29^{1,2}$ | $30^{1,2}$ | $16^{1}$ | $16^{1,2,3}$ | $8^{2,3}$ | $\ldots$ |

1 Includes a percentage of the "flounder non-specified" catch reported to NAFO by South Korea:
${ }^{2}$ Includes estimates of catch based on surveillance reports.
3 Provisional data:

CPUE data. A multiplicative model was used to analyze the catch and effort data for this stock as in the 1989 assessment. It should be noted that for some years, particularly the late-1970s, the Canadian fleet provided the only source of CPUE data for this stock. The CPUE declined steadily from 1965 to 1975, increased slightly in the $1983-85$ period, then declined to a low but stable level in 1986-89. The CPUE observed in these recent years is similar to the previous low values in 1974-76.

Although this CPUE index did cover the majority of the stock, it was likely to underestimate the recent decline in the stock as a whole, as the Canadian fleet rarely fished for yellowtail flounder in the Regulatory Area, where catches have declined sharply since the high values in 1985 and 1986.

## Catch-at-age and mean weights-at-age

Catch-at-age was calculated from the length frequencies of the Canadian, USA and Spanish fisheries in 1989. Age-length keys from the Canadian commercial fishery were used to calculate the USA catch-at-age, while keys from the Canadian RV surveys were required for the Spanish data, as the length frequencies of these catches contained fish smaller than those found in the Canadian fishery.

In the Canadian catch, ages 7 and 8 comprised about 40 and $42 \%$ respectively of the catch numbers, which was similar to the proportion at these ages in recent years. In the USA catch, ages 6 and 7 predominated, which was similar to the pattern observed in 1988. For EEC-Spain, age 4 yellowtail flounder comprised $53 \%$ of the catch in numbers, with $26 \%$ taken at age 5 . These percentages were similar to those observed in the 1988 fishery at these ages (45\% and 28\%). Overall, there were about 12 million fish in the Spanish catch of 1,126 tons, compared to about 10 million fish in the Canadian catch of 5,007 tons. Information from the Canadian fleet for 1988 indicated that the discard rate of yellowtail flounder by this fleet did not exceed 3\% anywhere on the Grand Bank.

The mean weights-at-age were derived trom the Canadian, USA and Spanish catches in 1989. Eor the Canadian weights, there was very little difference between years at ages $5-9$ over the period examined (1986-89). The weights-at-age in the Spanish catch were lower in 1989 than 1988 at ages 3-4 and slightly higher at ages 5-6. Compared to the Canadian and USA weights-at-age, the Spanish weights were lower at ages $5-6$, similar at age 7. and higher at ages 8-9.

STACFIS reviewed some recalculations of catch-at-age for 1988 and noted that substantial changes in the numbers of fish caught at age were obtained, based on the re-application of sampling data to estimated and unsampled catches. There are large portions of unsampled catch in some years (e.g. about 13,400 tons in 1986), and even the catch levels themselves contained a high proportion of estimates in some years.

In addition, it was noted that all the catch-at-age calculations applied to length frequencies collected in the Regulatory Area were done using agelength keys from the Canadian RV surveys, and that this would likely introduce biases in the estimated sizes-at-age. For these reasons, STACFIS concluded that the overall catch-at-age in recent years for this stock was not suitable for use in sequential population models. For these same reasons, the overall mean weights-at-age for the stock for recent years should also be treated cautiously.

## Research vessel surveys

Canadian stratified-random groundfish surveys. Surveys have been carried out by Canadian research vessels in Div. 3LNO each year from 1971 to 1982 and 1984 to 1990. The surveys from 1984 to 1990 are comparable in terms of coverage and vessel/gear used. Most of the biomass of this stock is found in Div. 3N. In this Division, the biomass has declined from about 60,000 tons in 1985-86 to about 35,000 tons in 1988-89 with an increase in 1990 to 42,000 tons. Overall, the stock biomass (Div. 3LNO) decreased steadily from 94,000 tons in $1985-86$ to 49,000 tons in 1989 with the 1990 survey being about $16 \%$ higher at 59,000 tons.

In strata 360 and 376 (Fig. 17) which encompasses virtually all the yellowtail flounder habitat in the Regulatory Area, the biomass declined from 32,000 tons in 1984 to 1,000 tons in 1988 ( $97 \%$ decrease). In 1989 the estimate increased to 15,000 tons ( $40 \%$ of total biomass of Div. 3 N ) but in 1990 the estimate has decreased to 6,000 tons ( $14 \%$ of the total blomass) in the Regulatory area.


Fig. 17. Yellowtall flounder in Div. 3LNO: strata in the Regulatory Area.

As was done in the 1989 assessment, a multiplicative model was employed to obtain estimates of abundance which accounted for strata not surveyed in some years and included the 1990 values. As in previous years, the estimates from 1971 to 1982 were multiplied by 1.4 to make them comparable to those from 1984 to 1990. The total abundance of this stock remained relatively stable between 240 and 340 million from 1975 to 1984, after which time it declined steadily to about 100 million in 1988: In 1989, the estimate increased by $30 \%$ to 132 million and the recent survey shows a further $12 \%$ increase in numbers; but $i s$ still the third'lowest value in the 19. year series. The decline from the mid* to late-1980s is also present in the groundfish surveys conducted by USSR, as is the increase in abundance from 1988 to 1989.

In the 1989 Canadian survey $90 \%$ of the total population abundance at ages 5 and 4 years (the 1984 and 1985 year-classes) in this stock was largely outside the $200-$ mile limit and comprised $80 \%$ of the catch-at-age in the Spanish fishery on the "Tail of the Bank". In the 1990 survey only 508 of the population of these year-classes was found in the two strata ( 360 and 376) outside the 200 -mile limit.

The estimate of age 7+ abundance increased from 52.5 million in 1989 to 89.5 million in 1990 and comparable to the 1988 estimate. However it is still the fourth lowest estimate in the time series of 1971-90 and represents about $60 \%$ of the total abundance in 1990.

The following table summarizes the relative strengths of the 1981-85 yearclasses as measured by the Canadian groundfish surveys of 1986-90. The numbers expressed in decimal units indicate the proportion that each estimate is of the mean estimate at that age from 1973-90, while the numbers in parenthesis represent the rank of that estimate in the 17 years of the survey from 1973 onward (1973-82, 1984-90):

| Age | 1986 | 1987 | 1988 | 1989 | 1990 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | $.39(14)$ | $.21(16)$ | $.05(17)$ | $.86(09)$ | $.73(10)$ |
| 6 |  | $.35(16)$ | $.17(17)$ | $.48(14)$ | $.51(13)$ |
| 7 |  |  | $.37(17)$ | $.39(16)$ | $.53(14)$ |
| 8 |  |  |  | $.36(15)$ | $.81(11)$ |

The estimates in 1988 were the lowest in the series at ages 5, 6 and 7. Although there appeared to be some improvement in the relative strengths of the 1982 and 1983 year-classes in the 1989 and 1990 surveys, it was noted that all estimates were still below the mean values, as were the estimates of the 1984 and 1985 year-classes.

Canadian juventle flounder surveys. From 1985 to 1989, annual fall stratifled random surveys have been conducted in Div. 3LNO, directed at juvenile flounder, particularly those aged 1-4 years. Most of the juvenile population for this stock is located in the Regulatory Area, in Strata 360 and 376 (Fig. 17). The index of yellowtail flounder biomass declined from 1986 to 1988, but increased in 1989. In 1989, average numbers-per-tow were twice those calculated for the 1988 survey, and were comparable to the 1987 values. The catch from the 1985 year-class was the highest at age 4 in the time series and contributed to the high mean numbers in the 1989 survey. About 337 of the total abundance was attributed to this year-class. The 1986 year-class at ages 1 and 3 was approximately the same size as the 1985 year-class at ages 1 and 3 , but was much lower at age 2 compared to the 1985 year-class at age 2.

The results of the juvenile surveys, which showed strong 1985 and 1986 year-classes were confirmed by comparing them with the age compositions in the Spanish fishery in the Regulatory Area in Div. 3N. The percentage of the 1986 year-class in the 1989 Spanish fishery was about the same as the percentage of the 1985 year-class in the 1988 Spanish catch.

USSR stratified-random groundfish surveys (1983-89). After deciining steadily over the period 1983-88, the USSR survey in 1989 showed an increase of almost triple in abundance and about double in biomass from the very low levels of 1988. The biomass in 1989 was $10 \%$ higher than the 1986 estimate but was still only about $45 \%$ of the mean biomass in 1983-85. The abundance was about $40 \%$ higher than the 1986 value, but was still only half of the mean abundance from 1983-85.

## Estimation of Parameters

STACFIS noted that the catch-at-age could not be used in an sequential population analysis based model for this stock. In addition, the lack of partial recruitment values (no fishing mortality estimates from SPA) and reliable weights-at-age for the stock as a whole precluded the use of a yield-per-recruit model. Therefore, it was again decided that the information contained in the indices of abundance (RV surveys and CPUE) would have to be evaluated to determine stock status.

## Assessment Results

All 3 surveys in 1989 showed an increase in abundance from 1988, with the 1990 Canadian groundfish survey showing a further slight increase. However, the USSR and Canadian groundfish surveys still show the population size to be at a relatively low level. The Canadian CPUE has been relatively stable from 1986 to

1989, at a level similar to the lowest observed previously. The fact that the 1989 CPUE did not decilne was viewed as a positive indication, given that in 1988 STACFIS noted that "the prospects for the 1989 and 1990 fisheries, which should be comprised mainly of the 1981-83 year-classes, are very poor." (NAFO Sci. Coun. Rep. 1988, page 65). This is consistent with the data in the Canadian surveys, which showed the relative strengths of the 1982-83 year-classes to be greater in both 1989 and 1990 than had been estimated in 1987-88.

The 1984 and 1985 year-classes still appeared to be stronger than the 3 preceding poor ones, but did not appear to be as strong in 1990 compared to 1989. However, substantial numbers of yellowtall flounder from these year-classes were taken in fisheries in the Regulatory Area in 1988 and 1989.

The information from 1989-90 in the RV survey and CPUE indices pointed to a slightly more optimistic view of this stock in 1990 compared to the previous two assessments. Although the stock is still at a relatively low level, there is 1mproved recruitment from the 1984-85 year-classes, and the size of the 1982-83 year-classes appeared to be larger in 1989-90 compared to 1987-88.

In 1988, STACFIS advised a decrease in the TAC from 15,000 tons to 5,000 tons, based mainly on the mean estimate of abundance of age 5-7 yellowtall flounder in the Canadian spring surveys in 1987-88, which were estimated to be about 30 of the mean at these ages from the historic data. Although the mean estimate of abundance at these ages had increased by about 50\% in the 1989-90 surveys, STACFIS concluded that this was not sufficient on its own to recommend a change in the current TAC.

In retrospect, the rationale used in 1988 to derive the 5,000 ton tac may have lead to a somewhat pessimistic view of the resource, given that CPUE data were not considered directly in the calculation and that the 1988 survey produced the lowest estimates of the 1981-83 year-classes. Therefore, it was dectded to use a modified approach in analyzing the indices of abundance, in which the current levels of the indices of abundance were compared with the levels during a period of relative stability in the stock.

From 1977 to 1984, the Canadian surveys showed a relatively stable index of abundance at ages 5-7, averaging about 200 million fish. The CPuE index during these years also showed little trend, and had a mean value of about 0.64 . Catches were also relatively stable with a mean of about 14,100 tons. In the 1987 to 1990 surveys, the mean abundance at ages $5-7$ was only 78 million, or $38 \%$ of the mean in the earlier period. However, the CPUE, which was stable from 1986 to 1989, had a mean value of about 0.51, which was about $80 \%$ of the mean from 1977-84. It was considered that the CPUE, which was calculated only from the Canadian fleet, was likely to represent an overestimate of biomass in recent years because the portion of the stock outside 200 miles was not covered by this fishery, However, this alone does not account for the difference in the ratios of the indices between the earlier and later periods ( $38 \%$ in the surveys, $80 \%$ in the CPUE) and that the reduction in stock abundance was more likely to be about $50 \%$.

## Catch Projections and prognosis

STACFIS concluded that the abundance of the stock was currently about $50 \%$ of the abundance in 1977-84 period, when an exploitation rate which produced an average catch of 14,100 tons did not result in trends in the indices of abundance. Applying this level of exploitation to the current stock size implies that a catch of about 7,000 tons for 1991 would not be harmful to the stock in its present condition. This corresponds to an exploitation rate of less than $15 \%$ of the mean biomass from the Canadian RV surveys in 1988-90. STACFIS advises that the TAC for 1991 be set at 7,000 tons.

The reduction of the TAC to 5,000 tons in 1989 had succeeded in restricting the catch, which was less than half the value in 1987-88. If the current TAC of 5,000 tons for 1990 has a similar effect, there will have been a substantial reduction in catch from the level of about 30,000 tons in 1985-86.

STACFIS concluded that this stock was no longer declining, although it was still at a relatively low level compared to earlier years. The 1984-85 year-class sizes appeared to be larger than those of the preceding 3 year-classes, and these 2 stronger year-classes will contribute to the spawning stock in 1990-91. The estimated increase in population size at ages 5-7 in 1989-90 over 1987-88 will not translate into any long-term increases in population size or catch beyond 1991, as yellowtail flounder at ages $9+$ usually comprise less than $5 \%$ on average of the commerctal and RV survey catches, i.e. have essentially disappeared from the fishery and possibly the population.

The rationale for increasing the $T A C$ to 7,000 tons assumes an exploitation pattern
at age similar to that observed in the earlier period (1977-84) when ages 5-8 dominated the catch. It was concluded that the population size at these ages is now higher than previously estimated, and the fishery could sustain an increase in catch from these ages before they disappeared from the population after age 8. This does not account for the recent shift in exploitation toward younger yellowtall flounder in the Regulatory Area.

The size of the yellowtail flounder in the Spanish catches, along with information presented on selectivity of mesh sizes for the American plaice fishery in Div. 3LNO, indicated that the effective mesh size being used in some fisheries in the Regulatory Area was well below the legal minimum size, and may be as low as 60 mm . Although impossible to quantify, it was noted that continuation of the current exploitation pattern in these fisheries could result in a loss in yield-perrecruit.

STACFIS once again emphasized that this fishery will be impossible to manage if unregulated catches by non-member countries increase from the low levels of 1988 89 to the levels estimated in 1985-86.
12. Greenland Halibut in Subarea 0 and 1 SCR Doc. 90/35, 36, 37, 38, 39, 52; SCS Doc. 90/03, 04, 05, 15, 16)

| a) | Description of the fishery and nominal catches. Catches have been rather stable in the period 1980-89 with an average annual catch of 9,000 tons. Most of the catch has been taken by Greenland ( $86 \%$ in 1989) in the fjords of west Greenland. The Greenland fishery is an inshore gillnet and long-line fishery, with 93\% of the total Greenland catch in 1989 taken in Div. 1A. The newly expanded fishery in the northern part of Div. 1A (north of $72^{\circ} \mathrm{N}$ ), has reached a level of about 1,500 tons, which is about one fifth of the total catch in that Division in 1989. A jointventure (Greenland-Japan) offshore fishery carried out in Div. 1C-1D by a Japanese vessel amounted to 1,300 tons. Recent TACs and catches ('000 tons) are as follows: |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
|  | TAC 25 | 525 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
|  | Catch 8 | 810 | 9 | 9 | 7 | 10 | 9 | 8 | 9 | 9 |  |

[^3]b) Input Data
i) Biological information

Greenland halibut is considered a unit stock throughout the Northwest Atlantic with the exception of separate stocks in Gulf of $5 t$. Lawrence, and Fortune Bay, Newfoundland. Spawning supposedly takes place in the deeper waters of the Davis strait south of $67^{\circ} \mathrm{N}$. The larvae are dispersed by the north going currents off west Greenland as well as by the south going currents off Labrador and Newfoundland. Studies on meristic characters of adults at Newfoundland, in the Davis Strait, at West Greenland and in the Denmark Strait leads to the suggestion that Greenland halibut in the west Greenland fjords have been under different temperature conditions during their egg and larval stages, than have specimens from the other populations.

Observations of young fish have been made mainly at depths of 200-300 m on the banks off West Greenland north of $65^{\circ} \mathrm{N}$ and at coastal waters off Labrador and Newfoundland. Size frequencies in catches from Subareas 1, 2 and Div. 3KL indicates a migration of fish from the banks towards deeper areas in the Davis Strajt as well as towards deeper parts of the fjords in Subarea 1. Tagging experiments and studies on genetics and parasites conducted in Subareas 1,2 and Div. $3 K L$ and Div. 4RST indicate some isolation of the fjord components in subarea 1 and in the population in Div. 4RST, while populations in the other areas seem to be somewhat connected and hence assumed to belong to the same spawning stock. The fjord populations in Subarea 1 and in Div. 4RST are probably also recruited from this spawning stock complex in the Davis Strait. Although Greenland halibut in the fjords of West Greenland show signs of maturation they are rarely found in ripe condition.

These data were not considered conclusive and Greenland halibut in fjords at West Greenland are assessed as part of the stock in Davis strait.

Research data
Offshore trawl surveys. Bottom-trawl surveys have been conducted jointly by Japan and Greenland in Subarea 1 since 1987 . In 1989 the survey covered the depth range between 400 m and $1,500 \mathrm{~m}$ during April and May. The biomass was estimated to 63,300 tons for Div. 1CD. Although the surveys differed from year to year in areas and depths surveyed, the biomass estimates seemed consistent in the period 1987-89. Within the period the surveys have showed differences in distribution of the biomass which may be due to within-year migrations, as the surveys were carried out at different times of the year. Biological samples from the survey and samples from commercial catches in the area surveyed showed that sexual maturation increased from April/May to October/November.

A bottom-trawl survey was conducted jointly by USSR and GDR in Div. OB in the autumn of 1989 , covering the range $200-1,500 \mathrm{~m}$. The biomass estimate was 84,000 tons, which is considerably higher ( $36 \%$ ) than in 1988 . This increase was considered to be somewhat related to the strong 1984-85 yearclasses previously observed in Canadian shrimp surveys in Div. $2 \mathrm{~J}+3 \mathrm{KL}$.

Other research results (SCR Doc. 90/36, 37)
A stock identification study using parasite infestation as natural tags from 5 areas in the western North Atlantic loffshore in Div. 1C and ICES Subarea XIVb, inshore in Div. 1A, 1D, 1F) showed that the southernmost fjords of West Greenland may not mix as adults with those from the other areas, although there were some similarities between these samples and those from the Denmark Strait (ICES Subarea XIVb). An additional sample from Div. 3 K was different, but somewhat related to the Davis strait sample as a cline in parasite infestation appeared towards this area and further on to the other areas investigated.

Preliminary results of tagging experiments in West Greenland fjords, showed some relationship between populations in southern West Greenland fjords and populations off West Iceland.
c) Estimation of Parameters

Virtual population analysis. A VPA covering subareas 0,1 and Div. 2GH was presented. Catch-at-age flgures for the total area were created using age-length keys from USSR-GDR surveys carried out in the period 1975-89. However, STACFIS noted that the surveys did not cover the commercially exploited areas, and that the age composition in the surveys which were applied to the catches were therefore not considered representative for the commercial fishery, hence the VPA could not be accepted as an account of the status of the stock.
d) Prognosis

As the USSR and Japanese offshore surveys do not cover the whole area of distribution of Greenland halibut in Subareas $0+1$, and as the biomass in Div. OA as well as in the inshore areas of Subarea 1 is not known, STACFIS had no basis for an analytical assessment on which to advise a precise level of catch for 1991. However, based upon the available information, STACFIS advises that the present TAC level of 25.000 tons be maintained. STACFIS further advises that expansion of the fishery should be directed primarily towards areas outside the areas that are at present exploited by the fishery.

Considerations on a Combined Assessment for Subareas 0,1, and 2 and Divisions 3 KL
Last year STACFIS recommended that consideration should be given to the biological and practical implications of combined stock assessments for Subareas 0,1 , and 2 and Div. 3KL. Biological information was summarized, and STACFIS agreed that from a biological point of view there is no reason to maintain two separate assessments for the area as discussed in the section on biological information and other research above.

At present practical limitations impede such a combined assessment. The surveys are conducted in offshore areas whereas most of the fishery is conducted mainly in inshore areas of Subarea 1, and coastal areas of Subarea 2 and Div. 3KL. Therefore, the components of the stock exploited by the fishery can be considerably different from the portion of the stock surveyed. Furthermore, the age composition of the catch is quite different from that found in the trawl surveys.
13. Greenland Halibut in Subarea 2 and Divisions 3KL (SCR Doc. 90/51, 52, 57; SCS Doc. 90/05, $12,13,16)$

## a) Introduction

Greenland halibut catches in Subarea 2 and Div. 3KL have averaged between 25,00030,000 tons annually from 1970 to 1976 with the 1978 catch at 38,500 tons being the highest since the beginning of the fishery in the early-1960s. Catches declined rather steadily since 1978 to reach an all time low of about 16,000 tons in 1986. The fishery improved to the extent that the 1987 catch of 30,900 tons was nearly double the 1986 catch and above the average over the last 18 years. The 1988 and 1989 catches, however, were again near the lowest in the time series at 18,900 tons and 20,100 tons respectively. Most of the 1989 catch was accounted for by Canada with 11,800 tons followed by EEC with 3,200 tons, the GDR with 1,700 tons and Faroe Islands, Japan, Poland and USSR accounting for most of the remainder. The Canadian trawler catches were 900 tons, compared to 600 tons in 1988, and were taken mainly in Div. 3 K during April, May and August. The inshore gillnet catches were mainly in the southern Divisions of $3 \mathrm{~K}(5,800$ tons $)$ and 3 L (2,500 tons) with 2,200 tons taken in Div. 2J. The gillnet fishery occurred primarily during the months between July and October. Catches by other countries varied throughout the year, quite often in conjunction with catching other species. However, while Div. 3L had been rarely directly fished for Greenland halibut by countries other than the coastal state, catches of 4,100 and 3,300 tons were reported by the EEC in 1988 and 1989 respectively. Recent TACs and catches ('000 tons) are as follows:

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TAC $^{1}$ | 35 | 55 | 55 | 55 | 55 | 75 | 100 | 100 | 100 | 100 | 50 |
| Catch | 33 | 31 | 26 | 28 | 25 | 19 | 16 | 31 | $19^{2}$ | $19^{2}$ |  |

1 TAC for Div. $2 \mathrm{~J}+3 \mathrm{KL}$ only for 1977-84.
2 Provisional data.
b) Input Data

1) Commercial fishery data

Considering the nature of this fishery, the migratory behaviour of this species as well as the low levels of directed catch, it was difficult to obtain catch rate data which were accurately representative of total stock size. Data that are avallable [mainly Canada (N)], however, could be helpful as indicators of distribution and abundance in localized areas. The only time serles of catch rate directed data available for recent years was from Div. $2 J$ during the summer. The catch rate declined steadily from 1.51 tons/hr in 1984 to 0.56 tons/hr in 1986 then increased to 0.82 tons $/ \mathrm{hr}$ in 1987. This level was higher than that observed for 1982 ( 0.61 tons/hr) but still below the levels of 1983-84. It subsequentiy declined in 1988 ( 0.38 tons/hr) to the lowest observed during the period examined. During 1989 the level of directed catch by this fleet for Greenland halibut was insignificant and was therefore not reported here. However, data from the Portuguese trawler fleet for the same time period in 1989 for Div. 3L suggested catch rates equivalent to those of 1982 above.

Age compositions from only the Canadlan fishery were available for 1989. These indicated that more than $53 \%$ of the Canadian catch was comprised of age 7 with $94 \%$ of the catch in the age range of $6-8$. This age composition was virtually identical to that reported for the Canadian catch in 1988. Considering that the highest proportion of the commercial catch is taken by gillnet fishermen in the southern range of the stock, the exploitation of these few relatively young age-groups would likely be maintained. Furthermore, it can be expected that this fishery, which exploits such few age-groups, would be highly sensitive to fluctuations in individual yearclass strengths. On the other hand, length frequency distributions available from the newly developed fishery for Greenland halibut in the NAFO Regulatory Area of Div. 3L by EEC-Portugal in 1989 indicate that the catches are comprised mainly of older fish with the modes of the length frequencies likely to be largely representative of 8 year old fish. This fishery is being prosecuted in depths greater than 800 m and appears to have intensified in the early months of 1990 according to Canadian surveillance observations.

Estimates of biomass from Canadian autumn groundfish surveys in Div. 2J (1977-89 down to $1,000 \mathrm{~m}$ ), 3 K ( $1978-89$ down to $1,000 \mathrm{~m}$ ) and 3 L (1981-89 down to 366 m ) were reviewed with values for most missing strata estimated using a multiplicative analysis model. For the area estimated in Div. 2J in 1989 the blomass estimate was 43,000 tons, which was the second lowest in the time series. The previcus low was in 1988 at 35,000 tons. The average biomass estimate over the time series is 69,000 tons.

In Div. 3 K , the 1989 biomass estimate was 73,000 tons which was near the lowest in the time series, although very similar to estimates provided for 1987 and 1988. The average biomass over the time period for this Division is 85,000 tons.

In Div. 3L, the 1989 biomass estimate was 13,000 tons similar to the 1986 , 1987 and 1988 estimates. These estimates were within $20 \%$ of the average biomass for Div. 3L of 16,000 tons since 1981. For Div. 2J, 3 K and 3 L combined, the estimated biomass for 1989 was 129,000 tons compared to 122,000 tons in 1988.

Trends in biomass by Division indicated that for Div. 2 J there has been an overall decline from about 108,000 tons in 1982 to an average of about 39,000 tons in 1988-89, a decrease of nearly 3 times. In Div. 3 K , on the other hand, with the exception of highpoint estlmates in 1983, 1984 and 1986, the estimated biomass has been relatively stable at about $75,000-$ 80,000 tons since 1978. The estimated biomass in Div. 3L accounted for a much smaller portion of the stock although very little deep water was surveyed. Biomass estimates from this Division have been stable since fall surveys began in 1981, at a level. of about 13,000 tons. The overall combined trend, however, shows a considerable decline in biomass since 1984 largely because of historic high levels in Div. 2J. Recent levels are about half of earlier estimates although they appear to be relatively stable during 1988 and 1989.

No Canadian surveys were conducted in Div. 2GH in 1989, however, a joint USSR-GDR survey estimated biomass to be about 43,000 tons which was similar to estimates previously reported from Canadian surveys in Div. 2GH in 1987 and 1988. For USSR surveys in 1987-89 in Div. 3 K and 3 L the results also indicated relative stability.

From the Canadian groundfish surveys in Div. $2 J, 3 K$ and $3 L$ the dominant age-class in the 1987 survey was age 3 which represents the 1984 year-class and was more abundant than any other year-classes at age 3 in the Div. $2 \mathrm{~J}+3 \mathrm{KL}$ series. Up to 1988, this year-class was also the most abundant year-class at age 4 than any other $1 n$ the series, and again at age 5 in the 1989 survey. The 1989 survey indicates that the 1985 year-class may also be quite strong, an observation also supported from the results of USSR surveys. In the previous assessment an examination of data from shrimp) surveys showed that the 1985 year-class dominated the catches at ages 1,2 and 3 also suggesting a particularly strong year-class. Unfortunately, similar data from shrimp surveys are unavailable from 1989.

A comparison of relative year-class strengths at age 5 from Canadian autumn surveys in Div. 2J, 3 K and 3 L suggested that the $1976,1977,1981$ and 1982 year-classes were average, with the 1978 and 1980 year-classes possibly average to just above average. The 1983 year-class was estimated to be relatively strong from Div. 3 K and 3 L data, however, it was weak according to Div. 2J data. The 1984 year-class, on the other hand, was estimated to be strong throughout the area and was similar in strength to that of the 1979 year-class.

Estimation of Parameters
STACFIS recommended in June 1989 that an attempt be made at an analytical assessment of that portion of the Greenland halibut stock covered by the fishery and the surveys in Subarea 2 and Div. 3 K and 3 L for consideration at the June 1990 meoting. An SPA was performed which was calibrated with ADAPT using the commercial catch-at-age from 1978-88 and the Canadian research vessel surveys index of abundance developed from data collected in Div. $2 \mathrm{~J}, 3 \mathrm{~K}$ and 3 L ,

The estimates of abundance from the model were significant at ages 6-12. The estimates of catchability (RV slopes) were extremely high (over 2.0 for most ages) and considered to be unrealistic for this species, for which previous values of catchability had been estimated to be as low as 0.20 . The model also showed unacceptable patterns in the residual matrix and suffered from lack of fit in many
of the age-by-age analyses.
Given the estimates in the SPA of stock size obtained from RV surveys along with the recent catch levels from this stock, it was obvious that the estimates of population numbers and fishing mortality from the SPA were not realistic. Although the SPA may be useful in indicating a decline in stock size from the late-1970s to the present, it is known that both immigration and emigration, by age and by year, occur in this stock and are likely to be highly variable. It is clear that such movements have affected both the estimates from surveys and the age composition of the commercial catch and may explain the variable and high values of $F$ at some ages in certain years. The analysis appears to serve Ifttle more than emphasize the significance of these factors. Thus, little faith can be placed in the SPA as a true measure of stock composition and size until these migration factors can be quantified.
d)

Prognosis
The TAC of 100,000 tons, set in 1985 , was put in place for 1986 based largely upon high survey biomass estimates, potentially good recruitment, and what was considered to be low fishing mortality. The biomass was estimated in excess of 400,000 tons of which 200,000 tons was estimated for Div. 2GH alone. The 1987-88 results for Div. 2GH based upon more appropriate survey design and data analysis suggested that these two Divisions contained about 38,000 tons. In Div. $2 J, 3 K$ and 3L, the estimated blomass had declined from about 225,000 tons in 1984 to nearly half that level in 1988. Estimates of biomass from 1989 surveys indicate that the stock had remained relatively stable, however, there was some potentially good recruitment for the future. Since the existing fishery prosecutes relatively young age-groups, the success of the fishery will remain contingent upon the strength of the recruiting year-classes mainly in age groups 6-8. These age groups in 1991 represent the 1983,1984 and 1985 year-classes.
e) Catch Projections

Considering the evaluation of the SPA, STACFIS concluded that an acceptable analytical assessment of this stock will likely remain unattainable until at least the migration factors can be quantified. Therefore, advice on this stock will continue to be dependent largely upon an evaluation of research vessel survey results. Given that the estimated stock size has remained stable in the 1989 surveys compared to those of 1988 STACFIS advises that the TAC of 50,000 tons in effect for 1990 remain in effect for 1991.
14. Roundnose Grenadier in Subareas 0 and I (SCR Doc. 90/06, 39, 75; SCS Doc. 90/05)

## a) Introduction

A total catch of only 49 tons have been reported to NAFO to date for 1989, compared with 540 tons reported for 1988 . Catches since 1978 continue to be restricted to by-catches in the Greenland halibut fishery. Recent catches and TACs ('000 tons) are as follows:

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TAC | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 |
| Catch | 1.7 | 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.4 | $0.5^{1}$ | $+^{1}$ |  |

[^4]b) Input Data

1) Commercial fishery data

There has been no directed fishery for roundnose grenadier in these Subareas since 1978. No update was possible of the catch/effort analysis which was presented previously (NAFO Sci. Coun. Rep., 1985, page 72).

Research data
The results of a research survey in Subarea 1 by Japan and Greenland in 1989 were presented. The total estimated trawlable biomass was determined to be only about 5,900 tons. This compares with an estimated 45,700 and 44,000 tons from the 1988 and 1987 surveys respectively. It was noted that
the bottom temperature where most of the blomass was found $\left(3.4^{\circ} \mathrm{C}\right)$ was the same as that in 1988. It is belleved that the lower estimate was due to a feeding migration of the fish out of the survey area, since catch rates increased later in the year.

USSR research data also suggested that grenadier were distributed outside the survey area, being deeper than the depths surveyed in 1989. None were found in depths $<800 \mathrm{~m}$, and catches increased to $200-300 \mathrm{~kg} /$ tow deeper than 1100 m . The percentage roundnose grenadier increased with increasing depth, as did the size of the fish.

## Prognosis

STACFIS noted the continuing lack of commercial data for this stock due to continued low catches. It was observed previously (NAFO Sci. Coun. Rep. 1987 , page 71) that the present TAC of 8,000 tons represented an exploitation level of <10\% of the biomass estimated from a 1986 Canadian survey, but is almost $20 \%$ based on the biomass estimates from the 1987 and 1988 Japanese surveys (NAFO Sci. Coun. Rep., 1989, page 96). Although the 1989 . biomass estimate is about 10 fold less than those of 1987 and 1988, this is not considered to be realistic. STACFIS advises that the 1991 TAC should remain at the 1990 level of 8,000 tons.
15. Roundnose Grenadier in Subareas 2 and 3 (SCR Doc. 90/06, 75; SCS Doc. 90/05, 16)
a) Introduction

The provisional 1989 catch of 5,240 tons was down by about 1,000 tons from the reported catch in 1988 ( 6,291 tons). The catch by EEC-Portugal totalled only about 300 tons, about 600 tons less than 1988. Landings by USSR were up by about 600 tons, but those of the GDR were down by about 1,000 tons. Nominal catches remained low compared to those prior to 1979. Recent catches and TACs ('000 tons) are as follows:

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TAC | 30 | 27 | 27 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
| Catch | 2 | 7 | 4 | 4 | 4 | 5 | 7 | 8 | $6^{1}$ | $5^{1}$ |  |

[^5]b) Input Data
i) Commercial fishery data

Catch and effort data were available from ICNAF and NAFO for the period 1967-88, and from the Canadian Observer Program for period 1978-89. The two data sets were analysed separately using a multiplicative model to derive two estimates of standardized catch rate and effort. The ICNAF/NAFO data series indicated that catch rates were highest in the early-1970s, but had gradually declined since then. Catch rates remained fairly constant from 1981 to 1986, but appeared to have declined somewhat since then (Fig. 18). The series derived from the observer Program also appeared stable from 1978 to 1986 although there was considerable inter-annual variability. Catch rates from this series have also declined somewhat since then.

STACFIS noted that it was unclear whether the observed decline in catch rates in recent years was an indicator of stock status, or availability to the fishery. Some evidence was presented which suggested that the fish may have been distributed deeper in recent years, and were therefore less available to the fishery. Therefore, some questions exist concerning the use of these as indicators of stock status.

## Catch-at-age data

Length frequency data for 1989 were avallable from the Canadian Observer Program. The anal fin length of commercial catches decreased as the year progressed in both USSR and GDR fisherles.


Fig. 18. Roundnose grenadier in Subareas 2 and 3: catch-rate data series from the commercial fishery.

Catch-at-age and weight-at-age estimated from USSR and GDR fisheries were avallable for 1979-89 period. Ages 2 to 19 were caught, with ages of about 6-13 dominating in most years. STACFIS noted that a single age-length key was used to construct the catch-at-age.

## Research data

The results of a research survey in Subarea 2 and Div. 3K by USSR in 1989 were presented. Fishing was carried out at depths of $400-1500 \mathrm{~m}$, with grenadier being caught at depths $>500 \mathrm{~m}$ in bottom temperatures of $3.4-3.5^{\circ} \mathrm{C}$. Larger fish were caught in deeper waters, mean length being about 43 cm in $700-800 \mathrm{~m}$, and about 61 cm in $1300-1400 \mathrm{~m}$. As has been noted previously, fish caught in Div. 3 K were smaller than those in the more northern areas. Males predominated with a ratio of 60:40.

An examination of research catch-at-age data for Subareas 0 to 3 combined indicated a modal age of 8 to 10 from 1983 through 1989. This was similar to the modal age of the commercial catches in Subareas 2 and 3.

## Estimation of Parameters

i) Sequential population analysis

Two independent SPA analyses were carried out. Both utilized age-by-age calibrations and commercial catch-rate data. For both, natural mortality was assumed to be 0.15. The first analysis used catch-rate data from the USSR fleet, and each age was calibrated independently.

The second analysis utilized the Canadian Observer Program catch-rate data in an ADAPT formulation, calibrating over all ages (2-19).
d)

Assessment Results
Results of the SPA using USSR vessel catch rates indicated a biomass of 48,100 tons in 1989 with an abundance of $236.9 \times 10^{6}$ fish. Except for age 2 population numbers, all estimated parameters were significant using the ADAPT formulation. The analysis resulted in an estimated 1989 abundance of $306.8 \times 10^{6} \mathrm{fish}$ with a biomass of 57,700 tons.

## Prognosis

Although the 1989 population estimates from the two analyses were reasonably close, STACFIS concluded that they are not representative of the true stock size. It is known that roundnose grenadier are distributed in depths down to at least 3000 m . At present, the fishery is not prosecuted below about 1600 m , and an unknown portion of the stock exists in depths greater than those currently fished. It has been postulated that in recent years grenadier have distributed deeper relative to the fishery. This is perhaps supported by the observation that the exploitable biomass, as determined from the ADAPT analysis, has been close to, or less than the reported catch in recent years.

STACFIS concluded that in its present form, SPA is not an appropriate tool for the assessment of roundnose grenadier in Subareas 2 and 3 . Also, current survey data available do not provide reasonable estimates of population size because all inhabited depths are not surveyed, and the proportion of grenadier in deeper waters is unknown. It is also possible that this proportion changes between years. If there is a trend in recent years for grenadier to be distributed deeper, then the recent decline in catch rates may be reflecting this re-distribution rather than stock status. Last year, STACFIS coricluded that the. recent low catch rates were not the result of by-catch restrictions (NAFO Sci. Coun. Rep., 1989, page 98).

Given the above, STACFIS concluded that there are insufficient data upon which to base an assessment. STACFIS advises that the precautionary TAC level of 11,000 tons should remain in place until further information becomes available. It was noted that catches in recent years have been below this precautionary level, but STACFIS noted that most of the recent catches have been taken in Div. 3 K whereas the TAC applles to all of Subareas 2 and 3 .
16. Wolffish in Subarea 1 (SCS Doc. 90/14)
a) Introduction

The nominal catch reported for west Greenland waters includes two species: Atlantic wolffish (Anarhichas lupus) and spotted wolffish (A. minor). Since 1957, the combined nominal catch of both species has been in the range of $1,000-6,000$ tons.

The fishery is partly a small-scale directed fishery and partly a by-catch in the trawl fishery for cod. Recent catches ('000 tons) are as follows:

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Catch | 5 | 4 | 4 | 3 | 2 | 2 | 2 | 2 | $2^{2}$ | $1^{1}$ |  |

1 Provisional data.
b) Catch Projections

Until more blological data and separate catch statistics for the two species become available, it is not be possible to carry out any assessment. The previous advice of 5,000-6,000 tons corresponding to the average catch in the 1970 s could be a sustained yield. Therefore, STACFIS finds no reason to change the previous advice of 5,000-6,000 tons.
17. Capelin in Division 3L

Discussion on this stock was deferred until the September 1990 meeting.
18. Capelin in Divisions 3 N and 30 (SCR Doc. 90/07, 61; SCS Doc. 90/05)

## a) Introduction

Nominal catches in these Divisions increased from about 750 tons in 1971 to 132,000 tons in 1975 and declined to 5,000 tons in 1978. During this period, most of the catch was taken by USSR trawlers and Norwegian purse seiners. The fishery was closed during 1979-86. The provisional catch in 1989 was 9,776 tons reported by Japan, Norway and USSR. The USSR fishery occurred on prespawning capelin while the Japanese and Norwegian fisheries occurred on the capelin spawning grounds in the Requlatory area. Recent TACs and catches ('000 tons) are as follows:

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Advised TAC | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 10 | 10 | 28 | 30 |
| TAC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 15 | 28 | 30 |
| Catch | 0 | 0 | 0 | 0 | 0 | + | 0 | 1 | $7^{2}$ | $10^{2}$ |  |

1 No STACFIS advice.
2 Provisional data.
b)

1i)
Research data
An acoustic survey by Canada in Div. 3N during 24 June-3 July 1989 provided a biomass estimate of 29,000 tons. This estimate was the lowest on record and well below the average $\{1981-88\}$ of 303,000 tons. Some commercial fishing had concluded prior to the survey suggesting that the survey may have been too late to cover the peak spawning concentration of capelin. Thus, this estimate may have been biased downwards although it was not possible to quantify this. The 1986 and 1985 year-classes dominated, accounting for $80 \%$ and $10 \%$ of the estimate by numbers, respectively.

The USSR surveyed a portion of Div. 3NO as part of a Div. 3LNO acoustic survey during 18 May-5 June 1989. An estlmate for the Div. 3NO stock could not be extracted from the total biomass estimate. STACFIS noted that separate estimates for Div. 3L and $3 N O$ will be available in the future.

Results of a Soviet 0-group survey during 21 November-9 December 1988 indicated that the 1988 year-class was slightly stronger than the 1983 year-class which had been the strongest in the series. Results from a similar survey conducted during 19 November-9 December 1989 showed the 1989 year-class to be about $70 \%$ of the strength of the 1983 year-class. This 0group survey has been ongoing since 1983 and STACFIS recommends that the USSR 0 -group survey be continued to provide a database that can be evaluated as an indicator of recruitment.
c) Catch Projections

No stock projections were made for capelin in Div. 3No because estimates of the 1987 and 1988 year-classes were not available for this stock. STACFIS considers an exploitation rate of $10 \%$ of the mature biomass to be appropriate for the Div. 3No capelin stock. The average spawning biomass (1981-88) is 303,000 tons. STACFIS has no basis on which to change its previous advice and STACFIS advises that the $10 \%$ target removals be based on the average spawning biomass, 1981-88, indicating a catch of 30,000 tons in 1991.
d) Recommendations

Catches in this stock are increasing with the entry of new fleets and STACFIS recommends that sampling data for all components of the capelin fishery in Div. 3NO, including details on timing and location of the fishery, be collected.
19. Squid in Subareas 3 and 4
a) Introduction

Nominal catches of short-finned squid (Illex illecebrosus) in Subareas 3 and 4 peaked at 162,000 tons in 1979, and then declined to less than 2,000 tons during 1983-88. The provisional catch in 1989 was 6,537 tons. Recent catches and tacs ('000 tons) are as follows:

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TAC | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 |
| Catch | 70 | 33 | 13 | + | 1 | 1 | + | 2 | 1 | $7^{1}$ |  |

: Provisional data.
b) Catch Projections

Because of the short life span of squid and unpredictable variability in availability, no catch projections can be made for 1991.
20. Shrimp in Subareas 0 and 1 (SCR. Doc. 90/44, 46, 63, 65 and 90).
a) Intraduction

The nominal catch of shrimp in the offshore areas of subarea 1 south of $71^{\circ} \mathrm{N}$ and the adjacent part of Subarea 0 increased from less than 1,000 tons before 1972 to almost 43,000 tons in 1976, fluctuated thereafter, but has been at a level about 45,000 tons during 1985-88. Preliminary statistics for 1.989 indicate total catches of about 51,000 tons. This offshore fishery has been regulated by TAC since 1977 (Table 11A, B).

In both 1988 and 1989, there was a southward shift in this offshore fishery with more effort being expended in Div. 1C and 1D than in preceding years.

An offshore fishery began north of $71^{\circ} \mathrm{N}$ in 1.985 and yielded about 4,300 tons that year. The catches increased to about 11,000 tons in 1986 and 1987, and decreased thereafter to 2,500 tons in 1989. In 1989 the fishery occurred from May to December. This fishery occurs outside the fisting areas in Subareas 0 and 1 for which TACs have been advised.

The west Greenland inshore shrimp fishery has been relatively stable with estimated catches of 7,000-8,000 tons annually from 1972 to 1987 lexcept for 10,000 tons in 1974). Preliminary catch statistics indicate an increase to 9,900 tons in 1988 and 14, 400 tons in 1989.

Recent catches and TACs (tons) are shown in Table 11 A ; B .
b) Input Data

1) Commercial fishery

Catch rates. Catch and effort data for the shrimp fishery in 1989 were available from: Canadian vessel logs" from subarea 0 and from French, Greenland and Norwegian logbooks from Subarea 1. Mean catch-rate indices for the Canadian fishery in the July-September period in Div. OA (standardized to 1980) and for seven Greenland trawlers (721-1, 000 GRT) in Div. 1B are given in Table 12. The Greenland index is standardized for vessel, year, month and area using a multiplicative analysis.

Table 11A. Shrimp in Div. $O A$ and Subarea 1 : nominal catches and TAC (tons) included in TAC advice.


1 Preliminary data.
2 South of $71^{\circ} \mathrm{N}$.
${ }^{3}$ Including TAC of 5,000 tons in SA 0 .
4 Including TAC of 6,120 tons in SA 0 .
5 Including TAC of 7,520 tons in Div. OA.

Table 11B. Shrimp in Div. OA and Subarea 1: total nominal catches.

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | $1988{ }^{1}$ | $1989^{2}$ | $1990^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SA 1 offshore (south of $71^{\circ} \mathrm{N}$ ) | 35,778 | 32,016 | 35,015 | 33,854 | 33,741 | 39,547 | 41,589 | 40,020 | 37,562 | 43.899 |  |
| Greenland ( N of $71{ }^{\circ} \mathrm{N}$ ) | 750 | 7- | . 50 | 7.0- | 7, | 4,349 | 11,045 | 10,700 | 6,660 | 2,522 |  |
| Greenland (Inshore ${ }^{\text {2 }}$ ) | 7,500 | 7,500 | 7,500 | 7,500 | 7,500 | 7,500 | 7,500 | 6,921 | 10,233 | 14,428 |  |
| SA1 Total | 43,278 | 39,516 | 42,515 | 41,354 | 41,241 | 51,396 | 60,134 | 57.641 | 54.455 | 60,849 |  |

## Preliminary.

Inside 3 -mile limit. Inshore component of total catch 1980-86 was estimated.

Table 12. Shrimp in Div. $O A$ and 1B: CPUE indices from the Canadian fishery (July-September) in Div. OA and Greenland fishery (standardized, all year) in Div. 1B, 1976-89.

|  |  | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Canada | OA | - | - | - | - | $0.60^{1}$ | 0.66 | 0.78 | 0.63 |
| Greenland | 1B | 1.05 | 1.27 | 1.01 | 0.93 | 1.05 | 1.07 | 1.26 | 1.20 |


|  |  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Canada | $0 A$ | 0.64 | 0.61 | 0.67 | 1.31 | 0.92 | 0.90 |
| Greenland | $1 \mathrm{~B}^{2}$ | 1.10 | 1.25 | 1.17 | 1.55 | 1.27 | 1.00 |
| Greenland | $1 \mathrm{~B}^{3}$ | - | - | - | 1.75 | 1.61 | 1.00 |

Indexed to 1980.
2 Standardized index for seven trawlers (721-1,000 GRT).
3 Standardized index for 22 trawlers, catch of shrimp $>8.5 \mathrm{~g}$.

Due to the uncertainty in the interpretation of these catch-rate series caused by possible changes in discarding procedures in recent years, a standardized catch-rate index for shrimp of sizes, for which discard is unlikely or at least negligible, was produced. Logbook data for Div. IB for 22 sea-processing trawlers reporting their catches by different size categories were used in a multiplicative analysis similar to the one used for the seven Greenland trawlers. Only catches of shrimp $>8.5 \mathrm{~g}$ (considered to be females) were included. Data were sufficient only for 1987 to 1989.

The Canadian catch-rate index remained stable from 1984 to 1986 and increased sharply in 1987 followed by a decline in 1988 by approximately 28\%. In 1989 it remained at the same level as in the year before. The Greenland index showed a slightly increasing trend from 1979 to 1986 , followed by an increase similar to the Canadian data. It decreased again in 1988 and 1989 by $18 \%$ and 21\%, respectively.

The catch-rate index for large shrimp showed a significant decrease between 1987 and 1989 (8\% from 1987 to 1988 and $38 \%$ from 1988 to 1989; Fig. 19), also for the winter period when aggregation of ovigerous females usually led to a high catch rate. Using the same model and data, but including the total reported catch of shrimp, showed a significant decrease in the mean catch of shrimp $<8.5 \mathrm{~g}$ (i.e. mainly maie and juvenile shrimp) from 1987 to 1988, while the mean catch of this group was similar from 1988 to 1989.


Fig. 19. Shrimp in Subareas 0 and 1: CPUE indices standardized for 1989 from D1v. 1B compared with total offshore catches (excluding catches in the Northwest Greenland area north of $71^{\circ} \mathrm{N}$ ).

STACFIS agreed that catch and effort data by area and month for all fishing areas should continue to be provided for future assessments.

Biological data. Size compositions of samples from the commercial shrimp catches in DIv. OA in 1989 were very similar to the previous two years. The reduction in numbers caught per unit of effort from 1987 to 1989 occurred over all size/age groups.

Canadian catch-at-length data from Div. OA from 1980 to 1989 indicated that the mean size of the largest mode decreased during 1983-85.

STACFIS noted the absence of length composition data from the commercial fisheries in subarea 1 and stressed the neccessity that such data be provided on a time series basis for all fishing areas and fleets.

Shrimp discards. In Subarea 0 , observers estimated discarding rates (relative to the shrimp catch) to be at the same level as in preceding years. Since 1980, the observed average discard has fluctuated between $2 \%$ and 5\%. No data on discards were available for the fishery in subarea 1 ,
but recent changes in discarding practices are discussed under Section $c$.
By-catches. In Div. 0A, observer data on catch composition from June to November 1989 showed that small redfish comprised between $9 \%$ and $16 \%$ of the catch by weight, with maximum occurrence in July and August. Mean catch rates of small redfish and Greenland halibut in 1989 were close to those for 1988 , namely 82 and 11 kg per hour, respectively.

No data were avallable on by-catches in Subarea 1.
Research vessel surveys
In July-August 1989 a stratified-random trawl survey was carried out in Div. $0 A$ and $1 A-1 D$ to assess the distribution and trawlable biomass of shrimp. The area covered was similar to that investigated in the July 1988 survey. The trawlable biomass estimate obtained by the swept area method in 1989 was 185,000 tons ( $\pm 39 \%$ ) in the areas south of $69^{\circ} 30^{\prime} \mathrm{N}$, and 11,725 tons ( $\pm 58 \%$ ) in the northern areas, compared to 138,000 tons in the southern area and 24,500 tons in the northern area in 1988. In the 1988 survey it was not possible to directly measure wing spread of the trawl used, and the swept area for each haul used in calculations had to be based on a wing spread estimated from tank experiments. Model experiments suggested that the wing spread was between 24 and 29 m in 1988 and between 16 and 19 m in 1989. In-situ measurements in 1989 confirmed the latter range with a mean value of 17.2 m . Due to the difference in net geometry between 1988 and 1989 it is difficult to compare directly the biomass estimates obtained in the two years.

In 1989, a higher proportion of the stock was found in the southernmost area. In $1988,26 \%$ of the estimated biomass was found south of $67^{\circ} \mathrm{N}$, while in 1989 41\% was estimated for that area.

Shrimp samples from the 1988 and 1989 surveys indicated that, in 1988 , the overall proportion between number of males and females in the surveyed stock was $72 / 28$, while for 1989 the proportion was $86 / 14$. The samples also indicated an overall reduction in mean weight of shrimp from 6.4 g in 1988 to 5.7 g in 1989.
c) Assessment Results

Figure 19 shows offshore catches in subareas 0 and 1 (excluding catches from Northwest Greenland), the catch-rate index for seven Greenland trawlers in Div. 1B and the new standardized index for mean catch of large shrimp. The southward shift in the fishery in recent years may affect the interpretation of the CPUE-indices, which refer only to Div. 1B. This, however, remains the most important fishing area where about half of the total offshore catch was taken in 1989. The CPUE in the southern area increased from 1987 to 1988 , and the fishing effort increased substantially from 1987 to 1989. While a number of interpretations for this increasing trend is possible, the decrease in catch rate from 1987 to 1989 in Div. 1B seems to reflect some decrease in abundance or availability over the period.

Considering that survey results indicate a relatively higher proportion of small shrimp in 1989 compared to 1988 , and that the commercial catch rate of males in the index series for 22 Greenland seapprocessing trawlers did not increase between the two years, higher non-reported discards in 1989 than in 2988 are indicated.

In 1989, a larger proportion of the total offshore catch in Subarea 1 was taken in Div. 1C and 1D compared to earlier years. Survey results also showed an increase in biomass south of Div. 1B. It appears, therefore, that in 1989 a higher proportion of the stock biomass was found south of $67^{\circ} \mathrm{N}$. There is also an indication that the overall population is now composed of smaller shrimp than previously. The increase in the abundance seen in the southern areas may be an effect of the relatively low fishing intensity in that area in 1987 and 1988 , and hopefully the northern area will show a similar increase in abundance by the lower fishing there in 1989.

All CPUE indices show a decrease since 1987 which may reflect a decline in stock abundance. Mean weight (size) of shrimp appears to have decreased between 1988 and 1989, and data suggest that the modal length of females decreased from 1983 to 1985.

These observations warrant more caution in the provision of advice for 1991. The TAC of 50,000 tons advised in 1989 for 1990 might lead to removals which are at or above what the stock can sustain. The reported catches in recent years have exceeded both the advised and the implemented TACs, and possible changes in discard practices may also have contributed to higher than advised removals from the stock. The data available are not sufficient to determine an appropriate lower catch level" but suggest caution in the short-term exploitation of this
resource. Therefore, STACFIS advises that the TAC for 1991 not exceed 50,000 tons. STACEIS at the same time expresses great concern over the possibility of increasing discard rate and recommends that direct observations on discard of shrimp in the shrimp fishery be made.
e) The Greenland Shrimp Fishery North of $71^{\circ} \mathrm{N}$ (SCR Doc. $90 / 44$ and 63)

Catches and TACs set (since 1987) for the entire history of the fishery off Northwestern Greenland are given in Table (11). Data suggest that the stock declined substantially between 1985 and 1988. Fecundity data suggest that berried females in this stock carry significantly less (20-40\%) eggs than do females (of same size) at West Greenland ( $66^{\circ} \mathrm{N}$ ). Therefore, reproduction in the north might be low compared to more southern stocks. This, coupled with a decrease in the abundance of large shrimp (i.e. females) might affect future recruitment to the stock. Therefore, as a cautious measure, it is suggested that the level of exploitation in 1991 should not exceed the 1989 level ( 2,500 tons).
21. Shrimp in Denmark Strait (SCR Doc. 90/11, 12, 42, 62, 64, 82, 91)
a) Introduction

The fishery on this stock was initiated in 1978 and increased during the following years to around 12,500 tons in 1988. In 1989 catches taken by Danish, Faroese, French, Greenlandic, Icelandic and Norwegian vessels decreased to around 10,700 tons. Reported catches and TACs throughout the history of the fishery are given in Table 13.

The shrimp fishery in Denmark Strait takes place primarily in the area of strede Bank and Dohrn Bank as well as on the slopes of Storfjord Deep. The available fishing ground at a given time depends heavily upon the ice conditions. The main fishing area extends from approximately $65^{\circ} 20^{\prime} \mathrm{N}$ to $67^{\circ} 30^{\prime} \mathrm{N}$ and between $28^{\circ} \mathrm{W}$ and $33^{\circ} \mathrm{W}$. During the last five years about 60 vessels participated in the fishery on the western side of the midline, and in 1987-89 about 30 vessels on the eastern side of the midline.

Table 13. Shrimp in Denmark Strait: nominal catches and TAC (tons).

| Nation | 1978 | 1979 | 1980 | 1.981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | $1988{ }^{1}$ | $1989^{1}$ | $1990{ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | - | - | 702 | 581 | 740 | 204 | 443 | 353 | 500 | 555 | 444 | 339 |  |
| Faroe Islands | - | - | 4,233 | 713 | 737 | 443 | 668 | 674 | 727 | 595 | 679 | 595 |  |
| France | - | - | 50 | 353 | 414 | 291 | 500 | 642 | 780 | 1,030 | 494 | 381 |  |
| Greenland | - | - | 200 | 1004 | 1,115 | 1,467 | 2,250 | 2,596 | 5,781 | 6,627 | 7,456 | 5,981 |  |
| Iceland | 363 | 485 | 759 | 125 | - | 43 | 742 | 1,794 | 1,150 | 1,330 | 1,424 | 2,326 |  |
| Norway | - | 800 | 2,461 | 2,016 | 1,896 | 1,727 | 2,128 | 2,051 | 2,026 | 2,041 | 2,052 | 2,098 |  |
| Total | 363 | 1,285 | 8,405 | 4,792 | 4,902 | 4,175. | 6,731 | 8,110 | 10,964 | 12,178 | 12,549 | 10,720 |  |
| Advised TAC | - | - | - | - | 4,200 | 4,200 | 4,200 | 5,000 |  |  |  | 10,000 ${ }^{2}$ | 10,000 ${ }^{2}$ |
| Effective TAC ${ }^{3}$ | - | - | - | 8,000 | 4,500 | 5,725 | 5,245 | 6,090 | 7,525 ${ }^{\text {c }}$ | 7, $725^{4}$ | B,725 ${ }^{4}$ | 9,0254 | 14,100 |

## Provisional data.

Advised for a few years as a precautionary measure.
On western side of midline only.
Not including Greenland fishery north of $66^{\circ} 30^{\prime} \mathrm{N}$.
b) Input Data

1) Commercial fishery

Fishing effort and CPUE. From 1986 to 1989 the total effort spent in the fishery doubled, while nominal catches remained at the same level. After an initial decrease catch rates remalned relatively stable from 1982 to 1987 followed by a significant decrease in 1988 and a continued decrease from 1988 to 1989 (Fig. 20).

Evaluation of CPUE data from this fishery is complicated by several factors, e.g. variation in ice coverage, improvements in gear technology, incomplete data on fishing effort in some years, and unsubstantiated suggestions of changes in discard procedures in later years. In spite of these complications, the continued decrease in overall catch rates from 1987 to 1989 below the observed relatively stable level in preceding years may cause serious concern.

Biological data. Data from one French and one Norwegian trawler in March-April 1989 showed that shrimp with a modal group around 30 mm carapace length was dominating as in samples from previous years for all countries. Male shrimp were present in almost all samples, constituting by number less than $20 \%$ at average.


Fig. 20. Shrimp in Denmark Stralt: CPUE for the January-June and JulyDecember periods of 1980-89 compared with nominal catches.

Shrimp discards. There was no information on which reliable estimates of discard could be made. Discard procedures may have changed in later years due to market requirements for larger shrimp and development of effective grading machines. The high number of vessels in the fishery and vessel quota limitations may result in higher, not reported, amounts of discarded shrimp.

By-catches. Norwegian observer data from 1982 to 1989 indicate that the number of fish-per-kg of shrimp was substantially higher in 1987, 1988, and 1989 than in previous years. Small Juvenile redfish dominated the by-catch, as has been the case in most years.

In response to a request from ICES (ACFM), STACEIS recommends that experts having data on redfish by-catches and/or discards in the shrimp fishery forward such data to the Chairman of the ICES North-Western Working Group before the next meeting of that group.
ii) Research vessel surveys

Since 1983 a Norwegian survey has been conducted in Denmark Strait every year in the autumn. The survey in August-September 1989 added new information on the distribution and biology of this stock. The distribution in numbers of males showed a normal pattern over the areas, being most abundant outside the grounds traditionally exploited. However, due to a decrease in numbers of females in the Dohrn Bank area, the ratio of males to females was larger east of $31^{\circ} \mathrm{W}$ in 1989 than earlier observed. Data from 1985 to 1989 indicate that a fairly stable proportion of the females (2636\%) do not prepare for spawning each year. $19 \%$ of the females still had head-roe (compared to about $5 \%$ in earlier years), suggesting a slight delay in spawning in 1989.

Shrimp samples showed one female mode at 30 mm carapace length as in earlier years.

Some noticeable changes in the shrimp stock were indicated for 1989:

1. The stock was more evenly distributed than previously and over a larger area, i.e. concentrations of shrimp were less dense than in earlier years;
2. Males and females were more evenly distributed over the areas than earlier recorded;
3. In 1988 and 1989 the relative proportion of males was higher than in preceding years, but the geographical distribution was different from 1988 to 1989 , as males in relation to the total number of shrimps were more frequent in the eastern part than in the western part of the survey area.

The biomass estimates by the swept area method for 1985-89 are as follows:

|  | 1985 | 1986 | 1987 | 1988 | 1989 | Average |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Biomass estimate | 31,300 | 44,200 | 25,200 | 49,600 | 35,000 | 37,060 |
| Std Error, \% | 23.2 | 13.9 | 17.1 | 16.7 | 17.4 |  |

Although a high variability was noted in the time series of survey estimates, it was agreed that the biomass has been relatively stable during these years. It was noted, that shrimp smaller than about 16 mm carapace length did not occur in survey samples, i.e. the stock component of juveniles and small males is not covered by the survey.

In 1989 a Greenland stratified-random trawl survey was conducted in the commercial area in Denmark Strait in August-September. The biomass estimated in this survey is not comparable to results of the Norwegian survey due to possible changes in stock distribution during the survey periods and to differences between gears.

## c) Assessment Results

A general production model ${ }^{2}$ using moving averages of 2 - and 3 -years estimated the maximum sustainable yield to be between 10,000 and 11,000 tons. At $2 / 3$ MSY effort the yield was between 9,300 and 10,000 tons. It was noted that there were few observations at or beyond the MSY estimate, which suggested that the estimates were not very precise. Also, the fishery was not distributed over the entire stock area, which violates the assumptions underlying the use of such models.
d)

Prognosis
Inclusion of data from 1989 in the data series shows the following trends:

1. A continuation of the decreasing trend in catch rates.
2. The Norwegian trawl survey in 1989 indicated a biomass estimate at the same level as the average from 1985 to 1988 . The survey also showed that the higher occurrence of males found in 1988 continued.

Since 1986 the effort spent in the shrimp fishery has doubled, while catches have remained at the same level. This continued decrease in mean catch rate and the higher relative occurrence of males found in trawl surveys in 1988 and 1989 may indicate an increasing level of non-reported discards in the fishery, so that actual catches and catch rates in recent years may be significantly bigher than recorded in landing statistics and logbooks. STACEIS found no basis for a change in advice and hence advises the TAC in Denmark Strait for 1991 be maintained at 10,000 tons.

STACFIS at the same time expresses great concern over the possibility of increasing discard rate and STACFIS recommends that direct observations on discard of shrimp in the shrimp fishery be made.

## III. RESPONSE TO FISHERIES COMMISSION REQUEST

1. Cod in Divistons $2 \mathrm{~J}, 3 \mathrm{~K}$ and 3L (SCR Doc. 90/23)

The Scientific Council was requested to: continue to provide information, if available, on the stock separation in DIv. $2 J+3 K L$ and the proportion of the biomass of the cod stock in DIv. $3 L$ in the Regulatory Area and a projection if possible of the proportion likely to be available in the Regulatory Area in future years. Information is also requested on the age composition of that portion of the stock occurring in the Regulatory Area.

A comprehensive study of stock discrimination of Div. $2 \mathrm{~J}+3 \mathrm{KL}$ cod was reviewed at the 1986
a Fox, W. W., Jr. 1970. An exponential surplus-yield model for optimizing exploited fish populations. Trans. Am. Fish. Soc., 99: 80-88.
annual meeting (NAFO Sci. Coun. Rep. 1986, pages 121-124). The conclusions derived from that review were reiterated during the June 1989 meeting (NAFO Sci. Coun. Rep. 1989, page 111). No new analyses are currently available on this subject and hence previous conclusions remain unchanged. STACFIS notes, however, that analyses on the structure of the Div. $2 J+3 K L$ stock as well as the potential for assessing the entire management unit in smalier areas are ongoing.

Estimates of the proportion of the biomass of cod in Div. 3L in the Regulatory Area were updated with the 1989 Canadian RV survey information. Results are similar to those previously reported and are included in the following table:

| Season RV <br> survey <br> Conducted | Years RV <br> survey <br> conducted |  |  | Range of proportions <br> of biomass occurring <br> In the Regulatory Area (8) |
| :--- | :---: | :---: | :---: | :---: |

Autumn surveys in all three Divisions (2J, 3 K and 3 L ), conducted by Canada since 1981, continue to indicate that the proportion of the cod biomass in the Regulatory Area at that time of year is less than $1 \%$, on average, of the entire Div. $2 \mathrm{~J}+3 \mathrm{KL}$ cod biomass. The average Divisional proportion of cod blomass derived from these surveys is as follows:

| Division | Relative Proportion (\%) |
| :---: | :---: |
| 2 J | 41 |
| 3K | 31 |
| 3L | 28 |

With the assumption that the relative distribution between Divisions in autumn was similar to that of other times of the year, it was previously concluded that "the proportion of the entire Div. $2 J+3 \mathrm{KL}$ cod biomass estimated to occur in the Regulatory Area is less than 10\% in winter and less than 5\%, on average, throughout the year". With the previous data series updated, this conclusion remains unchanged. It might also be reasonable to assume that, because proportions of cod biomass occurring in the Regulatory Area in Div. 3L exhibit no annual trends, proportions expected to occur would be about the same as those observed.

Age compositions derived from Canadian RV surveys in areas inside and outside 200 miles were also updated. The results of these comparisons are the same as those reported last year: during spring and autumn, when only a small portion of the Div. 3L cod biomass occurred outside 200 miles, a proportionately larger number of younger fish occurred in the Regulatory Area than the area inside 200 miles. During winter, when the maximum proportion of the Div. 3L biomass occurred in the Regulatory Area, age compositions for the area inside and outside the 200 mile zone are similar.
2. Cod in Div. 3 M

The Fisheries Commission asked the Scientific Council, with respect to cod in Div. 3 M , to comment on: the appropriateness of establishing a minimum target level for the biomass, and to comment on the role of exploratory fisheries in providing data for stock assessment purposes.

Establishing a minimum level for the exploitable biomass is not an appropriate target to judge the status of a stock, while spawning stock biomass is the relevant variable to be taken into account. The question on the spawning stock biomass was considered in last year's response to Fisheries Commission (NAFO Sci. Coun. Rep., 1989, page 112). The spawning stock biomass estimated for 1989 was judged to be below any desirable size, despite available survey data indicating that exploitable biomass could be at a level of 85,000 tons, which was the target previously chosen by the Fisheries Commission (FC Doc. 83/IX/4). The present stock is composed mainly of immature fish and a substantial increase of the spawning biomass is not expected to occur before 1991, when the relatively abundant 1986 year-class becomes partially mature. This may never occur if fishing effort continues at the present level.

On the role of exploratory fisheries in providing data for the stock assessment purposes, the Scientific Council response given last year was in the light of moratorium on the Flemish Cap cod fishery which was expected to be effective (NAFO Sci. Coun. Rep., 1989, page 138). STACFIS notes that a cod fishery took place in 1989 estimated at 40,000 tons and, presumably, is also taking place in 1990. In the light of this, catch-effort and sampling data of the fleets operating in the Flemish Cap need to be collected. If these data are available to STACFIS, together with the present survey data, they would be the bulk of the input for future analytical assessments of the Flemish Cap cod. The time series data on longline CPUE for Earoe Island vessels for the years 1973-75 were supplied as SCR Doc. 90/43, however, those values wre not used in determining stock status.

## 3. Flounders in Divisions $3 \mathrm{~L}, 3 \mathrm{~N}$ and 30

With respect to flounders in Div. 3LNO, the Scientific Council was requested to: provide advice on management options that would reduce the extent to which the fisheries reduce the potential yield due to harvest of small fish.

STACFIS noted that there were large numbers of juvenile flatfish removed in the Regulatory Area in 1989. The following tables show the comparison between the Canadian, Spanish and USA fisheries for 1) yellowtail flounder and 2) American plaice in Div: 3LNO in 1988 and 1989.

Yellowtail flounder

|  | Catch(t) | Catch 1988 (millions of fish) | Mean wt. (kg) of fish in catch | $\therefore$ Catch ( $t$ ) | ```1 9 8 9 Catch (millions of fish)``` | Mean wt. (kg) of fish in catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Canada | 10,614 | 19.6 | 0.54 | 5,007 | 9.8 | 0.51 |
| EEC-Spain | 3,205 | 24.0 | 0.13 | 1,126 | 12:4 | 0.09 |
| USA | 861 | 1.8 | 0.48 | 319 | 0.7 | 0.44 |
| American plaice |  |  |  |  |  |  |
| Catch (t) |  | 1988 |  | - . 1989 |  |  |
|  |  | Catch <br> (millions of fish) | Mean wt. (kg) of fish in catch | Catch(t) | Catch '.. <br> (millions of fish) | Mean wt. (kg) of-fish in catch |
| Canada | 26,900 | 37.9 | 0.71 | 27,900 | 39.9 | 0.70 |
| EEC-Spain | 8,900 | 15.9 | 0.56 | 10,600 | 38.2 | 0.28 |
| USA | 1,400 | 1.7 | 0.82 | 1,100 | 1.3 | 0.85 |

The peak lengths in the Spanish catches of flatfish in Div. 3NO in some months in 1989 .were $18-22 \mathrm{~cm}$. Selectivity studies for American plaice indicate that the $25 \%$ retention length for 130 mesh is 27 cm . STACFIS concluded that the effective'mesh size used in the Spanish fishery for flatfish in Div. 3NO was probably much smaller than the NAFO regulation minimum size, and may have been as small as 60 mm .

Information from the Canadian fleet in 1988 showed that the discard rate of yellowtall flounder was less than $3 \%$ in all areas and that the discard rate for American plaice was at a similarly low level in almost all areas. The mesh size used by the Canadian offshore fleet is 135 mm , and the minimum acceptable size for flatfish is 28 cm .

The obvious way to reduce the loss in potential yield due to the harvest of small fish is to ensure that the regulations determining the minimum effective mesh size are adhered to. Juvenile flatfish surveys have repeatedly shown that small flatfish are concentrated on the southern Grand Bank, with a high proportion of these small fish occurring in the Regulatory Area. At the present time, closed areas and/or seasons are not possible to define without detailed information on the time; place and length frequency distribution of catches of juvenile flatfish in the Tail of the 'Bank area. This information was requested by Scientific Council in 1989 (NAFO Sci. Coun. Rep. 1989, page 137). With the exception of some information on the location of Canadian catch in 1986-88 and the discard rate in the Canadian fleet in 1988 , both on a scale larger than $1^{\circ}$ by $1^{\circ}$ squares, there were no data provided at the June 1990 meeting.

## 4. On Catches Exceeding TACs

The Scientific Council was asked: with respect to stocks from which catches have recently been significantly in excess of the NAFO TACs, analysis is requested 'on the effect such catches have had in determining present stock status.

STACFIS notes that TACs have been significantly exceeded in recent years for the following stocks occurring in the Regulatory Area and where TAC advice is provided by the Scientific Councll:

|  | 1986 |  | 1987 |  | $1988+$ |  | $1989+$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TAC agreed | Catch |
| Cod 3M | 13 | 15 | 13 | 8* | 0 | 40* | 0 | 40* |
| Cod 3NO | 33 | 51 | 33 | 42 | 40 | 43 | 25 | 33 |
| Redfish 3M | 20 | 29 | 20 | 44 | 20 | 23 | 20 | 27 |
| Redfish 3LN | 25 | 43 | 25 | 79* | 25 | 53* | 25 | 24 |
| A. plaice 3 M | 2 | 3.8 | 2 | 5.6 | 2 | 2.8 | 2 | 3.9 |
| A. plaice 3LNO | 55 | 65* | 48 | 55 | 40 | 42* | 30.3 | 44* |
| Yellowtail 3LNO | 15 | 31 | 15 | 16 | 15 | 16 | 5 | 7. 6* |
| Witch 3NO | 5 | 9 | 5 | 8 | 5 | 6 | 5 | 4 |

* Includes an estimate of non-reported catches.
+ Provisional, apart from those with an *.

The above catches are the nominal catches as officially reported to NAFO together with non-reported catches where these are available. Non-reported catches occurred in other years and stocks than those with an asterisk but no estimates could be made.

Exceeding TACs has littile effect on the ability to conduct the assessments provided that information on total catch and effort together with sampling data is made available.

The catches of non-members are difficult to both qualify and quantify. For instance, for cod in Div. 3M, although reported catches give the appearance that the moratorium has been respected, a figure of 40,000 tons has been estimated from catch and effort data of nonmember countries' pair trawlers fishing for cod in Flemish Cap, and from sightings of fishing boats reported by the Canadian Department of Fisheries and Oceans (DFO) including single and pair trawlers. But due to the lack of precise knowledge on catches-at-age by fleet component for several years, an analytical assessment was not possible. The present status of that stock was evaluated from research survey data. Simultaneously, it is believed that in 1989 some proportion of the cod catches actually taken in Div. 3M are reported in Div. 3L, despite the moratorium in Div. 3M.

For other stocks, such as redfish in Div. 3M, the lack of data concerning the fishery activities of non-member countries hampered the usefulness of an analytical assessment. For determining the present stocks status, the effect of under/over-reporting and misallocating catches to areas will consequently bias the analytical stock assessments like sequential population analysis.

It is therefore recommended that initiatives should be taken to obtain more accurate catch and effort data as well as sampling data from the fisheries in the Regulatory Area in order to assess the stocks.
5. Stocks of Mesopelagic Species and Atlantic Saury

The Scientific Councll was asked to: review available data on stocks of mesopelagic species and on Atlantic saury that might occur in the Regulatory Area, and to provide advice on possible management measures for these stocks.

With respect to Atlantic saury, STACFIS noted investigations conducted in late-1960s and 1970 s revealed that some stock of Atlantic Saury' (Scomberesox saurus) existed in the southern part of the NAFO area. During the June 1990 Scientific Council Meeting, no information was presented on the assessment and biology of this fish. Specialized investigations were needed to find out to what extent the Atlantic saury stock could sustain a pelagic fishery within and outside the 200 -mile zone. STACFIS could provide no management advice at the present time.

With respect to mesopelagic species, STACFIS noted that several USSR investigations were done on the distribution of mesopelagic fish (mainly four species: Benthosema glaciale, Maurolicus muelleri, Notoscopelus elongatus, Ceratoscopelus maderensis) in the continental shelf slope area off Labrador and Newfoundland in 1981-87. Some results of those investigations on the species and length-age composition of the catches and on the density of the species distribution in Subareas 2 and 3 covered by surveys in 1981-87 were presented to the Scientific Council as SCR documents during 1983-88. No information on the mesopelagic species were presented during the June 1990 Meeting of the Scientific Council. STACFIS agreed that the available information on the stocks of the mesopelagic species seemed to be insufficient to provide advice on possible management measures.

1. Introduction

The ninth meeting of the Subcommittee on Environmental Research was held on 12 June 1990 with M. Stein (EEC) as Chairman. Annex 1 contalns the detailed report of the meeting.
2. Review of Environmental Studies in 1989

A total of 16 documents dealing specifically with environmental issues and another 9 papers which used environmental data for analysis were reviewed. Thus, a total 25 documents referred to environmental conditions in Subareas 0-6 during 1989.

The cold air temperatures in West Greenland through most of 1989 suggested colder-than-normal sea temperatures based on previous studies. Extensive ice conditions were reported in the Davis Strait region, with the areal ice coverage during April being the largest reported in the past 20 years. A study on the variability of a shelf edge front on the NE Newfoundland shelf indicated characteristic periods of 7 days in horizontal displacement, possibly forced from up-stream areas of the Labrador shelf. Negative temperature anomalies in the bottom waters on the Labrador Shelf might explain the observed high catches of Greenland halibut and roundnose grenadier in waters much deeper than normal.
3. Overview of Environmental Conditions (SCR Doc. 90/83)

A review paper was presented based on several long-term oceanographic meteorological data sets as well as summary of data and results from available research documents and research reports. Near coastal surface temperatures collected from ships-of-opportunity indicated warm water from Cape Hatteras to southern Labrador during the summer and generally cold water in December. Sea-surface pressure anomalies showed an intensification of the Icelandic Low and the Bermuda-Azores High, especially in winter and spring. A westward shift of the High in spring brought warm air into much of the NAFO area which would account for the above normal summer conditions.
4. Effects of Climate Change on Fisheries (SCR Doc. 90/78)

A paper presented discussed the present state of. climate models and possible implications for fish and fisheries if global warming occurred. Indications of such implications may be derived from observations of the natural varlability in the system under the present conditions.
5. Election of Chairman

The chairman of the Environmental Subcommittee ends his term of office after the September meeting in 1990. An election was held by STACFIS on 16 June 1990 . M. Stein was unanimously elected for another two years of office. The STACFIS chairman thanked M. Stein for the last two years he had served with distinction and welcomed him to another two years in the capacity as chairman of the Environmental Subcommittee of STACEIS.

## V. AGEING TECHNIQUES AND VALIDATION STUDIES

1. Reports on the Otolith Exchanges
a) Silver Hake

STACFIS noted that ageing done by the Canadian and the USSR age readers were now In good agreement. Given the unavoidable within-reader variability, STACEIS considered that no further improvements were likely to be forthcoming from the exchanges nor were further improvements required for the assessment of the silver hake stock. STACFIS recommends that a manual be issued documenting the established methods of ageing silver hake otoliths. The STACFIS chairman thanked the Canadian and USSR laboratories for the effort put into solving the problems encountered in silver hake ageing.
b) American Plaice Divisions 3L and 3M

An exchange of American plaice otoliths from Div. 3 L and 3 M , between Canada and EEC-Spain, was conducted in 1990.

The inter-reader agreement in Div. 3 L was $56 \%$, with spanish readers interpreting more rings than do Canadian readers. The low inter-reader agreement was due to different criteria to identify duplicated rings.

The agreement in Div. $3 M$ was $27 \%$, with Spanish readers reading fewer rings than Canadian readers. The more important differences were identified to be in the interpretation of the otolith nucleus.

Previous studies indicate better agreement in otolith reading of American plaice from Div. 3N, where most of the Spanish catch occurs. EEC-Portugal will
participate in the exchange program in the future and STACFIS recommends that further exchange of American plalce otoliths from Div. $3 L$ and $3 M$ be conducted. Such exchanges should be accompanied with photographs showing the criteria used in the interpretation of the nucleus and the duplicated ifngs.
c)

Greenland. Halibut
STACFIS was informed of problems with inter-reader variability between scales and otolith reading for Greenland halibut involving Canada, EEC-Portugal, EEC-Spain, Greenland, GDR and USSR. STACFIS recommends that exchange of otoliths and scales accompanied with photograph showing criteria used in the interpretation of rings be conducted.
VI. GEAR AND SELECTIVITY STUDIES

1. Selectivity in Shrimp Trawl (SCR Doc. 90/56)

A preliminary selectivity study was conducted in 1989 in a west Greenland fishing area to estimate the selectivity of a commercial trawl with varying mesh sizes ( 43 and 60 mm ) and shapes (diamond and square).

The diamond mesh trawl clearly showed a selection factor (0.25-0.30), different from that of the square mesh trawl (approximately 0.40).

## VII. REVIEW OF SCIENTIFIC PAPERS

STACFIS reviewed 2 research documents not reviewed elsewhere. The reviews are given below.

1. Winter Fishing for Cod in 3Pn and 4RS (SCR Doc. 90/89)

A description of the St. Pierre and Miquelon and EEC-Metropolitan France winter fishery for the $3 P n, 4 R S$ cod stock was presented. Data were collected by the various Canadian observer programs and covered the years 1978 to 1989.

Maps of localities of fishing stations were presented and indicated a distribution of fishing activity in a north-south direction at a modal depth of 175 meters.

The various graphs presented implied that fleet movements can be used as an indicator of cod movements. The fleet follows the annual pre-spawning migration outside the Gulf of St. Lawrence into Subdivision 3 Pn and the subsequent return in April-May.

Catch rate analyses indicate high inter-annual variability with peaks in 1984 and 1986. The patterns depicted are similar to those of the biomass estimates from the winter groundfish survey. The high variability of these indices may be the result of environmental influences on cod distribution in winter.
2. Shrimp at Flemish Cap (Division 3M) (SCR Doc. 90/47)

Two groundfish research cruises with 35 mm cod-end mesh size were performed on Flemish Cap in the summer of 1988 and 1989. Mean catch of shrimp over three depth strata varied from 4.5 to 10 kg . Biomass estimated by the swept area method was 2,164 tons in 1988 and 1,865 tons in 1989. Further surveys designed to study abundance and distribution of shrimp in the area are anticipated.

## VIII. OTHER MATTERS

1. Review of Current Arrangements for Conducting Stock Assessments

STACFIS discussed this topic briefly but decided to defer the considerations until the September 1990 Meeting. At that meeting, STACFIS will review the "designated expert" system and make arrangements for the 1991 assessments. The "designated expert" system had been successful although still some problems remain with respect to the timely submission of data. The responsibililty for documentation of data for the Scientific Council and the status of the preliminary assessments prepared by the designated experts should be clearly defined.
2. Working Group on Shrimp Ageing (SCS 89/22)

This working Group met in Reykjavik $16-19$ October 1989 and reported to STACFIS. It was noted that several papers studjed different methods aimed at establishing length-based assessments of shrimp stocks and STACFIS welcomed progress towards more analytical type assessments of shrimp stocks.

## 3. CAFSAC Special Invertebrate Subcommittee Meeting on Shrimp

CAFSAC had in December 1989 reviewed assessments of some shrimp stocks and the conclusions were presented to STACFIS. A system with several indicators of the development in abundance 1.e. survey indices, changes in length distributions, catch rates from the commercial fishery etc. might together enable a feedback control management. Given the shortcomings in the assessments of shrimp stocks, this may well be the most viable approach available at present.
4. Spectal Session 1990

The progress report on contributions for the 5-7 September 1990 Special Session on "Management under Uncertainties related to Biology and Assessments" by the convenor J. Shepherd, UK, stated that 20 submissions have been announced and that the meeting arrangements are well underway.
5. Special Session in 1991.

STACFIS noted with regret the death of $R$. Wells, who had agreed to convene the 1991 Special Session. Holger Hovgard, Greenland had been asked and had kindly offered to convene this session, and STACFIS welcomed this. Further, it was decided to dedicate this Special Session in memory of Richard Wells.
6. Theme for Special Session in 1992

The discussion of this item was deferred to the September 1990 Meeting.
7. Adjournment

There being no futher items on the agenda, the Chairman thanked the participants for their contributions, in particular those who were "designated experts". The Chairman further thanked the Secretariat for their very efficient services. He welcomed the newly election Chairman of STACFIS who will take office after the September 1990 Meeting, and hoped that his term of office would be enjoyable.

ANNEX 1. REPORT OF THE SUBCOMMITTEE ON ENVIRONMENTAL RESEARCH

The Subcommttee met at the NAFO Headquarters at 192 Wyse Road, Dartmouth, Nova Scotia, Canada, on 12 June, 1990, to consider environment-related topics and report on various matters referred to it by STACFIS. Scientists attended from Canada, Cuba, Denmark (Faroe Islands/Greenland), EEC, GDR, Iceland, Japan, USSR, and USA.

The subcommittee reviewed the following documents: SCR Doc. $90 / 01,10,13,14,16,17$, $24,25,26,27,32,34,67,77,78,79,83$, and 84; SCS Doc. 90/05, 07, 08, and 14.

## 1. Chairman's Report

The Chairman began the meeting by noting regretfully the death of Dick Wells from St. John's, Newfoundland. Dick was an active participant within the Environmental Subcommittee for many years and will be missed.

The Chairman was happy to see an increase in the number of environmentally-related papers submitted this year. He brought to the attention of the Subcommittee a proposal for a multinational project to coordinate fishery hydrographic activities in the North Atlantic by F. Fuchs of the Institut fur Hochseefischerei und Fischverarbeitung, German Democratic Republic (SCR Doc. 90/79). Dr. Fuchs proposed creating a large database of hydrographic information and fisheries statistics that could be shared among participants. After some discussion of this proposal the Chalrman suggested that interested individuals should write Dr. Fuchs to give him their comments and criticisms.
2. Marine Environmental Data Service (MEDS) Report for 1989 (SCR Doc. 90/84)

MEDS is in the process of rebuilding their data handing system. This has not affected their real-time data acquisition systems but many of the recent data sent to MEDS have not yet been processed. Processing of the data is expected during the coming year.
a) Data Collected in 1989

Data from approximately 1,400 oceanographic stations were sent directly to MEDS in 1989. Additional data from 2,361 oceanographic stations were received through IGOSS (Integrated Global Ocean Services System).

The number of stations occupied whose data have not been received by MEDS is uncertain but exceeds 2,000.

The number of stations received by MEDS is about half that of last year. Many of the Canadian institutions have not sent their 1989 data to MEDS. It is expected that MEDS will receive these data once the new data handling system is in place.
b) Historical Data Holdings

Data from approximately 4,500 historical hydrographic stations were received by MEDS in 1989, which is a significant drop from last year when MEDS received a large volume of historical data from the World Data Centre.
c) Drift-buoy Data

A total of 86 drift-buoy tracks were received by MEDS during 1989 representing 143 buoy months. This amounts to an increase of $20 \%$ in buoy tracks and $6 \%$ in buoy months over last year. Most of the buoy data during 1989 were gathered in the early part of the year with fewer data collected in the summer and autumn.
d) Current-meter Data

Current-meter data collected in 1989 within the NAFO area included 35 sites, 93 instruments, and a total of 535 meter-months. This represents a large increase over last year.
e) Wave Data

There was an increase of $40 \%$ in the number of wave spectra collected this year over last including an increase in directional spectra.
f) Environmental Conditions

A review of monthly sea-surface temperature anomalies in 1989 for each of the NAFO subareas was presented.

These were based on a MEDS analysis, temperature anomaly maps published in the USA, and BIO monthly reports. Colder-than-normal conditions prevailed over most of the region during the early part of the year but temperatures were warmer than normal during the summer. By year's end temperatures had fallen below average. An exception to this pattern was Subareas 5 and 6 where cold conditions were reported throughout most of the year.
3. Review of Environmental Studies in 1989

The Danish Research Report (SCs Doc. 90/14) noted that hydrographic observations were collected during June-July 1989 along standard sections between Fylla Bank and Disko Bay off West Greenland. The cold alr temperatures in West Greenland through most of 1989 suggests colder-than-normal sea temperatures based on previous studies. Temperature anomalies during the summer cruise were found to be negative over the top 400 m of the water column.

The Canadian Research Report (SCS Doc. 90/07) notes that current meters moored at 5 sites across Davis strait in 1988 were recovered in 1989 and five replacement moorings were deployed.

Data collected in October off Baffin Island by the USSR (SCR Doc. 90/10; SCS Doc. 90/05) indicate that near surface temperature and salinity were higher in 1989 than in 1988 . The higher temperatures resulted from radiative heating in the spring and summer. Bottom waters over the Baffin Island Shelf were found to be colder than in 1988. Extensive ice was reported in the Davis strait region, with the areal ice coverage during April being the largest reported in the past 20 years.

By May, however, the ice was just slightiy above normal.
Data from standard sections off southern West Greenland show that cooling is normally accompanied by a decrease in salinity in the surface waters suggesting an influence of polar waters from East Greenland (SCR Doc. 90/17). Such an effect was observed in 1989 during the autumn. Also, higher numbers of icebergs than normal were found in the region in 1989.

Drift-tracks of buoys released east of Iceland and off southeast Greenland were reported in $S C R$ Doc. 90/32. They confirmed historical circulation patterns in the region; buoys flowed southward along East Greenland, northward along West Greenland and then moved westward between $61^{\circ}$ and $64^{\circ} \mathrm{N}$.

Data were presented on variability in the temperature and salinity of waters on Eydla Bank over several days (SCR Doc. 90/16). The implications of such variability on the determination and reliability of annual anomalies were discussed.

A paper was presented (SCR Doc. 90/77) on the processes controlling the temperature and salinity of the waters at Fylla Bank. The importance of both local air-sea fluxes and advective processes forced by the large-scale atmospheric circulation patterns was discussed.

A study of cod otoliths was described (SCR Doc. 90/34) in which it was noted that different hydrological conditions affect cod growth. The discussion went on to suggest the possibility of using otoliths to investigate past climate conditions. Subcommittee members pointed out, however, that other factors also affect cod growth and that using otoliths to investigate climate changes might be very imprecise.
b) Subareas 2 and 3 (SCR Doc. 90/10, 67; SCS Doc. 90/05, 07)

The Canadian Research Report (SCS Doc. 90/07) noted that the current meter mooring program that has been ongoing for over 10 years was continued during 1989.

Extensive hydrographic work was also reported throughout the area including the occupation of the standard transects. Important physical oceanographic studies were also undertaken on the Southeast Shoals and at the ice edge (LIMEX--Labrador Ice Margin Experiment) during 1989.

A study of the variabillty on the temperature;salinity/density front at the shelf edge on the NE Newfoundland Shelf was described (SCR Doc. 90/67). The greatest variability was found at periods of 7 days. The cause of this variability is not locally generated but is believed to be forced on the Labrador shelf and advected onto the NE Newfoundland Shelf. The warming of the cold intermediate layer on the NE Newfoundland Shelf appears to commence in late July to early August at the time of the annual occupation of the Bonavista Line for NAFO. It was pointed out that this might significantly alias any annual anomalies calculated from the transect data.

Data collected in autumn by the USSR indicate that, similar to the Baffin Island Shelf, the near surface waters were warmer than normal whereas in the bottom half of the water column temperatures were colder than average (SCR Doc. 90/10; SCS Doc. 90/05). These anomalies were attributed to atmospheric conditions, a warm spring and summer, and a cold winter. Colder-than-nornal water near bottom was also reported over extensive areas of the Grand Banks and northern Newfoundland Shelf. The GDR Subcommittee member noted that the cold bottom waters on the Labrador. Shelf might explain the high catches of Greenland halibut and roundnose grenadier in waters much deeper than normal (up to $1,600 \mathrm{~m}$ ) during the GDR fishing season in the second half of 1989. The cold conditions on the shelf might have forced Greenland halibut and roundnose grenadier deeper to reach their preferred temperature regime dependent on the physiological stage.
c) Subareas 4,5 , and 6 (SCR Doc. $90 / 01,13,14,24,25,26,27,66 ; \operatorname{SCS}$ Doc. $90 / 07$, 08)

Major oceanographic studies reported by Canadian researchers (SCS Doc. 90/07) included nutrient investigations in upwelling regions of the Gulf of st. Lawrence, current and hydrographic field studies on Georges Bank, hydrographic measurements in the Gulf of St. Lawrence and on the Scotian Shelf, and completion of the Fisheries Ecology Program on Browns Bank.

The USA Research Report provided analyses of data collected as part of a study of the Hudson Shelf area which showed a strong association between wind and currents.

Hydrographic measurements were collected throughout subareas 5 and 6 including Georges Bank in connection with a study of the resurgence of the Georges Bank herring stock.

Environmental information collected in 1988 as part of a study on silver hake distributions on the Scotian Shelf were reviewed (SCR Doc. 90/01, 14).

Data collected on the US bottom trawl research surveys for the years since 1963 were presented in terms of anomalies within four regions between Nova Scotia and Cape Hatteras (SCR Doc. 90/13).

A paper on the life histories of warm-core rings in the Slope Water region west of $60^{\circ} \mathrm{W}$ was presented (SCR Doc. 90/25). Ten rings were formed in 1989, one more than the 1974-1988 average.

Results from temperature and salinity monitoring along transects across the Gulf of Maine and in the mid-Atlantic Bight south of New York were reported (SCR Doc. 90/26, 27). In 1989, Gulf of Maine sea-surface temperatures were below normal during the first part of the year, above normal during spring and summer and were below normal by the end of the year. In the mid-Atlantic Bight, cold temperatures recorded at the beginning of the year persisted throughout the summer and appeared to move inshore in the latter half of the year.

In 1989, the shelf-water temperature front between Georges Bank and Cape Hatteras was located near the long-term (1974-83) mean position (SCR Doc. 90/24). Its variability was near to its long-term average. Large fluctuations were associated with the passage of warm-core rings.
4. Overview of Environmental Conditions of 1989 (SCR Doc. 90/83)

A review paper was presented based on several long-term oceanographic and meteorological data sets as well as summarized results from available research documents. Highlights not covered in Section 2 are listed below.

Annual coastal sea temperatures at Halifax, St. Andrews, and Boothbay Harbor were below theix 1951-80 means.
b) Offshore surface temperature data collected from ships-of-opportunity showed a positive annual value throughout the NAFO area except for the western slope waters.
c) Near coastal surface temperatures collected from ships-of-opportunity indicated warm water from Cape Hatteras to southern Labrador during the summer and generally cold water in December. Similar results were observed at standard coastal temperature stations and at oceanographic stations off St. John's, Newfoundland, and in the Bay of Fundy.
d) Near-bottom temperatures at Station 27 off St . John's. Newfoundland, were colder-than-normal for the seventh consecutive year.
e) The number of icebergs crossing $48^{\circ} \mathrm{N}$ was. 301 , an increase of over 100 from last year.
f) Mean annual air temperatures were negative over most of the NAFO area in 1989. This was a result of colder-than-normal conditions in the winter and autumn. Sumertime temperatures, however, were generally above normal.
g) Sea-surface pressure anomalies showed an intensification of the Icelandic Low and the Bermuda-Azores High, especially in winter and spring. A westward shift of the High in spring brought warm air into much of the NAFO area which would account for the above average summer air and sea temperatures.
5. ..Other Matters
a) 'No changes in the national representatives responsible for submitting oceanographic data to MEDS were reported to the subcommittee. These representatives tnclude $R$. Keeley (Canada), R. Dominguez (Cuba), E. Buch (Denmark), Ch. Brockman (Federal Republic of Germany), Francois (France), W. Thiele (German Democratic Republic), Y. Uozumi (Japan), R. Leinebo (Norway), A.J. Paciorkowski (Poland), G. Withee (USA), G.I. Luka (USSR), and P. Edwards (United Kingdom).
b) The Chairman noted the increasing concern with the $\mathrm{CO}_{2}$ problem and global warming. He felt that the effects of climate change on fisheries should be addressed. To this end he presented a paper (SCR Doc. 90/78) on the present state of the climate models and the implications for fish and fisheries. During the discussion which followed it was noted that the natural variability in the system has provided us with some indications of what might happen if global warming does occur. Others pointed out, however, that a change in the mean state (i.e. higher mean temperatures) might produce a significantly different response.
c) The subcommittee discussed some possible topics for the 1992 special session. Among these were the possible effects of $\mathrm{CO}_{2}$-induced warming on fisheries and a review of environmental conditions during the 1980 s . It was suggested that members of the subcommittee who wished to propose a certain topic do so in writing to STACFIS.

## 6. Acknowledgements

The Chairman closed the meeting by thanking the participants for their contributions and cooperation.

The Committee met at NAFO Headquarters at 192 Wyse Road, Dartmouth, Nova Scotia, Canada on June 13, 14, and 16, 1990. Representatives from Canada, Cuba, Denmark (Faroe Islands/Greenland), EEC, GDR, Iceland, Japan, and USSR and observers from EAO, Tanzania and USA were present.

## 1. Fisheries Statistics

a) Progress Report on Secretariat Activities in 1989/90
i) Acquisition of STATLANT 21A and 21B reports for recent years

STACREC once again expressed concern about the delays in the provision of STATLANT 21A and 21B reports. The STATLANT 21A reports for 1989 from EECFrance (M), France (SP) and Norway had not been provided.

The STATLANT 21B reports for 1988 from Canada (N). Greenland and the USA have yet to be provided.

While the deadine date for submission on STATLANT 21B reports for 1989 was 30 June 1990, STACREC noted that Cuba, EEC-FRG, Netherlands, EEC-Spain, GDR and Poland have submitted reports to date.

STACREC recommends that every effort be made by the statistics reporting offices to have the STATLANT $21 A$ and 21 B reports submitted on time.

Publication of statistical information
After a long delay in receiving the STATLANT $21 B$ report from Canada ( $N$ ) and the use of STATLANT 21A reports to compile the Faroe Island data, NAFO Statistical Bulletin vol. 36 was published in October 1989, approximately two years behind schedule.

The publication of NAFO Statistical Bulletin Vol. 37 was delayed until April 1990 (approximately eighteen months) by late submission of STATLANT $21 B$ reports from Canada ( $N$ ), EEC-France (M) and France (SP).

The publication of NAFO Statistical Vol. 38 has been delayed pending the submission of STATLANT 218 reports of Canada ( $N$ ), Greenland and the USA.

The preparation of the 1989 Provisional report for use in the assessments at the June 1990 meeting was pending the reception of STATLANT 21A reports from EEC-France ( $M$ ) and France (SP) but the Committee decided to release the report with a note to indicate the missing French data.

1i1) Updating of fisheries statistics database
STACREC was informed by the Assistant Executive Secretary that the updating of catch and effort data had been proceeding well. with data dating back to 1963 and half of the 1962 statistics completed. The revised statistics would be available to the Scientific Council upon request on IBM compatible PC diskettes.

The usefulness of continuing the updates back past 1960 was questioned by the Assistant Executive Secretary because of the increasing occurance of catches that were grouped and reported as categories such as Flatfishes and Groundfish. Concern was expressed as to the difficulties in separating such catches into a useable form. STACREC agreed that the secretariat should update only those data that would be meaningful.

STACREC noted that due to the changes and addition made to the NAFO database in recent years, it would be advisable to repeat the exercise conducted 8 years ago to identify and eliminate the discrepancies between the NAFO, FAO and EEC (EUROSTAT) databases. Whereas the previous exercise had been restricted to data for EEC Member States, the proposed study should cover data for all NaFO Contracting Parties. The initial work on Identifying the discrepancies would be done by EUROSTAT but their elimination could only be achieved with the collaboration of the NAFO Secretariat.

Review of Reporting Requirements for Submission of STATLANT 21A and 218 Statistics

STACREC addressed the question as to how data for EEC-France (M) and France (SP) were to be handled because for the period 1983-85, only aggregated data had been recelved. However, data in a disaggregated form were probably available and the EEC (EUROSAT) representative undertook to request the French authorities to consider providing the required disaggregation. The secretariat sald any updates would be published in a subsequent Statistical Bulletin.

The ever increasing problem of catches by non-contracting parties was discussed at length. There were suggestions of publishing estimates of these catches. STACREC concluded that it would not be appropriate to include such estimates in the annual Statistical Bulletin, however, these estimates should be included in the stock assessments. It was decided that advice on the handling of estimates should be sought by the Scientific Council from General Council, as such estimates are often used in assessment documents.

STACREC reviewed an EEC(EUROSTAT) proposal to harmonize STATLANT data submissions In view of its implications to Scientific Council users and its implications to the coordination and compilation of data by the Secretariat. The EEC(EUROSTAT) representative voiced the opinion that the foreseen problems were minimal and that he would help NAFO with the conversion of the computer programs. STACREC asked that the EEC representative keep the Committee updated as to the progress in refining the proposal.

The FAO observer raised the question of keeping separate statistics for the Regulatory Area. This 1tem was discussed only briefly as it was not an agenda item. It was felt that if FAO provided a working paper in the future, discussion would be generated on this topic.

STACREC noted that there are problems using the Portuguese catch and effort. data as reported in catch-per-day. It was noted that catch-per-hour was the more useful unit. An EEC-Portugal representative felt that it was possible to comply and hoped to revise the data for 1985-89.
) Fourteenth Session of CWP, February 1990
The Assistant Executive Secretary tabled the Report presented by the Secretariat to CWP on NAFO Statistical Program, Publications and ADP. He noted that the location of CWP Session was changed from Miami, USA to Paris, France. As recommended (NAFO Sci. Coun. Rep., 1989) the Assistant Executive Secretary, the Chairman of STACREC, and representatives of the USSR attended.

A summary of the Report of the Fourteenth Session of the Coordinating Working Party on Atlantic Fishery Statistics CWP (NAFO SCS Doc. 90/19) was tabled. It was noted that the full report had not been incorporated in the submission at this meeting but would be presented in the SCS document to be circulated in the near future. The Comittee's attention was drawn to matters of particular interest to NAFO, namely the near completion of the first part of the Handbook on Fishery Statistics (to be published by $F A O$ ) and proposed harmonization of STATLANT reports. As a result of one of the CWP agenda items, STACREC noted the need for more detailed reporting of the Elasmobranch catch in FAO Area 21 (the NAFO Convention Area). In agreement with discussions at CWP, STACREC recommended that the Scientific Council extend an invitation to CWP to hold the Fifteenth Session of CWP at NAFO Headquarters in Dartmouth, Nova Scotia, Canada from 8 to 14 July 1992 and to prepare for that meeting that the Assistant Executive Secretary attend the Ad-hoc Inter-Agency Consultation which is to precede the 79 th Statutory Meeting of ICES, in October 1991.
2. Blological Sampling
a) Progress Report on Activities in 1989/90

The Provisional List of Biological Sampling Data for 1988 was tabled (SCS Doc. 90/9 and an addendum). It was requested that representatives check this list to facilitate the publishing of the 1985-89 list. Representatives were also urged to provide the Secretariat with lists of any other sampling data which may be outstanding.
b) Forins and Deadlines for Submission of Data

No changes reported.

The Inventory of Biological Surveys conducted in 1989 was presented by the Secretariat (Table 1) and included information from 9 countries (or components). STACREC was informed that the stratified-random survey conducted by EEC-FRG at West Greenland in 1988 had been omitted inadvertantly from the inventory of biological surveys for 1988 published in the Scientific Council Reports, 1989 (page 126).

It was suggested that it would be helpful if the Inventory of Surveys reflected the time series of annual surveys as well as the list of surveys applying to each stock reviewed by STACFIS.

Discussion on this suggestion resulted in designing a standardized format for tabulating surveys by stock area, giving a range of information including time series, depth, and survey design. Designated experts completed these tables with the available information at this meeting and they were incorporated into SCS Doc. 90/22. STACREC recommended that the list of surveys on a stock-by-stock basis as detalled in SCS Doc. 90/22, be compiled by designated experts annually.
b) Survey Plans for 1990 and Early 1991

An inventory of surveys planned for 1990 and early 1991 was prepared by the Secretariat and covered 10 countries (Table 2).
c) Review of Stratification Schemes

A paper (SCR Doc. 90/45) dealing with the addition of strata in the Gulf of St. Lawrence was presented. Six new strata have been added to the existing sampling scheme in 1987. Two of these new strata cover the $30-50$ fathom range in Div. $4 R$ while the remaining four are located in the st. Lawrence estuary at depths over 100 fathoms. Sampling of the new strata in Division $4 R$ may be opportunistic, as ice cover may limit sampling during the January survey and the presence of fixed gears hampers coverage during the summer survey. The new strata in NAFO Div. $4 T$ (St. Lawrence estuary) have been sampled since August 1987 but are not surveyed in January because of ice coverage.
d) Coordination of Surveys in 1990-91

Nothing reported.
e) Survey Design and Procedures - Working Group Report

The final report of the STACREC Working Group (SCR Doc. 90/20) was tabled. This was prepared in response to the recommendation by the Scientific Council in 1989 (NAFO Sci. Coun. Rep., 1989, page 128), and contained the relevant information from the Scientific Council Reports of 1985-89 in a chronological order as well as documentation available to and produced by the working Group to analyze survey data.
4. Other Matters
a) List of Fishing Vessels for 1989

Data for this list are outstanding from 12 countries. Since this list is due to be published this year, representatives are urged to check with the appropriate sources and have all outstanding data forwarded to the Secretariat as soon as possible (see Circular Letter 90/06).
b) Tagging Activities Reported for 1989

A review of tagging was presented by the Assistant Executive Secretary, SCS Doc. 90/11, reporting the activities of six countries or components. Any outstanding information should be made avallable to the Secretariat, who will produce a revised list if necessary.

Table 1．Inventory of biological surveys conducted in the NAFO Area during 1989.

| $\begin{aligned} & \text { sub- } \\ & \text { arab } \end{aligned}$ | Div． | Country | Montha | Type of survay | No. of |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STMATITIEO－RANDOM SURVEYS |  |  |  |  |  |
| 2． $\mathrm{ar}^{\text {e }}$ | annı． | $\begin{aligned} & \text { OIN-C } \\ & \text { SPF } \\ & \text { E/OLD } \end{aligned}$ | $\underset{9}{9-9}$ | shrimp travl aurvay Groundfieh（G．halibut） Botton traul，groundfian | 87 53 145 |
| 0 | 3 | sum | 9－10 | c．halibut，granadier tomperature，salinity | 78 |
| 0,1 | ${ }_{\text {ABCD }}$ | DEY－a | 7， | 8hrimp tranl survay | 37 |
| $0+2+3$ | ванля | CNA－K | 7 | Shrimp | 120 |
| 1 | $\begin{aligned} & \operatorname{BCD} \\ & \text { BCDIF } \end{aligned}$ | $\operatorname{JRH}_{\mathrm{E} / \mathrm{D} \boldsymbol{0}}$ | $\begin{aligned} & 4-5 \\ & 10,11 \end{aligned}$ | Groundilish（6．halibut） bottom travi，groundfiah | 61 140 |
| 2 | an | SOR | $10-11$ 11 | C．haibut，grenadier， t由mpezitur⿻，ealinity Groundfish | 73 110 |
| $2+3$ | 3 | CNN－N | 11－12 | Groundith | 245 |
| 3 | ${ }^{\mathrm{x}}$ \％ | CNN－M | 12 | Groundifioh | 105 |
|  |  |  |  | malinity |  |
|  | 1 | CNH－M | 5 | Groundtish | 196 |
|  | uso | CNSN－M | 10－11 | Oroundfish | 193 |
|  |  | CNH－N | 4－5 | Redfish | 43 |
|  |  | CNM |  | ${ }_{\text {Guvenile }}^{\text {Groundictich }}$ | ${ }_{151}^{206}$ |
|  | 10 | C．NN－M | 9 | Juventle flat fioh | 70 |
|  |  | SOH | 6－7 | groundfinh，teaparature， | 170 |
|  |  | c／rsp | 7 | Ground fimh | 129 |
|  | － | Cants | － | scallop | 201 |
|  | P4 | CNM－M | 11 | Grounditeh |  |
|  |  | CNM－N | － | $\underset{\substack{\text { Groundital } \\ \text { Scallop }}}{ }$ | 182 |
| $3+4$ | PnRST | $\mathrm{CNH}-8$ | 1 | Gzoundfish | 131 |
| 4 | ns | CNN－0 | 8，9，10 | Bmrimp survay | 122 |
|  | 889 | CNH－2 | －9 | croundfich |  |
|  | T． | CNH－6 | 8－10 | ${ }^{\text {scatiop }}$ Bution erawl survay | 160 |
|  |  |  |  | \｛Nephropa trawi\} |  |
|  |  | CAN－G | 9 | Groundfith abundance survay | 169 |
|  |  | CNH $\mathrm{C}^{\text {c }}$ | 11 | Groundfith migration and distribution | 25 |
|  | $\underset{\operatorname{vix}}{7 v i}$ | Can－6 | 11 | Harring acoustio survoyn |  |
|  |  | CASH－sF | 7 | Groundfith survey | 194 |
|  |  | ${ }^{\text {sum }}$ | 10－11 | Juvenile silver haka | 111 |
|  |  | ${ }^{80 \mathrm{~N}}$ | 12－1 | Juventle－iliver hake |  |
|  | MX | $\mathrm{CON}_{\mathrm{c}} \mathbf{8 5}$ | 5 | ${ }^{\text {scellop survey }}$ | 124 |
|  |  | ${ }^{\text {0．8A }}$ | 4 | Bpiding botticm trawl | 11 |
|  |  |  | 7 | Sonllop eurvey | 110 136 |
|  |  | Cass－si | ？ | scallop eurvey | 60 |
|  |  | 0sa | 10，11 | Autunn bottom traw | 13 |
| 4，5 | x3e | Can－3r | 8 | scallap survey | 145 |
| 5 | ${ }_{78}$ | usa | 3，4 | spring bottioa trawl | 50 |
|  |  | ${ }^{\text {cisa }}$ | 7 | Surf－clan－ocean quahog | 87 |
|  |  | v3s | 7， | soa scallop | 154 |
|  |  | usa | 10 | Autumn bottote traml－trawt | $\begin{array}{r}178 \\ \hline 68\end{array}$ |
|  | 8 | CNA－ST | 2，3 | groundfish survey | 93 |
| 4 | nse | usa | 2，3 | spring botiom trawl | 139 |
|  |  | 088 | 6,78 | Eurf－clas－ocoen quahos | 292 |
|  |  | $\operatorname{lin}_{0 \times 1}$ | 6.7 .0 | satsindiop | 279 151 |


| $2.6+1$ OEt |  | ORA－G | cremin surviys |  | － |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 8－9 | Cod：marking |  |
| 1 | $\lambda$ |  | ORE－G | － | G．halibut：marking | 18 |
|  | BCDI | OEN－G | 6，7 | Bydrography | 45 |
|  |  | ORH－G | 7.8 | Young cod | 208 |
|  |  | ORH－6 | 10，11 | Cod inshare | 128 |
|  | CDE | ORN－C | 7， 8 | Whalets photo－ID，bloper |  |
|  | DE | DEN－G | 6 | Whales：photo－ID，marking | － |
| 2 | 0 | sus | 9 | Hyctophidae，temporature ealinity | 2 |
|  | 5 | CNAT－N | 7－8 | Cod snapling | － |
| $2+3$ | $\begin{aligned} & \mathbf{J K} \\ & \mathbf{J K L} \end{aligned}$ | $\begin{aligned} & C A N-Y \\ & C N S-M \end{aligned}$ | $\begin{gathered} 10 \\ 9-10 \end{gathered}$ | Capolin（acoustio） | $\begin{aligned} & 24 \\ & 10 \end{aligned}$ |
| 2.4 | HLC－z\％o | UsA | 1－9 | Monitering of eludge duap site recovery，Nov York Bight | 216 |
| 3 | K | Can－m | 5－10 | Eydrography |  |


| Sub－ area | Div． | Country | Months | Type of surv＊y | No．of sete |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | $\pi$ | sun | 9 | Gronadior，6．halibut， | 25 |
|  | c． | CAN－N | 2 | Cod（aeoustic） | 45 |
|  |  | CAN－N | 5－6 | Capelin | － |
|  |  | CAN－ H | 6 | cod（acouatic） | 59 |
|  | 1 <br>  <br>  <br>  <br> 180 | CAN－N | 2 | Eerring | － |
|  |  | $\mathrm{CAN}-\mathrm{N}$ | 3，5，9 | Botton sampling |  |
|  |  | CAR－M | 3－7，9，11 | Oceanography |  |
|  |  | CAN－N | 4－5 | Acoustic triala | ＊ |
|  |  | CAS－ | 5 | Capelin（acoustic） | 1 |
|  |  | CAN－ |  | Capeinn tagging | － |
|  |  | CAN－N | 5，6，日，9， 10 | Crab | 211 |
|  |  | CAN－N | ${ }_{6} 6$ | Cod（acoustic） |  |
|  |  | CAN－N | 9－10 | Cod tagging（acoustio） | $\sim$ |
|  | Lм | SJ\％ | ${ }_{11}$ | Capelin，tmparature，salinity | 25 |
|  |  | gun | 11－12 | Larvae of capelin，temperatur＊ salinity | 40 |
|  | н | sun | 6－7 | Egga，iarvag，temperature， ealinity | 33 |
|  | MoPa | CNN－N | 6－7 | Capelin（ateouetic） | 18 |
|  |  | CAN－N | 7 | Toxicology | － |
|  |  | CAN－N | 7－8 | Redfith（acouatic） | 23 |
|  |  | $\mathrm{CNN}-\mathrm{N}$ | 8－9 | Cod tagging | － |
| 4 | 2 | CNAT－6 | 5－9 | Trap，diving（SCubat and trawl | 0 |
|  |  | CAN－Q | 11－12 | Herring Acoustiea |  |
|  | ${ }^{3}$ | CAN－0 | 3－4 | snow crab collection |  |
|  |  | CNN－Q | 4－5 | snow crab photography |  |
|  |  | CAN +O | 5 | moik gear selectivity |  |
|  |  | CAN－O | 6－7 | Mackurel larvae | 65 |
|  |  | CAN－O | 9 | Shrimp hydroncoustice |  |
|  | 7 | CAN－t | 4－5 | At son mampling on board commercial finhing veasela | 10 |
|  |  | CAN－6 | 4，7， 12 | Joventle horring aurveya | 92 |
|  |  | CAN－G |  | Cod for aquaculture |  |
| 4 | 7 | CNA－G | 5 | Tagging $x$ tpe adulta for atock identification studies | － |
|  |  | CAN－6 | 5－6 | Trap（Bnow crab conventional trap $)$ survey | 150 |
|  |  | CAN－6 | 5，6，8 | Comercial soa eanpling lobstex | 35 |
|  |  | CNN－0 | 6 | Mussel growth |  |
|  |  | CNN－0 | 6－7 | Cod，halibut，plaice，nnow and spring crab collection for aquaculture | $\sim$ |
|  |  | Can－a | 6－7 | Crab in the saguenay | － |
|  |  | CAN－Q | 7 | Impact of dregging on muzael growth | － |
|  |  | CxN－G | 7 | Juventle cod eurvay | 30 |
|  |  | CNA－G | 7 | Juvanile harring diatribution | 12 |
|  |  | CNA－9 | 7－8 | Scallop arasamont |  |
|  |  | CAN－G | 7－10 | At sea ampling on board comancial fishng vestel | 10 |
|  |  | CAN－G | 7，9，9，10 | Lobeter tagging | 8 |
|  |  | CAN－O | $8-9$ | Snow crab growth |  |
|  |  | CAN－G | 9 | Spauning bod |  |
|  |  | CAN－G | 9 | Diatribution on spawnitig bed | － |
|  |  | CAN－a | 9 | Gear trial | 77 |
|  | VnM | CAN－ST | 8 | Sealworm／benthic |  |
|  | Vaval | CAN－st | 5 | Heddock tagging | 218 |
|  |  | CAN－3F | 6 | Clameurvey | 97 |
|  |  | CAN－-8 F | 9 | Square－ditmond | ？ |
|  |  | CNN－3F | 10 | square－diamond | ？ |
|  | vwx | CAN－sF | 3 | Acouatic exparimental | 10 |
|  |  | CAN－SF | 4 | Deep trawling／mesopplagic | 85 |
|  |  | CAN－SF | 4，5 | Geay tert／equare－diamond | ？ |
|  |  | CNN－SF | ${ }_{6}^{6}$ | Deop trewl／mesopelagic | 49 |
|  |  | CNA－SF | 6 | Sealworn eurvey | 5 |
|  |  | CAN－SF | 9 | Deep trawl／mesopelagic | 61 |
|  |  | CAN－3F | 9， 10 | Square－diamond | ？ |
|  |  | CAN－SF | 9，10 | Sealworn survay | 61 |
|  |  | CAN－SF | 10 | Suvanile tish survey | 55 |
|  | N | CAN－85 | 1 | Eerring enouatice | 11 |
|  |  | CAN－85 | 7 | Live halibut | 109 |
|  |  | CNA－st | 12 | Gear triala，groundfieh | ， |
|  | wx | CNN－85 | 2 | International observer training | － |
|  |  | CAN－ST | 4 | Lohster trawling | 45 |
|  |  | CAN－35 | 5 | Ichthyoplankton，rovenile | 104 |
|  |  | CAN－sF | 6 | Juvanile horring | 26 |
|  |  | CAN－ $\mathrm{cas}^{\text {can }}$ | 8，9 | Stordfish survay | － |
|  |  | CAN－5\％ | 8，9 | Juvanile herring | － |
|  |  | CAN－sF | 9， 10 | Acoustice oxperimental | － |
|  |  | CAN－ST | 10，11 | scallopa gear criala | 10 |
| $4+5$ | xz＊ | Can－sr | $\stackrel{7}{10,11}$ | Lobster larvae ierval herring | 226 |
| 3 | Yz | USA | 1 | larval herring and | 132 |
|  |  |  | 1 | oceanographic－prankton | 132 127 |
|  |  | USA | 11 | Larval herring－plankton | 119 |
|  |  |  |  | －CTD | 119 |
|  |  |  | 11，12 | lezval herzing／andlance |  |
|  |  |  |  | －plankton | 125 |
|  |  |  |  | －CTD | 125 |
|  | 20 | CNA－SF | 10，11 | Lazval／adult herring | 122 |
|  | 2 | usa | g | Juvenile fioh | 19 |
| 6 |  | USA | 6 | 12－mile dump site | 127 |
|  |  |  | 8 | 12－nile dump site | 139 |

Table 2. Biological surveys planned for the NAFO Area in 1989 and early 1990.


c) Review of Relevant $S C R$ and SCS Documents (Not Considered in Items 1 to 4 Above)

No documents were reviewed.
5. Acknowledgements

There being no other business, the Chairman thanked the rapporteur and the participants and extended special thanks to the NAFO Secretariat for their assistance in the preparation of information for this meeting. The meeting was then adjourned.

ARPENDIX III. REPORT OF STANDING COMMITTEE ON PUBLICATIONS (STACPUB)

The Committee met at the NAFO Headquarters at 192 Wyse Road, Dartmouth, Nova Scotia, Canada on 12 and 18 June 1990. In, attendance were V. P. Serebryakov (USSR) (Chairman), W. R. Bowering (Canada), P. Kanneworff (Denmark/Greenland). J. Messtorff (EEC), V. A. Rikhter (USSR), A. Vazquez (EEC) and the Assistant Executive Secretary (T. Amaratunga) and the Executive Secretary (J. C. E. Cardoso) attended on 12 June 1990.

## 1. Review of STACPUB Membership

J. Messtorff (EEC) informed the committee that due to his impending retirement he would not be maintaining his STACPUB membership beyond the present meeting of the NAFO Scientific Council. The Committee extended its gratitude to J. Messtorff for his longstanding and valuable contributions to STACPUB, and wished him well in his retirement.

The Comittee noted that the scientific Council nominated and elected M. Stein (EEC) to join STACPUB as his replacement.
2. Review of Scientific Publications since June 1989
a) Volume $9(1)$ containing 7 papers and 3 notices ( 95 pages) was published as planned with the publication date of September 1989.

Volume $9(2)$ containing 6 papers, 3 notices and 2 obituaries ( 62 pages) was published as planned with the publication date of December 1989.

An issue of the journal is in preparation with respect to papers presented at the Special Session on "Changes in Biomass, Production and Species Composition of the Fish Populations in the Northwest Atlantic Over the Last 30 Years, and Their Possible Causes" held in Brussels, September 6-8, 1989 with M. J. Fogarty as convener. Another single issue for the invitational paper titled "The Dellmitation of Fishing Areas in the Northwest Atlantic" received from R. G. Halliday and A. T. Pinhorn on 2 February 1990 is also in preparation. As well, one paper was received at the secretariat for its final preparation for the next regular issue of the journal.
b) NAFO Scientific Council Studies

Studies Number 13 containing 5 papers and 3 notices ( 81 pages) was published as planned with the publication date of November 1989.

Studies Number 14 containing 6 papers, 3 notices and 2 obituaries ( 78 pages) was published as proposed with the publication date of May 1990.

Three papers are in their late stages of preparation for publication in studies Number 15.
c) NAFO Statistical Bulletin

After the very late receipt of STATLANT 21B data from Canada-N (6 Sep 1989), and data for Faroe Islands were adapted from 21A reports, NAFO Statistical Bulletin Vol. 36 was published in October 1989 (within 1 month after all data were received). Due to the late submission of some data, this publication was delayed by about 2 years.

After the late recelpt of data from some countries (February/March 1990), NAFO Statistical Bulletin Vol. 37 was published in April 1990 just 1 month after all data became available. This issue was, however, also considerably late.

Deadline for submission of STATLANT 21B reports for 1988 was 30 June 1989. As of June 1990, data were still outstanding from 8 countries. The delay in the acquisition of final data will again have impact on the timely publication of NAFO Statistical Bulletin Vol. 38.
d) NAFO Scientific Council Reports

The volume (180 pages) containing reports of the 1989 meetings of the Scientific Council was published and distributed in December 1989.
e) List of Fishing Vessels

This triennial publication was published soon after the June 1988 Scientific Council Meeting (published in July 1988) when all outstanding data were received.
"List of Fishing Vessels, 1986 " (47 pages) contains 1986 and previous years' data.
Index and List of Titles
The provisional index and lists of titles of 98 research documents (SCR Doc.) anc 22 summary documents (SCS Doc.) which were presented at the Scientific Counci) meetings during 1989 were compiled and presented in scs Doc. 90/06 (24 pages). The five year publication (1985-89) is due to be published in mid-1990.

## Production Costs and Revenue for Scientific Council Publications

Production costs and revenues for the various publications related to the activities of the Scientific Council were reviewed by the Committee. No significant departures fron those of previous years were observed.

It was noted that at least one additional issue of the Journal is due to be published within the next year. The Comittee agreed that possible extra production costs should be considered during fiscal planning.

Promotion and Distribution of Scientific Publications
a) Publicity and Response Regarding the Journal

It was noted that Journal subscriptions had remained relatively stable during the last 6 years. However, the Committee noted that publication rates of both the Journal and Studies had increased through the year. It was hoped that the improved turn-around time for publications and the new appearance of the Journal (in the form of a new cover) would further help the promotion of the Journal.
b) Invitational Papers for the Journal

The Assistant Executive Secretary informed STACPUB that the invited paper by R. G. Halliday and A. T. Pinhorn was now in its final stages of review for publication, and every effort was being made for it to appear in the next issue of the Journal. The Committee agreed that invitational papers and other future issues of the Journal with special status (e.g. the issue for the 1989 Special Session) should use the format of Journal Vol. 4 issued in 1983.

STACPUB was pleased to learn that $J$. Messtorff and Sv. Aa. Horsted had responded positively to the Assistant Executive Secretary's inquiries with regards to the possibility of preparing invitational papers. stacpus accordingly extended invitations to them to submit such papers, and was pleased to learn that $J$. Messtorff would consider submitting a paper in the near future in the general theme of the history of the development of surveys, particularly the stratified survey schemes, in the Convention Area.
c) New Cover for the Journal

The Committee noted that the new cover for the Journal had been accepted and approved at the september 1989 meeting. Publication with the new cover will begin with the next issue. It seemed appropriate that it would be volume 10 , representing a decade of NAFO Journal publications. It also seemed appropriate that the first invitational paper could be the first issue of the Journal with the new cover.

## Editorial Matters Regarding Scientific Publications

Editorial Activities
Of the 13 papers nominated at the June 1989 Meeting, 8 papers have been submitted (in one instance 2 SCR documents were combined to a single submission).

Authors who presented papers at the September 1989 Special Session were invited to upgrade thelr papers and submit them for consideration for a single issue of the Journal. Of the 16 documents proposed at the September 1989 Meeting, 9 had been submitted by June 1990.

In addition, 15 papers from outside of the STACPUB nomination process, including the first invitational paper, have been submitted since June 1989.

STACPUB noted taht a total of 39 papers were currently in various stages of editorial review for the Journal. Of these, 28 papers were in the hands of the Editorial Board. The 9 Special Session papers were being independently edited, while the invitational paper was also receiving an independent reviéw process. In addition, there were 7 papers in various stages of review for the studies.

In all, 24 papers were published $(13$ in the Journal and 11 in Studies) since June 1989.

Progress Review: Journal Issue of 1989 Special Session
All September 1989 Special Session papers were under consideration for publication as a special issue of the Journal of Northwest Atlantic Fishery Science by M. J. Fogarty (Convener). To date, 9 papers have been received for consideration and at least one review has been received for each. It is expected that most papers would be acceptable with further editorial changes but that several would require substantial revision and it may be necessary to simply list some in abstract form. Alternatively, some of the papers may, after revision, be more suitable as notes or short comrunications.

Four potential contributions have not yet been received, however, the Convener understands that they are in some stage of review and are expected to be submitted in the near future. The remaining 2 papers would be available only in the form of abstracts.
c) Review of General Editorial Process

The Committee recognized certain Associate Editors had greater workload than others and STACPUB felt the general editorial process needed to be reviewed in relation to turnaround times.
d) Review of Editorial Board
i) Workload of Associate Editors and Consideration of an Additional Associate Editor for Vertebrate Fisheries Biology

The Assistant Executive Secretary informed STACPUB that the workload of Associate Editors for Vertebrate Fisheries Biology had increased due to the number and nature of the papers being submitted. However, STACPUB agreed that further consideration of the necessity of an additional Associate Editor for Vertebrate Fisheries Biology be deferred until the September 1990 meeting.
ii) Appointment of Associate Editor for Vertebrate Fisheries Biology (Dr. Grosslein has resigned)

The Assistant Executive Secretary informed STACPUB that M. J. Grosslein had decided with regret that his plans for the next few years required him to terminate his service as Associate Editor. While he planned to finish the papers he had in hand, he requested STACPUB to seek an immediate replacement.

The Committee requested that the Chairman, on behalf of the members, write to Dr. Grosslein and express their gratitude and appreciation for his years of service and devotion to the promotion of the Journal and wish him well in his future endeavours.

The Committee invited Dr. R. K. Misra, Department of Fisheries and Oceans, Science Branch, Halifax, Canada as his replacement and was pleased to have a scientist of Dr. Misra's reputation to consider serving on the Editorial Board.
6. Papers for Possible Publication
a) Review of Proposals for 1989 Meetings

STACPUB was pleased to note that, compared to previous years, submissions in 1989 had improved substantially.
b) Review of Contributions to the 1990 Meeting

STACPUB considered all 91 SCR documents and 21 SCS documents presented to the Scientific Council, and nominated SCR Doc. $90 / 17,34,36,41,63$, and 78 . The Committee requested the Assistant Executive Secretary to invite authors of those documents to submit them in a suitable form for consideration for publication in the Journal or Studies.

STACPUB recognized that as a result of the large number of papers presented to the meeting, members could not in the limited time available adequately scrutinize the papers to determine their suitability. STACPUB therefore emphasized that the above nominations did not preclude submission of papers by authors who felt that their papers deserved consideration.

STACPUB observed that the "Einal Report of the STACREC Working Group on Survey Design and Procedures" (SCS Doc. 90/20) contained important and valuable information that should be available in NAFO literature in a referenceable form. STACPUB agreed to invite the convener of the STACREC Working Group to consider preparing the Report with the necessary redrafting and editing. for publication in studies.

## 7. Microfiche Projects

a) Review of Requests for Microfiche of ICNAF Documents

The ICNAF Microfiche Project covered the documents produced during 1951-79 and was completed in November 1986 . The Secretariat purchased 30 sets of the fiche and to date have sold 13 sets ( 7 in 1987,3 in 1988 and 3 in 1989). NAFO continues to advertise the fiche in each issue of the Journal and Scientific Council Studies.
b) Question of Microfiching NAFO Documents

The Executive Secretary was requested to make whatever progress was possible with microfiching NAFO documents should opportunities arise within annual budgets. The view, however, was continued that specific funding should not be requested in the publications budget for this item until the ICNAF microfiche project recovers its full cost. This would require that seven more sets are sold.
8. Other Matters
a) Request for a Special Issue of the Journal

As part of a USSR-Canada Scientific Bilateral agreement, a symposium entitled "Biology and Fishery for Capelin in the Northwest Atlantic" will be held in St. John's during 27-30 November 1990. To date, a total of 21 titles have been submitted by Canadian and Soviet contributors. More are expected and it is probable that a total of approximately 30 papers will be presented at the meeting. Because of the relevance of these papers to NAFO, the Conveners of the Meeting proposed that STACPUB consider inviting the conveners and authors to submit suitable papers to NAFO with the objective of publishing them in a single issue of the Journal of Northwest Atlantic Fishery Science.

STACPUB recognized the relevance of the subject to NAFO and agreed that the Journal would be an appropriate place for publishing the papers.

Assuming that the majority of the papers would be submitted for publication, this would place a substantial additional burden on the Journal editorial board. Consequently, STACPUB agreed that the Canadian convener. J. Carscadden (a former Associate Editor of the Canadian Journal of Fisheries and Aquatic Sciences), be invited to serve as a special editor to expedite peer-review and editing of this series of papers. It was hoped that submissions would be received by the end of 1990 and the editorial process would be completed in $6-8$ months.

STACPUB also felt it would be appropriate to invite the co-conveners to prepare a one-page introduction to the series of papers with a brief description of the history and purpose of the meeting. The Assistant Executive Secretary was requested to inform the convener of the decision on behalf of STACPUB.
9. Acknowledgements

The Chaixman thanked the Rapporteur (W. R. Bowering) for outstanding records of the meeting and the Assistant Executive Secretary for excellent work in preparing background working papers for the consideration of STACPUB. There being no other business the Chairman then adjourned the meeting.

APPENDIX IV. AGENDA FOR SCIENTIFIC COUNCIL MEETING, JUNE 1990
I. Opening (Chairman: B. W. Jones)

1. Appointment of rapporteur
2. Adoption of agenda
3. Attendance of observers
4. Plan of work
5. Report of proxy votes (by Executive Secretary)
6. Nomination and election of STACFIS Chairman (including consideration of period of
appointment)
Fishery Science (STACFIS Chairman: H. Lassen)
7. General review of catches and fishing activity in 1989
8. Stock assessments
a) Stocks within or partly within the Regulatory Area, as requested by the Fisheries Commission with the concurrence of the Coastal State (Annex 1):

- Cod (Div. 3NO; Div. 3M) (see App. III, items a and I)
- Redfish (Div. 3LN; Div. 3M)
- American plaice (Div. 3LNO; Div. 3M) (see App. III, items 2, 7 and 19)
- Witch flounder (Div. 3NO) (soe App. III, iter 8)
- Yellowtail flounder (Div. 3LNO) (see App. III, (tems 2 and 19)
- Capelin (Div. 3NO)
- Squid (Subareas 3 and 4)
- [Note also Annex 1 , Item 3 concerning cod in Div, $2 J+3 K L$, Item 4 concerning cod in Div. 3 M , Item 5 concerning flounders in Div. 3LNO and Item 7 concerning mesopelagic species and Atlantic saury in the Regulatory Area]
b) Stocks within the 200 -mile fishery zone in Subareas 2 , 3 and 4, as requested by Canada (Annex 2):
- Greenland halibut (Subarea 2 and Div. 3KL) (see App. III, items 9 and 10)
- Roundnose grenadier (Subareas 2 ard 3)
- Silver hake (Div. 4VWX) (see scs Doc. 90/2)
- Capelin (Div. 3L)
d) Stocks within the 200 -mile fishery zone in Subarea 1 and at East Greenland, as requested by Denmark on behalf of Greenland (Annex 3):
- Cod (Subarea 1)
- Redfish (Subarea 1) (if possible, by species)
- Wolffish (Subarea 1) (if possible, for spotted and striped)
- Northern shrimp (East Greenland) (seo SCs Doc. 89/22; App. III, Item 12)
- Other finfish and invertebrates (Subarea 1)
e) Stocks overlapping the fishery zones in Subareas 0 and 1, as requested by Canada and by Denmark on behalf of Greenland (Annexes 2 and 3):
- Greenland halibut (Subareas 0 and I) (see App. III, item 10)
- Roundnose grenadier (Subareas 0 and 1)
- Northern shrimp (Subareas 0 and 1) (seo scs Doc. 89/22; App. III, item 11)

3. Environmental research (Subcommittee Chairman: M. Stein)
a) Chairman's report
b) Marine Environmental Data Service (MEDS) Report for 1989
c) Review of environmental studies in 1989
d) Overview of environmental conditions in 1989
e) Marine Environmental Ecosystems Subcommittee of CAFSAC (report)
f) National representatives
g) Other matters
4. Ageing techniques and validation studies
a) Reports on the otolith exchanges on Silver hake and American plaice (Div. 3LNO)
b) Other ageing and validation studies reported
5. Gear and selectivity studies
a) Reports on gear and selectivity studies
b) Proposals for gear and selectivity studies
6. Review of SCR and SCS documents not considered in items (1) to (5) above
7. Other matters
a) Review of current arrangements for conducting stock assessment with respect to designated experts.
b) Progress report on contributions for the 5-7 September 1990 Special Session on "Management Under Uncertainties Related to Biology and Assessments, With Case Studies on Some North Atlantic Fisheries" (J. Shepherd, UK, Convener)
c) Convener for the Special Session in 1991 and any other matters in relation to this meeting
d) Theme for the 1992 Special Session
e) Other business
IV. Publications (STACPUB Chairman: V. P. Serebryakov)
8. Review of STACPUB membership
9. Review of scientific publications since June 1989
10. Production costs and revenues for Scientific Council publications
11. Promotion and distribution of scientific publications
a) Publicity and response regarding the Journal
b) Invitational papers for the Journalc) New cover for the Journal
12. Editorial matters regarding scientific publications
a) Editorial activities
b) Progress review: Journal issue of 1989 Special Session
c) Review of general editorial process
d) Review of Editorial Board
1) Consideration of workload of Associate Editors
i1) Consideration of necessity for the additional Associate Editor for Vertebrate Fisheries Biology
6. Papers for possible publication
a) Review of proposals resulting from the 1989 meetings
b) Review of contributions to the 1990 meeting
7. Microfiche projects
a) Review of requests for microfiche of ICNAF documents b) Question of microfiching NAFO research documents
8. Other matters
V. Collaboration with other Organizations
9. Joint ICES/NAFO working group on harp and hooded seals
10. Fourteenth Session of CWP, February 1990
VI. Arrangements for Special Sessions
[See under Eishery Science, Section $7(b), 7(c)$, and 7(d)]
VII. Future Scientific Council Meetings, 1990 and 1991
VIII. Other Matters
IX. Adoption of Reports
11. Committee reports from this meeting (STACFIS, STACREC, STACRUB)
12. Scientific Council Report, June 1990 (receipt and adoption)
X. Adjournment

ANNEX 1. FISHERIES COMMISSION REQUEST FOR SCIENTIFIC ADVICE ON MANAGEMENT
IN 1991 OF CERTAIN STOCKS IN SUBAREAS 3 AND 4

1. The Fisheries Commission with the concurrence of the Coastal state as regards the stocks below which occur within its jurisdiction, requests that the Scientific council, at a meeting in advance of the 1990 Annual Meeting, provide advice on the scientific basis for the management of the following fish and invertebrate.stocks or groups of stocks in 1991:

> Cod (Div. 3NO; Div. 3M)

Redfish (Div. 3LN; Div. 3M)
American plaice (Div. 3LNO; Div. 3M)
Witch flounder (Div. 3NO)
Yellowtall flounder (Div. 3LNO)
Capelin (Div. 3NO)
Squid (Subareas 3 and 4)
2. The Comission and the Coastal State request the Scientific Council to consider the following options in assessing and projecting future stock levels for those stocks listed above:
a) For those stocks subject to analytical dynamic-pool type assessments, the status of the stock should be reviewed and management options evaluated in terms of their implications for fishable stock size in both the short and long term. In those cases where present spawning stock size is a matter of scientific concern in relation to the continuing productive potential of the stock, management options should be evaluated in relation to spawning stock size. As general reference points the implications of fishing at $F_{0.1}$. $\mathrm{F}_{1989}$ and Fmax in 1991 and subsequent years should be evaluated. The present stock size and spawning stock size should be described in relation to those observed historically and those expected in the longer term under this range of options.

Opinions of the Scientific council should be expressed in regard to stock size, spawning stock sizes, recruitment prospects, catch rates and tacs implied by these management strategies for 1991 and the long term. Values of $F$ corresponding to the reference points should be given and their accuracy assessed.
b) For those stocks subject to general production-type assessments, the time serles of data should be updated, the status of the stock should be reviewed and management options evaluated in the way described above to the extent possible. In this case, the general reference points should be the level of fishing effort or fishing mortality (F) which is calculated to be required to take the MSY catch in the long term and two-thirds of that effort level.
c) For those resources of which only general biological and/or catch data are avallable, no standard criteria on which to base advice can be established. The evidence of stock status should, however, be weighed against a strategy of optimum yield management and maintenance of stock biomass at levels of about two-thirds of the virgin stock.
d) Spawning stock biomass levels that might be considered necessary for maintenance of sustained recruitment should be recommended for each stock.
e) Presentation of the result should include the following:
i) for stocks for which analytical dynamic-pool type assessments are possible: - a graph of yield and fishing mortality for at least the past 10 years.

- a graph of spawning stock biomass and recruitment levels for at least the past 10 years.
- a graph of catch options for the year 1991 over a range of fishing mortality rates ( $E$ ) at least from $\mathrm{F}_{0.1}$ to Fmax.
- a graph showing spawning stock biomasses at 1.1 .1992 corresponding to each catch option.
- graphs showing the yield-per-recruit and spawning stock per-recruit values for a range of fishing mortality.
for stocks for which advice is based on general production models, the relevant graph of production on fishing mortality rate or fishing effort.

In all cases the three reference points, actiual $F$. Fmax and $F_{0.1}$ should be shown.
3. The Fisheries Comission with the concurrence of the Coastal State requests that the Scientific Council continue to provide information, if available, on the stock separation in Div. $2 J+3 K L$ and the proportion of the biomass of the cod stock in Div. 3L in the Regulatory Area and a projection if possible of the proportion likely to be available in the Regulatory Area in future years. Information is also requested on the age composition of that portion of the stock occurring in the Regulatory Area.
4. With respect to cod in Div. 3 M , the Scientific Council is asked to comment on the appropriateness of establishing a minimum target level for the biomass, and to comment on the role of exploratory fisheries in providing data for stock assessment purposes.
5. With respect to flounders in Div. 3LNO, the Scientific Council is requested to provide advice on management options that would reduce the extent to which the fisheries reduce the potential yield due to harvest of small fish.
6. With respect to stocks from which catches have recently been significantly in excess of the NAFO TACs, analysis is requested on the effect such catches have had in determining present stock status.
7. The Scientific Council is asked to review available data on stocks of mesopelagic species and on Atlantic saury that might occur in the Regulatory Area, and to provide advice on possible management measures for these, stocks.

## ANNEX 2. CANADIAN REQUEST FOR SCIENTIFIC ADVICE ON MANAGEMENT IN 1991 OF CERTAIN STOCKS IN SUBAREAS 0 TO 4

1. Canada requests that the Scientific Council, at its meeting in advance of the 1990 Annual Meeting, provide advice on the scientific basis for the management of the following fish and invertebrate stocks in 1991:

Greenland halibut (Subarea 2 and Div. 3 K and 3 L )
Roundnose grenadier (Subareas 2 and 3)
Capelin (Div. 3L)
Silver hake (Div. 4V, $4 W$ and 4 X )
subject to the concurrence of Denmark (Greenland), the
the 1990 Annual Meeting of NAFO, provide advice on the Scientific Council, prior to the 1990 Annual Meeting of NAFO, provide advice on the scientific basis for management in 1991 of the following stocks:

Shrimp (Subareas 0 and 1)
Greenland halibut (Subareas 0 and 1)
Roundnose grenadier (Subareas 0 and 1)
2. Canada requests the Scientific Council to consider the following options in assessing and projecting future stock levels for those stocks listed above:
a) For those stocks subject to analytical dynamic-pool type assessments, the status of the stock should be reviewed and the implications of continuing to fish at $F_{0,1}$ in 1991 and subsequent years should'be evaluated. The present stock size should be described in relation to those observed historically and those to be expected at the $F_{0.1}$ level in both the short and long term. In those cases where present spawning stock size is a matter of scientific concern in relation to the continuing productive potential of the stock, management options should be evaluated in relation to spawning stock size. All results should be expressed in terms of stock sizes, catch rates and TACs implied for 1991 and the long term.
b) For those stocks subject to general production-type assessments, the status of the stock should be reviewed and management options evaluated in the way described above to the extent possible. In this case, the general reference point should be the level of fishing effort ( $F$ ) which is two-thirds that calculated to be required to take the MSY catch in the long term.
c) For those resources on which only general biological andor catch data are avallable, no standard criteria on which to base advice can be established. The evidence on stock status should, however, be weighted against a strategy of optimum yield management and maintenance of stock biomass at levels of about twothirds that of the virgin stocks.

```
P. Meyboom
Deputy Minister
Department of Fisheries and Oceans
Ottawa, Canada
```


## ANNEX 3. DENMARK (GREENLAND) REQUEST EOR SCIENTIFIC ADVICE ON MANAGEMENT OF CERTAIN STOCKS IN 1991

1. Denmark on behalf of Greenland, requests the Scientific Council of NAFO in advance of the June 1990 Annual Meeting to consider the following stocks occurring in Subarea 1 :

| i) Atlantic cod |  |
| :--- | :--- |
| ii) | Redflsh (by species, is possible) |
| iii) | Wolffish (by species, if possible) |
| iv) | Any other stock of commercial 1nterest of invertebrates and finfish in |
|  | Subarea 1 for which data allow a status report |

It is also suggested, subject to the concurrence of Canada, that the Scientific Council of NAFO include the following stocks overlapping Subareas 0 and 1 in its considerations:

| 1) Greenland halibut |  |
| :--- | :--- |
| ii) | Roundnose grenadier |
| iii) Northern shrimp (Pandalus borealis) |  |

Further, in cooperation with ICES, the Scientific Council of NAFO is requested to analyze the following stock in the Denmark Strait and off East Greenland:
i) Northern shrimp (Pandalus borealis)

The Scientific Council of NAFO is requested to provide advice on the status and on the biological basis for management 101991 and as many years onwards as the data allow for all stocks mentioned above.
2. In the analyses on which management advice will be based, the following should be included:
a) For cod in Subarea 1 the catch projections should include at the following options:

1) $\quad F=F(0.1)$ from 1991 onward

1i) $\quad F=F(\max )$ from 1991 onward
iii) $F$ from 1991 onward equal to that $F$-value which for 1990 corresponds to the set TAC for 1990 , i.e. 110,000 tons
iv) Two options both based on a steady catch level from 1991 onwards. One catch level should be 90,000 tons and the other level 110,000 tons.
v) Same as in iv) but with restriction that $F$ is not allowed to exceed 0.6 per year.

The development in the expected length distributions particularly the size groups $40-55 \mathrm{~cm}$ and above 55 cm should be evaluated.

The catch level for 1990 should be set at the TAC for that year, i.e. 110,000 tons. The Scientific Council should further evaluate whether this catch level is realistic and if not then re-evaluate the above mentioned options 1), 11) and ii1) based on such catch level for 1990.
b) The boundary between the East Greenland cod stock and the West Greenland stock should be reconsidered and the scientific council invited to comment on the
relevance of such a boundary under the present stock conditions.
For Greenland halibut in Subarea $0+1$ the relevance and the scientific basis for the stock separation between this stock and the Greenland halibut in Subarea 2 and Div. 3KL should be reconsidered.

For Northern shrimp in Subarea 1 and in the Denmark Strait the effects of by-catch of small finfish (redfish and Greenland halibut) on these stocks should be analyzed if data allow. Further the effect of discards of shrimp should be analyzed.
3. The Scientific Council should feel free to report on such other invertebrate and finfish stocks in Subarea 1 and on such other scientifically-based management options for the above mentioned Subarea 1 stocks, as it feels applicable.

```
Jens Paulsen
Head of Division
Department for Fisheries & Industry
Nuuk, Greenland
```



Atkinson, D. B. Baird, J. W. Bishop, C. Bowering, W. R. Brodie W. B. Carscadden, J. E. Miller, D. Murphy, E. F Nakashima, B. Parsons, D. G. Power, D. Walsh, S. J. Drinkwater, K. F. Scotia
Mohn, R. K. Scotia O'Boyle, R. Showell, M. A. Waldron, D. E. Frechet, A. Savard, L.
Beckett, J. S. Rivard, D.


Maurice Lamontagne Institute, Fisheries and Oceans, Mont.-Joli, Quebec Fisheries Research Br., DFO, 200 Kent St.. Ottawa, Ontario

CUBA
Dominguez, R. Flota Cubana de Pesca, Desamparados Esq Mercado, Habana Vieta, Habana

DENMARK
FAROE ISLANDS
Reinert, J. Fisheries Laboratory of the Faroes, Noatun, FR-100 Torshavn
GREENLAND
Boje, J.
Christensen, S.
Carlsson, D. M.
Horsted, Sv. Aa.
Jargensen, 0 .
Kanneworff, P .
Lassen, $H$.
Riget, F .
Greenl. Fisheries Research Institute, Tagensvej 135, DK-2200, Copenhagen Greenland Home Rule, Box 269, 3900 Nuuk, Greenland Greenl. Fisheries Research Institute, Tagensvej 135, DK-2200, Copenhagen


## EUROPEAN ECONOMIC COMMUNITY (EEC)

Noé, R.
Commission of European Communities, Loi $1206 / 223,200$ rue de la Loi, B-1049, Brussels, Belgium
Avila de Melo, A. M. C.Instituto Nacional de Investicacao das Pescas, 1400 Lisbon, Portugal Godinho, M. L. Moguedet, P.
Cross, D.
Cornus, H. P.
Stein, M.
Messtorff, J.
Jones, B. W.
Cardenas, E. de
Vazquez, A.
Zamarro, J.
IFREMER, B. P. 4240, F-97500 Saint Pierre et Miquelon
EUROSTAT, Commssin of theEC, B. P. 1907, Luxembourg (Grand Duchy)
Sea Eisheries Institute, Hamburg 50, Federal Republic of Germany
Sea Fisheries Institute, D-2850 Bremerhaven 29, Federal Republic of Germany
Fisheries Laboratory, Lowestoft, Suffolk NR33 OHT, United Kingdom
Instituto Espanol de Oceanografia, P. O. Box 240, Santander, Spain
Instituto de Investigaciones Marinas, Muelle de Bouzas, Vigo, Spain

## GERMAN DEMOCRATIC REPUBLIC (GDR)

Institute fur Hochseefischerei und Fischverarbeitung, 251 Rostock-Marienehe

ICELAND
Skúladøttir, U. Marine Research Institute, Skulagata 4, P. O. Box 1390, 121-Reykjavik

JAPAN
Uozumi, Y. National Research Institute of Far Seas Fisheries, 5-7-1 Orido, Shimizu 424

UNION OF SOVIET SOCIALIST REPUBLICS (USSR)
Chumakov, A.K. PINRO, 6 Knipovich Street, Murmansk, 183763
Rikhter, V.A. AtlantNIRO, 5 Dmitry Donskoy Street, Kaliningrad, 236000

Serebryakov, V.P.
VNIRO, 17 V. Krasnoselskaya, Moscow B-140, 107140

## OBSERVERS

FAO
Robinson, M. Via delle Terme di Caracalla, Rome, Italy

## TAN2ANIA

Bayona, J. D. R. Tanzania Fisheries Research Institute, P. O. Box 9750, Daressalaam, Tanzania Chisara, P. Fisheries Division, Box 60091, Daressalaam, Tanzania Institute of Marine Sciences, R. O. Box 668, Zanzibar, Tanzania

USA
Armstrong, R. S. National Marine Fisheries Service, Narragansett, RI 02882

## Mountain, D. G.

 Serchuk, F.NMFS, Northeast Fisheries Center, Woods Hole, MA 02543

## RESEARCH DOCUMENTS (SCR)

SCR No. Ser. No.

| 90/01 | N1701 | SHERSTJUKOV, A. I. The young silver hake growth in the Scotian Area, 1977-1988. (26 pages) |
| :---: | :---: | :---: |
| 90/02 | N1702 | SHERSTJUKOV, A. I. Distribution and abundance of 0-group silver hake on Scotian Shelf in Autumn 1988. (11 pages) |
| 90/03 | N1706 | Replaced by SCR Doc. 90/47. |
| 90/04 | N1707 | FUONG, N. More on the question of inconsistencies in studying the Scotian shelf silver hake growth rate by Soviet and Canadian scientists. (13 pages) |
| 90/05 | N1716 | BULATOVA, A. Yu. Assessment of the cod stock in Div. 3NO and 3KL from the 1989 trawl-acoustic survey. (14 pages) |
| 90/06 | N1717 | SAVVATIMSKY, P. I. Variations in catch composition of roundnose grenadier from the Northwest Atlantic during 1971-1989. (15 pages) |
| 90/07 | N1718 | BAKANEV, V. S., A. A. VASKOV, and. V. N. PETROV. Results of the Soviet acoustic survey on capelin stock in summer 1989 and 0-group capelin survey in autumn 1988 and 1989 in Div. 3LNO. (10 pages) |
| 90/08 | N1719 | VASKOV, A. A., A. G. GALUZO, and I. A. OGANIN. Estimation of the stock status and TAC for redfish, Sebastes marinus in Div. 3M for 1991. (15 pages) |
| 90/09 | N1720 | VASKOV, A. A., A. G. GALUZO, and I. A. OGANIN. Estimation of the stock status and TAC for redfish, Sebastes marinus in Div. 3LN for 1991. (16 pages) |
| 90/10 | N1721 | BOROVKOV, V. A., and I: I. TEVS. Overview of oceanographic conditions off the Northwest Atlantic in 1989. (22 pages) |
| 90/11 | N1723 | SMEDSTAD, O. M., and S. TORHEIM. Norwegian investigations on shrimp (Pandalus borealis) in East Greenland waters in 1989. (13 pages) |
| 90/12 | N1724 | SMEDSTAD, O. M. Preliminary report of a cruise with $M / T$ Hakay-II to East Greenland waters in September 1989. (13 pages) |
| 90/13 | N1728 | MOUNTAIN, D. G., and T. J. HOLZWARTH. Surface and bottom temperature and temperature anomaly time series from the Northeast Fisheries Center spring and fall bottom trawl survey program, 1963-1989. (20 pages) |
| 90/14 | N1729 | SIGAEV, I. K. Ecological studies of conditions of silver hake distribution on Nova Scotian Shelf within the framework of the USSR-Canada program. (31 pages) |
| 90/15 | N1730 | RIKHTER, V. A. The stock-recruitment dependence nature in some fish species from the Northwest Atlantic. (34 pages) |
| 90/16 | N1733 | STEIN, M. Some remarks on time-series sampled on annual intervals. (6 pages) |
| 90/17 | N1734 | STEIN, M. Variation of salt and heat flow in West Greenland waters. (8 pages) |
| 90/18 | N1735 | RIKHTER, V. A., and V. F. TUROK. Dependence between stock size and concentration densities for Scotian Shelf silver hake by USSR observers' data for 1979 through 1988. (11 pages) |
| 90/19 | N1736 | RIKHTER, V. A., and V. F. TUROK. Distribution of silver hake, other fish species and squid on the Nova-Scotian Shelf in 1989 by USSR observers' data. (21 pages) |
| 90/20 | N1737 | WALDRON, D. E., M. C. BOURBONNAIS, and M. A. SHOWELL. Status of the Scotian Shelf silver hake (Whiting) populations in 1989. (27 pages) |
| 90/21 | N1738 | WALDRON, D. E., M. A. SHOWELL, and P. A. COMEAU. Scotian Shelf silver hake: 1989 commercial fishery description. (19 pages) |


| 90/22 |  | CARDENAS, E. de, and J. A. PEREIRO. Some comments about the exploitation pattern on the Flemish Cap cod stock. (6 pages) |
| :---: | :---: | :---: |
| 90/23 | N1740 | BAIRD, J. W., C. A. BISHOP, and E. F. MURPHY. Cod in Divisions 2J+3KL Information relative to the portion of the stock beyond the Canadian 200-mile fishery zone. (11 pages) |
| 90/24 | N1741 | STROUT, G. Variation in the shelf water front position in 1989 from Georges Bank to Cape Hatteras. (9 pages) |
| 90/25 | N1742 | SANO, M. H., and G. B. WOOD. Anticyclonic warm-core Gulf Stream rings off the northeastern United States during 1989. (16 pages) |
| 90/26 | N1743 | JOSSI, J. W., and R. L. BENWAY. Surface and bottom temperatures, and surface salinities: Massachusetts to Cape Sable, N.S., and New York to the Gulf Stream, 1988. (18 pages) |
| 90/27 | N1744 | JOSSI, J. W., and R. L. BENWAY. Surface and bottom temperatures, and surface salinities: Massachusetts to Cape Sable, N.S., and New York to the Gulf Stream, 1989. (17 pages) |
| 90/28 | N1745 | RIGET, F., HOVGARD, H., and H. LASSEN. A catch rate index for West Greenland Cod for 1975-89 based on logbook information from the commercial fleet. (11 pages) |
| 90/29 | N1746 | HOVGARD, H., and F. RIGET. A long-line estimate of swept area abundance of cod in inshore areas off West Greenland. (12 pages) |
| 90/30 | N1747 | HOVGARD, H. and K. H. NYGAARD. Young cod distribution and abundance in West Greenland inshore areas, 1989. (6 pages) |
| 90/31 | N4748 | RATZ, H-J. The effect of emigration on VPA-assessments of Subarea 1 cod. pages) |
| 90/32 | N1749 | WIELAND, K., and B. BRUGGE. Some considerations on the significance of larval drift for the recruitment of West Greenland cod. (6 pages) |
| 90/33 | N1750 | KOSTER, F. W., and W. SCHOBER. Cod stomach sampling in West Greenland waters 1989 - some preliminary results. (13 pages) |
| 90/34 | N1751 | RATZ, H-J. The assessment of the migration of Atlantic cod (Gadus morhua L.) between the stocks off East and West Greenland by means of otolith typing. pages) |
| 90/35 | N1752 | BOJE, J., and 0 . JØRGENSEN. On the relevance of a combined assessment of Greenland halibut in NAFO Subareas 0, 1, 2 and Divisions 3KL. (7 pages) |
| 90/36 | N1753 | BOJE, J., F. RIGET, and M. KaIE. Infestation of parasites in Greenland halibut in the Northwest Atiantic. (18 pages) |
| 90/37 | N1754 | BOJE, J. On recaptures of Greenland halibut in Icelandic waters from tagging experiments in West Greenland fjords. (2 pages) |
| 90/38 | N1755 | NIELSEN, J. R. Longline fishery for Greenland halibut in the Davis strait, November 1989. (4 pages) |
| 90/39 | N1756 | JØRGENSEN, O., and K. AKIMOTO. Results of a stratified random bottom trawl survey in NAFO Subarea 1 in 1989. (14 pages) |
| $90 / 40$ | N1757 | P-GANDARAS, G., and J. ZAMARRO. Changes in the cohort growth rate of flemish Cap cod. (14 pages) |
| 90/41 | N1758 | ZAMARRO CEBALLOS, J. Determination of fecundity in American plaice (Hippoglossoides platessoides) and its variation from 1987 to 1989. (10 pages) |
| 90/42 | N1759 | CARLSSON, D. M., and P. KANNEWOREF. The commercial shrimp fishery in Denmark Stradt in 1989 and early in 1990. (22 pages) |
| 90/43 | N1760 | REINERT, J. The Faroese longline fishery for cod on Flemish Cap 1973-87, data catch and effort from three longliners. (4 pages) |
| 90/44 | N1761 | LUND, H. Greenland fishery for shrimp (Pandalus borealis) at north West Greenland from 1985 to 1989. (12 pages) |



|  | N1791 | ZAMARRO, J.e and W. B. BRODIE. Results of an American plaice (Hippoglossoides platessoides) otolith exchange between Canada and Spain. ( 6 pages, revised) |
| :---: | :---: | :---: |
| 90/70 | N1792 | BOWERING, W. R., and A. K. CHUMAKOV. Trends in blomass and abundance estimates of yellowtail flounder (Limanda ferruginea) from USSR surveys in Divisions 3LNO. (20 + addendum) |
| 90/71 | N1793 | BOWERING, W. R., and A. K. CHUMAKOV. Trends in biomass and abundance estimates of American plaice (Hippoglossoides platessodies) from USSR surveys in Divisions 3 K , 3L, 3 M and 30 . ( 34 pages + addendum) |
| 90/72 | N1794 | BISHOP, C. A., E. F. MURPHY, and J. W. BAIRD. Biomass and age compositions derived from RV surveys for cod in Div. 3NO relative to the Canadian 200-mile fishery boundary. (6 pages) |
| 90/73 | N1795 | BISHOP, C. A., J. W. BAIRD, and E. F. MURPHY. The assessment of the cod stock in |
| 90/74 | N1796 | RIGET, F. Status of Subarea 1 cod and the fisheries. An extract of the Report of the ICES working Group on cod stocks off East Greenland, Hamburg, 21-27 February 1990. (34 pages) |
| 90/75 | N1797 | SAVVATIMSKY, G. B. RUDNEVA, L. DANKE, H. MULLER, D. B. ATKINSON, and D. POWER. Roundnose grenadier (Coryphaenoides rupestris) in NAFO Subareas $0+1$ and $2+3.6(63$ pages) |
| 90/76 | N1798 | WALSH, S. J. Distribution of juvenile and adult American plaice on the Grand Bank, NAFO Divisions 3LNO. (20 pages) |
| $90 /$ | N1799 | BUCH, E., and P. B. NIELSEN. Ocean temperatures at Fyllas Bank, West Greenland related to atmospheric processes. (8 pages + addendum) |
| 90/78 | N1800 | STEIN, M. Greenhouse induced changes in the North Atlantic - implications for fisheries. (12 pages) |
| 90/79 | N1801 | FUCHS, F. Proposal for a multinational project on the coordination of fishery hydrographic activities in the North Atlantic. (3 pages) |
| 90/80 | N1802 | BRODIE, W. R., W. R. BOWERING, and J. W. BAIRD. An assessment of the American plaice stock in Divisions 3LNO. (41 pages) |
| 90/81 | N1803 | ZAMARRO, J. An assessment of the American plaice stock on the Flemish Cap (NAFO Division 3 M ). (4 pages) |
| 90/82 | N1804 | SKOLADOTTIR, U. A review of the shrimp fishery (Pandalus borealis) in the Denmark Strait, in the years 1978-1989. (14 pages) |
| 90/83 | N1806 | DRINKWATER, K. F., and R. W. TRITES. Overview of environmental conditions in the Northwest Atlantic in 1989. (19 pages) |
| 90/84 | N1809 | KEELEY, J. R. Marine Environmental Data Service Report for 1989. (11 pages) |
| 90/85 | N1811 | WALSH, S. J. Distribution of juvenile and adult yellowtall flounder on the Grand Bank, NAFO Divisions 3LNO. (15 pages) |
| 90/86 | N1812 | BRODIE, W. B., S. J. WALSH, and W. R. BOWERING. Yellowtail flounder in NAFO Div. 3LNO - an assessment of stock status. (32 pages) |
| 90/87 | N1813 | $\frac{\text { POWER, D., and D. B. ATKINSON. Status of the redfish resource in NAFO Divisions }}{3 \text { LN. (17 pages) }}$ |
| 90/88 | N1814 | MESSTOREF, J., and H. P. CORNUS. Sebastes marinus and $S$. mentella off West Greenland (NAFO Subarea 1, 1989). (4 pages) |
| 90/89 | N1815 | FRECHET, A. The Saint-Pierre and Miquelon and Metropolitan France cod fishery (3Pn, 4RS) in the Gulf of St. Lawrence from 1978 to 1989. (18 pages) |
| 90/90 | N1817 | LASSEN, H., and D. M. CARLSSON. A catch-rate index for the Greenland shrimp fishery in NAFO Subarea 1. (14 pages) |
| 90/91 | N1 818 | SKOLADøTTIR, U. The sustainable yield of Pandalus borealis in the Denmark strait area based on data for the years 1980-89. (5 pages) |

## SUMMARY DOCUMENTS (SCS)

SCS No. Ser. No.

| 90/01 | N1703 | NAFO SECRETARIAT. Historical catches of selected species by stock area country for the period 1978-88. (38 pages) |
| :---: | :---: | :---: |
| 90/02 | N1705 | LASSEN, H. Report of the workshop on sliver hake database. (14 pages) |
| 90/03 | N1714 | MEYBOOM, P. Canadian request for scientific advice on management in 1990 certain stocks in Subareas 0 to 4 . (1 page) |
| 90/04 | N1715 | PAULSEN, J. Denmark \{Greenland\} request for scientific advice on management of certain stocks in 1991. (2 pages) |
| 90/05 | N1722 | CHUMAKOV, A. K., V. A. BOROVKOV, and V. A. RIKHTER. USSR research report for <br> 1989. (pages) |
| 90/06 | N1725 | NAFO SECRETARIAT. Provisional index and list of titles of research and summary documents for 1989 . (24 pages) |
| 90/07 | N1726 | COADY, L. W., M. CHAOWICK, P. A. KOELLER, and A. FRECHET. Canadian research report for 1989. 1 pages) |
| 90/08 | N1727 | BOYAR, H. C., and F. M. SERCHUK. US research report for 1989. (10 pages) |
| 90/09 | N1807 | NAFO SECRETARIAT. List of biological samples data for 1988. (41 pages + addendum |
| 90/10 | N1731 | $\frac{\text { NAFO SECRETARIAT. }}{1989 . \quad \text { ( } 2 \text { pages })}$ Notes on statistical activities for the Northwest Atlantic in |
| 90/11 | N1732 | $\frac{\text { NAFO SECRETARIAT. }}{(6 \text { pages })}$ Tagging activities reported for the Northwest Atlantic in 1989. |
| 90/12 | N1768 | AVILA DE MELO, A. M., M. L. GODINHO, R. ALPOIM, and M. CARNEIRO. Portuguese research report for 1989 . (22 pages) |
| 90/13 | N1769 | VAZQUEZ, A., and G. P. GANDARAS. Spanish research report for 1989. (13 pages) |
| 90/14 | N1770 | PEDERSEN, S.A. Denmark/Greenland research report for 1989. (9 pages) |
| 90/15 | N1771 | UOZUMI, Y. Japanese research report for 1989. (3 pages) |
| 90/16 | N1783 | $\frac{E R N S T, ~ P ., ~ a n d ~ R . ~ E G G E R S . ~ G e r m a n ~ D e m o c r a t i c ~ R e p u b l i c ~ r e s e a r c h ~ r e p o r t ~ f o r ~}{(9} 1989$. |
| 90/17 | N1805 | DOMINGUEZ, R., A. PASCHALIDIS, and S. VALLE. Cuban research report for 1989. pages) |
| 90/18 | N1808 | ASSISTANT EXECUTIVE SECRETARY. Report to the CWP on NAFO Statistical Program, Publications and ADP. (14 pages) |
| 90/19 | N1810 | CWP SECRETARY. Report of the fourteenth session of the Coordinating working Party on Atlantic Fishery Statistics (CWP), February 1990. (14 pages) |
| 90/20 | N1816 | STACREC WORKING GROUP. Final report of the STACREC Working Group on survey design and procedures. ( 81 pages) |
| 90/21 | N1819 | $\frac{\text { NAFO SECRETARIAT. Provisional nominal catches in the Northwest Atlantic, } 1989 .}{(44 \text { pages }}$ |
| 90/22 | N1820 | CORNUS, H. P., and W. B. BRODIE. A compilation of research vessel surveys on stock by stock basis. ( pages) |


[^0]:    * Includes an estimate of non-reported catches.

[^1]:    Exclude expected catches by EEC-Spain.
    2 Provisional figures, but most of the catch not reported

[^2]:    1 Provisional data.

[^3]:    1 Provisional data.

[^4]:    1 Provisional data.

[^5]:    1 Provisional data.

