NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N2648

NAFO SCR Doc. 95/109

SCIENTIFIC COUNCIL MEETING - NOVEMBER 1995

Trawl Survey for Shrimp (*Pandalus borealis*) in Denmark Strait, 1995

Ъy

D. M. Carlsson, and P. Kanneworff

Greenland Institute of Natural Resources Tagensvej 135, DK-2200 Kbh. N. Denmark

INTRODUCTION

Annual trawl surveys for estimating the shrimp stock biomass in Denmark Strait have been carried out since 1989 (except for 1991 and 1993). While the survey in 1989 covered the commercial fishery area only, later surveys were aimed to cover the total stock distribution area (Kanneworff & Lehmann, 1991).

All surveys were carried out in the September-October period because this period normally is the best to avoid severe problems with bad weather and ice cover. Although it is known that shrimp densities are lower at this time of the year - compared to the December-May period, where most of the commercial catches are taken - it is hoped that a time series of survey results will show that biomass estimates may be useful as indices of the status of the stock.

In 1989, 1990, and 1992 the surveys were based on the stratified-random technique. From 1994 a new sampling technique based on the Spline Survey Designer Software System (Stolyarenko, 1987; 1993) was introduced (Andersen *et al.*, 1994).

The Icelandic authorities kindly granted permission to carry out research in the Icelandic economic zone.

MATERIAL AND METHODS

The survey was performed with the 722 GRT trawler *Paamiut*, using a 3000/20 meshes *Skjervøy* shrimp trawl with bobbins gear and a 20 mm double-bag in the codend. Trawl doors were *Greenland Perfect*, size 370*270 cm. Trawl geometry was measured with *Scanmar* acoustic sensors mounted on the trawl doors, and a *Furuno* trawleye on the headrope.

Standard towing time was 60 minutes. Trawling was carried out in day-time (0800-1800 UTC) only, to minimize the influence of vertical migrations. Distance between the trawl doors was measured continuously during trawling, and the mean wing spread was calculated for each haul. Together with calculated trawling distance (using GPS positions at beginning and end of the haul) the mean wing spread was used to estimate a swept area for each haul.

The survey area (Fig. 1) covered the supposed main distribution area of the shrimp stock, i.e. the offshore area between 65°N and 68°N, bordered to the east by the 600 m depth contour.

Based on information from the earlier surveys a sampling scheme was constructed by means of the Spline Survey Designer Software System (Stolyarenko, loc. cit.). The number of sampling sites (50) was chosen as about 2/3 of the

expected total number of stations that could be visited during the allocated survey period. After completing the primary sampling program (in which two stations were omitted due to extreme bottom conditions), the rest of the stations were selected haul by haul based on information from all the hauls taken during the survey (including 25 hauls from the area south of 65°N, taken during a trawl survey immediately before the present).

The total catch was sorted and weighed by species. From each haul a sample of shrimp was taken from the cod-end. Shrimps were sorted by sexual characteristics, and oblique carapace length was measured to the nearest 0.1 mm.

The shrimp catch per standard trawling area (0.11 km², roughly corresponding to a haul duration of 60 minutes) was calculated as input value for the Spline computer programme.

RESULTS AND DISCUSSION

Biomass

In total 72 stations were fished, of which 48 belonged to the primary sampling scheme. Fig. 2 shows the distribution of the shrimp biomass as calculated from the basic sampling scheme. The total biomass estimate from the first phase was 7215 tons. It is obvious that further sampling is needed to delineate the observed concentrations around 65°45'N 32°W and 66°30'N 28°30'W. Further information on the large areas in the west is also desirable but less important due to assumed low shrimp density. In the southwestern corner of the survey area higher densities of shrimp - produced by the model as the result of catches in trawl stations to the south of the survey area - should also be investigated.

In the second phase of the survey one station was placed in the southwestern corner of the survey area, reducing shrimp densities here somewhat (Fig. 3). Further sampling in this area might have been appropriate, but time did not allow.

Four stations were selected around the concentration at 65°45'N 32°W (based on one haul in the first phase) and resulted in a better definition of this concentration (Fig. 3).

It was decided to concentrate the sampling during the rest of the survey time in the area between 66°15'N and 67°N and 28°W and 31°15'W. During the first phase of the survey the commercial fishery took place in the area around the concentration found at 66°30'N 28°30'W. When returning to the area in the second phase, the commercial fishery had moved northwest to around 66°45'N 29°30'W. In agreement with this the sampling of the second phase resulted in a reduction of the first concentration and the occurrence of a new high density area where the commercial fishery now took place. This raises the question of the stability of shrimp concentrations over the time (about two weeks) between the first phase and the second phase survey in this area: The high density area found in the first phase is - although based on only one station and thus poorly defined - hardly an artifact, as the commercial fishery took place here at that time. Whether the significant reduction of this concentration observed in the second phase is a result of the commercial fishery, due to a dispersion of shrimp, or a combination of both is difficult to decide. On the other hand, the new concentration found in the second phase. It may not have been observed by neither the fishery nor the survey. Or it may be the result of a new concentration or movement of already existing concentrations. Under all circumstances this change in abundance may cause a reevaluation of the survey design, e.g. with an immediate delimitation of observed high density areas during the first phase.

After completion of the second phase of the survey a biomass estimate of 4558 tons was calculated for the total area. This estimate is of the same order of magnitude as the estimate from 1989, and higher than the estimates from 1990, 1992, and 1994:

Year	Biomass estimate
.	
1989	4879
1990	1860
1992	1044
1994	3800
1995	4558

The spline method was discussed in detail in Andersen et al. (1994).

Stock composition

Overall length frequency distributions for the surveys prior to 1994 were constructed by pooling of samples after weighting with catch and stratum area (Carlsson and Kanneworff, 1993). Although the spline method was used in 1994 and 1995, overall length frequency distributions were constructed based on the stratum areas used in the earlier surveys (Fig. 4 and Table 2 - strata used in earlier surveys are shown in Fig. 6), and the total number of shrimp estimated over the years in the traditional survey area was calculated (in millions):

males	females	total		
231.0	135.4	366.3		
142.6	85.7	228.3		
163.6	45.3	209.0		
264.4	90.4	354.8		
315.7	109.9	425.6		
	males 231.0 142.6 163.6 264.4 315.7	males females 231.0 135.4 142.6 85.7 163.6 45.3 264.4 90.4 315.7 109.9		

The higher biomass estimate found in 1995 compared to 1990, 1992, and 1994 is the result of an increasing number of both male and female shrimp. The 1995 biomass estimate is at the same order of magnitude as the 1989 estimate, but the stock composition is different with a significantly higher total number of shrimp based on a major increase in number of males, while the number of females decreased slightly.

The male component in 1989 consisted of a broad range of year classes ranging from 18 to 32 mm CL (Fig. 4). Since then the male distribution has been dominated by fewer year classes, and the right side of the distribution has been cut off, indicating that sex change is taking place at a smaller size (Fig. 4 and 5). In 1995 the male component is largely dominated by two groups, one around 24 mm CL and another one - which is responsible for the increase in total number of males compared to 1994 - around 21.5 mm CL.

The female component is reduced continuusly over the first three years. Inside the female group there is a change towards smaller size, very large females (32 - 36 mm CL) are almost absent since 1992, while females smaller than 28 mm CL are becoming more numerous, confirming the earlier sex change as indicated by the change in largest male size. In 1989 the female component was dominated by a peak at 30.5 mm CL. In 1995 the dominating peak is at 28.5 mm CL, but several groups of smaller females are indicated.

In 1994 there were only minor indications of recruitment of the large groups of males occurring in 1995 at 21.5 and 24 mm CL. Migrations into the survey area may therefore be assumed, and it is still not known where the smaller shrimp of the Denmark Strait stock should be found.

Overall length frequency distributions from the fishing areas (strata Q2, Q3, Q4, and Q5) south of the traditional fishing area are shown in Fig. 5. A wide range of size groups of both males and females occur, but shrimp smaller than 20 mm CL are almost absent also in these areas.

Fig. 6 shows the calculated numbers of shrimp per stratum in 1995, and Fig.s 7 and 8 show the density in numbers of male and female shrimp as calculated by the Spline Survey Designer program, based on shrimp samples from north of 65°N. Both male and female shrimp are most abundant in the central area west of the midline to Icelandic waters (males in strata 14, 15, 16, 22 and 23) and females in strata 15, 16 and 23). Compared to earlier years shrimp are much more concentrated in 1995.

CONCLUSION

The biomass of shrimp in Denmark Strait is estimated to be close to the level of 1989 and higher than the estimates in 1990, 1992, and 1994.

A new sampling design, based on the Spline Survey Designer Software System, was used in 1994 and again in 1995, dividing the survey into two phases with a primary sampling scheme in phase one and additional stations in phase two, selected to improve the delimitation of shrimp concentrations. Due to possible changes in shrimp abundance caused by the commercial fishery and/or movement of shrimp during the survey period, the survey design should be redefined in the future, so that high abundance areas can be explored and delimitated immediately after they are found.

Overall length frequency distributions show that the increase in biomass in 1995 is based primarily on dominant groups of males at 21.5 and 24 mm CL and females at 28.5 mm CL. The shift in the female group towards smaller sizes and the absence of the largest male group as found in all succesive surveys when compared to 1989 is still obvious, indicating that a change in size at sex change took place between 1989 and 1990.

Absence of the smaller male and juvenile shrimp in the survey area stresses that the total area of distribution and recruitment patterns of the stock are still unknown. Smaller shrimp were also absent in samples from the fishing areas south of 65°N.

Highest abundance of both male and female shrimp were found in the central area west of the midline to Icelandic waters. Shrimp were more concentrated than in earlier years.

REFERENCES

- Andersen, M., D.M. Carlsson, and P. Kanneworff, 1994. Trawl survey for shrimp (*Pandalus borealis*) in Denmark Strait, 1994. *NAFO SCR Doc.* 94/90. Ser.No. N2477.
- Carlsson, D.M. and P. Kanneworff, 1993. Stratified-random trawl survey for Shrimp (*Pandalus borealis*) in Denmark Strait in 1992. *NAFO SCR Doc*. 93/66. Ser.No. N2250.
- Kanneworff, P. and K. M. Lehmann, 1991. Report on a stratified-random trawl survey for shrimp (*Pandalus borealis*) in ICES division XIVb in 1990. *NAFO SCR Doc*. 91/52. Ser.No. N1935.
- Stolyarenko, D.A., 1987. The spline approximation method and survey design using interaction with a microcomputer: Spline Survey Designer Software System. *ICES C.M.* K:29.

Stolyarenko, D.A., 1993. Spline Survey Designer Software System. The geographic information system for fisheries surveys (for the IBM PC and compatibles). D.A. Stolyarenko.

- 5 -

SFRAD08001 OI OI O O O O I FS SFRAD08002 712 JILB 431.0 660 0 0 0 0 323 333 SFRAD08002 714 KA119 423.0 660 0 0 0 123 333 SFRAD08004 712 KR12 312.5 560 140 0 0 120 230 238 SFRAD080010 712 KR125 661 0 0 1 0 26 31 SFRAD080010 713 KH122 363.5 60 0 0 0 1 34 35 SFRAD080011 713 KH122 345.5 60 0 0 0 1 1 1 1 3 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35	Station ID		Area code	Depth	Tr- time	SHR	COD	GHL	RED	MIX	TOTAL
Spence Spence Spence Spence Spence Spence Spence	95PA0080001	707	JX118	453.0	67	0 '	2	0	4	18	25
55FA0080004 721 KE119 318.5 60 140 3 0 1 111 254 55FA0080005 725 KF123 352.5 60 6 0 1 0 881 868 55FA0080007 727 KF125 482.5 62 0 0 1 0 2 2 8 3	95PA0080002	714	KA119	423 0	60	· 0	0.	· U	0	32	1/4
SFRA080005 725 KF120 321.0 60 8 0 0 0 236 326 SPRA080006 724 KF125 482.5 62 0 0 1 0 881 686 SPRA080006 732 KH124 380.5 60 0 0 2 0 28 31 SPRA080006 735 KH124 380.5 60 0 0 0 34 35 SPRA0800101 738 KH124 286.5 60 0 0 0 1.5 155 SPRA080015 746 KH118 296.5 60 0 0 0 0 1.6 16 SPRA080017 745 KH110 294.5 60 0 0 0 0 1 4 48 SPRA080017 747 KH112 294.5 60 0 0 0 1 1 4 15 SPRA080027 74	95PA0080004	721	KE119	318.5	60	140	ž	ŏ	ĩ	111	. 254
95PA0080006 727 KF123 352.5 60 0 1 0 881 882 95PA0080008 732 KH124 380.5 62 0 0 1 0 22 0 6 8 95PA0080007 733 KH124 380.5 60 0 0 0 2 0 28 311 95PA0080007 733 KH122 245.5 60 0 0 0 0 1 15 15 95PA0080017 744 KH12 245.5 60 0 0 0 0 1 15 15 95PA0080015 746 KH116 274.0 60 0 0 0 0 1 15 15 95PA0808017 750 KH110 325.5 60 0	95PA0080005	725	KF120	321.0	60	8	0	0	0	230	238
SprAnolesulo 7/2 <t< td=""><td>95PA0080006</td><td>724</td><td>KF123</td><td>352.5</td><td>60</td><td>6</td><td>0</td><td>1</td><td>0</td><td>881</td><td>888</td></t<>	95PA0080006	724	KF123	352.5	60	6	0	1	0	881	888
Definition Definition Definition Definition Definition Definition Definition 713 Kull21 365.5 660 0 0 0 1 0 2 13 SEAD080011 733 Kull21 365.5 660 0 0 0 1 0 2 13 SEAD080011 743 Kull22 256.5 660 0 0 0 15 15 SEAD080016 744 Kull2 267.5 60 0 0 0 0 15 17 SEAD080016 744 Kull2 267.5 60 0 0 0 1 4 48 SEAD080016 744 Kull10 392.5 60 0 0 0 0 0 1 1 3 3 9 3520080027 74 Kull11 395.5 60 1 0 1 0 3 3 9 3520080027	95PA0080007	727	KF125	482.5	62 61	0	0	1	0	20	22
Sisharolino (1) 735 Kull 21 335.5 60 2 0 1 0 32 435 Sisharolino (1) 738 Kull 22 345.0 60 0 0 0 34 35 Sisharolino (1) 734 Kull 22 256.5 60 0 0 0 0 155 155 Sisharolino (1) 744 Kull 22 256.5 60 0 0 0 0 0 16 16 355 55 60 0 0 0 0 0 0 16 16 355 56 0	95PA0080008	733	KH124	380.5	60	õ	0	2	õ	28	31
95PA0080012 743 KH122 345.0 60 0 0 0 0 18 18 95PA0080012 742 KH120 267.5 60 0 0 0 18 18 95PA0080014 744 KH182 265.5 60 0 0 0 16 16 95PA0080016 748 KH116 274.0 60 0 0 0 0 14 44 48 95PA0080018 746 KH1010 392.5 60 <td>95PA0080010</td> <td>735</td> <td>KJ121</td> <td>363.5</td> <td>60</td> <td>ž</td> <td>õ</td> <td>1</td> <td>ŏ</td> <td>42</td> <td>45</td>	95PA0080010	735	KJ121	363.5	60	ž	õ	1	ŏ	42	45
95PA0080012 743 KNL23 256.5 60 0 0 0 0 155 155 95PA0080014 744 KNL18 226.5 60 0 0 0 0 155 155 95PA0080015 748 KNL16 274.0 60 0 0 0 0 16 16 95PA0080017 750 KSL06 379.5 61 0	95PA0080011	738	KL122	345.0	60	0	0	0	0	34	35
SpFA0080013 742 KN120 267.5 60 0 0 0 0 0 155 155 SpFA0080015 748 KP116 274.0 60 0 0 0 0 0 0 16 16 SpFA0080016 749 KS113 245.5 60 0 0 0 0 0 9 9 SpFA0080018 746 KN110 392.5 60 0 0 0 0 0 1 44 48 SpFA0080020 747 KN112 392.5 60 0 0 0 0 1 0 3 3 550.080020 71 KN112 392.5 60 0 0 0 1 1 3 3 3 550.08020 71 KN114 345.5 60 1 0 1 0 1 3 3 3 3 0 0 1 5 550.5	95PA0080012	743	KN123	256.5	60	0	0	0	0	18	18
Schoolson No O <tho< td=""><td>95PA0080013</td><td>742</td><td>KN120 KN119</td><td>267.5</td><td>60 60</td><td>0</td><td>0</td><td>0</td><td>0</td><td>155</td><td>155</td></tho<>	95PA0080013	742	KN120 KN119	267.5	60 60	0	0	0	0	155	155
\$\$\$\$A0080017 750. K\$0113 245.5 60 0 <t< td=""><td>95PA0080015</td><td>748</td><td>KP116</td><td>274.0</td><td>60</td><td>- 0</td><td>Ő</td><td>õ</td><td>Ö.</td><td>16</td><td>16</td></t<>	95PA0080015	748	KP116	274.0	60	- 0	Ő	õ	Ö.	16	16
95FA0080017 750. KS106 379.5 61 0 0 3 1 44 48 95FA0080019 745 KN110 392.5 60 0<	95PA0080016	749	KS113	245.5	60	õ	ō	. Õ	ŏ	- 9	Ĩ
95FA0080018 746 KP107 436.0 60 7 0 2 1 4 15 95FA0080020 747 KP112 294.5 60 0	95PA0080017	750.	KS106	379.5	61	0	0	3	1	44	48
Sprace Sprace<	95PA0080018	746	KP107	436.0	60 60	7	0	2	1	4	15
955A0080021 737 KL110 444.0 5 60 2 0 0 1 3 95PA0080022 741 KM109 444.0 60 2 0 0 0 1 3 95PA0080022 734 KM109 541.5 60 0 0 0 2 2 95PA0080024 736 KM111 395.6 60 7 0 5 0 2 15 95PA0080025 734 KM111 395.0 60 7 0 5 0 2 15 95PA0080027 726 KR115 347.0 60 14 0 7 0 8 29 95PA0080030 719 KD114 307.5 60 20 0 0 0 55 55 95PA0080033 716 KM114 465.5 60 4 0 8 0 32 3652 3652 3652 3652 355 35 35 35 35 35 36 30 5 15 5 55 55 55 35 35 <	95PA0080019 95PA0080020	745	KP112	294 5	60 60	0	ů Ň	0	0	0	1
95F20080022 711 KM109 444.0 60 2 0 0 1 3 95F20080022 736 KJ106 580.5 60 1 0 1 0 1 3 95F20080022 736 KJ109 541.5 60 0 0 0 2 2 95F200800226 728 KG110 492.0 48 4 0 1 0 3 9 95F20080027 726 KF111 408.0 60 14 0 7 0 8 29 95F20080031 718 KN114 283.5 60 37 0 1 0 70 108 95F20080032 716 KN114 73.5 60 0 0 0 352 355 95F20080037 706 JV105 271.5 60 23 0 0 3 1271 1297 95F200800038 709 JV105 <	95PA0080021	737	KL110	440.5	60	2	ŏ	ĩ	ŏ	ĩ	4
95PA0080023 736 KL106 580.5 60 1 0 1 3 3 95PA0080025 734 KH111 395.5 60 7 0 5 0 2 2 95PA0080026 728 KG110 492.0 48 4 0 1 0 3 9 95PA0080027 726 KF111 408.0 60 11 0 13 0 3 27 95PA0080029 731 KH18 323.0 0 0 0 18 29 95PA0080023 730 KI114 307.5 60 20 0 0 5 15 95PA0080033 713 KA113 301.5 60 0 0 0 3652 3652 95PA0080036 703 JX106 337.5 60 0 10 0 38 217 1297 95PA0080037 706 JX106 346.5 60 10 0 11 1297 95PA0080037 705 JX16 346.5 60 0	95PA0080022	741	KM109	444.0	60	2	õ	ō	· Õ	ī	3
95PA0080024 736 KJ109 541.5 60 0 0 0 2 2 95PA0080025 736 KH111 395.5 60 7 0 5 0 2 15 95PA0080026 728 KG110 442.0 48 4 0 1 0 3 9 95PA0080028 731 KH118 323.0 53 3 0 0 0 18 20 95PA0080030 719 KD114 307.5 60 20 0 0 0 57 77 95PA0080032 720 KD111 472.5 61 26 0 9 0 20 55 95PA0080033 716 KB109 504.5 60 0 0 0 3652 3652 95PA0080036 703 JX111 468.5 60 0 0 0 312 2771 95PA0080037 766 JX106 364.5 60 0 0 0 130 1271 95PA0080039 <td>95PA0080023</td> <td>739</td> <td>KL106</td> <td>580.5</td> <td>60</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>· 3</td>	95PA0080023	739	KL106	580.5	60	1	0	1	0	1	· 3
SprAnole0025 74 KH11 395.3 60 7 0 5 0 2 15 SprAnol80027 726 KF111 408.0 60 11 0 13 0 3 27 SprAnol80028 731 KH118 323.0 53 3 0 0 0 18 20 SprAnol80029 730 KG115 347.0 60 14 0 7 0 8 29 SprAnol80030 718 KD114 275.5 60 37 0 1 0 70 10 SprAnol80033 716 KB109 504.5 60 6 0 0 0 3652 3652 SprAnol80035 703 JS106 337.5 60 0 10 0 38 21 SprAnol80035 703 JS106 365.5 60 0 0 130 131 SprAnol800407 723 JS105<	95PA0080024	736	KJ109	541.5	60	0	0	0	0	2	: 2
Sprace Sprace<	95PA0080025	734	KHIII KC110	393.5	6U 48	1	0	5	Ŭ	2	15
5550080028 731 KHI18 323:0 53 3 0 0 0 18 29 95PA0080030 719 KG115 347.0 60 14 0 7 0 8 29 95PA0080030 719 KG115 347.0 60 14 0 7 0 8 29 95PA0080031 718 KD114 307.5 60 20 0 0 0 55 55 55 60 37 0 1 0 70 108 55 55 55 55 60 6 0 3 0 5 15 55 55 55 55 56 0 0 0 0 3652 3652 35 35 56 0 0 0 3 3652 3652 35 35 56 0 0 0 3 362 35 35 35 36 0 0 0 3 32 35 3652 3652 3652 3652 3652 3652 </td <td>95PA0080027</td> <td>726</td> <td>KF111</td> <td>408.0</td> <td>60</td> <td>11</td> <td>ŏ</td> <td>13</td> <td>ő</td> <td>3</td> <td>· 27</td>	95PA0080027	726	KF111	408.0	60	11	ŏ	13	ő	3	· 27
95PA0080029 730 KG115 347.0 60 14 0 7 0 8 29 95PA0080030 718 KD114 307.5 60 20 0 0 0 57 77 95PA0080033 716 KB110 504.5 60 37 0 1 0 70 108 95PA0080033 716 KB110 504.5 60 6 0 3 0 5 15 95PA0080035 703 XS111 468.5 60 4 0 8 0 32 45 95PA0080036 703 XS104 346.5 60 1 0 0 130 121 1297 95PA0080037 706 VH05 271.5 60 0 0 0 1 1 95PA0080047 12 1297 95PA0080047 12 1297 95PA0080047 12 1297 95PA0080047 12 1290.0 60 0 0 0 1 12 129 33 55A0080047 702	95PA0080028	731	KH118	323.0	53	3	ŏ	Ĩõ	ŏ	18	20
95PA0080030 719 KD114 307.5 60 20 0 0 0 57 77 95PA0080031 718 KD114 72.5 61 26 0 9 0 20 55 95PA0080033 716 KB109 504.5 60 6 0 0 0 3652 3652 95PA0080034 713 KA113 301.5 60 0 0 0 3652 3652 95PA0080037 706 JX101 468.5 60 4 0 8 0 32 45 95PA0080037 706 JX106 37.5 60 1 0 0 130 131 95PA0080038 709 JX106 346.5 60 1 0 0 1 1 95PA0080041 729 KE009 335.0 60 0 0 0 1 1 1 95PA0080042 702 JK099 315.5 60 0 0 0 1 1 2 95PA0080044 704 JS109 248.5 60 0 0 1 1238 1240	95PA0080029	730	KG115	347.0	60	14	0	7	0	8	29
95FA0080031 716 KD111 472.5 61 26 0 9 0 70 106 95FA0080032 720 KD111 472.5 61 26 0 9 0 20 55 95FA0080033 716 KB113 301.5 60 0 0 0 3652.3 3652 95FA0080035 708 JX111 468.5 60 4 0 8 0 32 45 95FA0080036 703 JX106 37.5 60 0 0 3 82.1 1271 1297 95FA0080038 709 JX106 346.5 60 1 0 0 1.30 131 95FA0080040 723 KE104 320.5 60 0 0 0 1 1 1 95FA0080040 722 KE098 354.5 60 0 0 0 1 1 1 95FA0080043 701 JX109 260.6 0 0 1 1 28 240 95FA0080044 704 JX109 245.5 60 0 0 1 12.28 1240 95FA	95PA0080030	719	KD114	307.5	60 60	20	0	0	0	57	100
DSFA0030033 T12 KB109 S04.5 G0 G	95PA0080031	720	KD111	209.5	61	26	0	a T	0	20	108
95PA0080034 713 KAI13 301.5 60 0 0 0 3652 3652 95PA0080035 708 JX111 468.5 60 4 0 8 0 32 45 95PA0080036 703 JS106 337.5 60 0 0 0 3 8 21 95PA0080037 706 JV105 271.5 60 23 0 0 1201 1297 95PA0080039 717 KB104 320.5 60 0 0 0 1 1 95PA0080041 729 KG099 235.0 49 0 0 0 1 1 95PA0280044 704 JS101 290.0 60 0 0 1 3 29 33 95PA0280044 701 JR098 315.5 60 0 0 1 362 629 93 95PA0280047 701 JR095 248.5 60 0 0 1 362 629 93 95PA0280047<	95PA0080033	716	KB109	504.5	60	20	ŏ	3	ŏ	20	15
95PA0080035 708 JX111 468.5 60 4 0 8 0 32 45 95PA0080037 706 JV105 271.5 60 23 0 0 3 1271 1297 95PA0080037 707 JV105 271.5 60 23 0 0 130 131 95PA0080037 707 KB104 320.5 60 0 0 0 130 131 95PA0080040 723 KF102 336.0 60 0 0 0 1 1 95PA0080041 722 KE098 354.5 60 0 0 0 1 1 95PA0080042 722 KE098 354.5 60 0 0 1 1 329 33 95PA0080044 704 JS101 290.0 60 0 0 1 362 629 933 95PA0080047 701 JR098 315.5 60 0 0 1 362 629 933 95PA0080047 710 JX100	95PA0080034	713	KA113	301.5	60	Ó	0	Ō	ō	3652	3652
95PA0080037 706 JS106 337.5 60 0 10 0 3 8 21 95PA0080037 706 JV105 271.5 60 23 0 0 31271 1297 95PA0080038 709 JX106 346.5 60 1 0 0 130 131 95PA0080040 723 KF102 336.0 60 0 0 0 1 1 95PA0080041 723 KE099 235.0 49 0 0 0 1 1 95PA08080042 722 KE098 354.5 60 0 0 0 1 1 95PA08080044 701 JZ097 278.5 60 0 0 1 329 33 95PA08080044 701 JZ096 243.5 60 0 0 1 1238 1240 95PA0800047 701 JZ095 248.5 60 0 0 1 1238 1240 95PA0080047 701 JZ103 266.5 60 0 <t< td=""><td>95PA0080035</td><td>708</td><td>JX111</td><td>468.5</td><td>60</td><td>4</td><td>0</td><td>8</td><td>0</td><td>32</td><td>45</td></t<>	95PA0080035	708	JX111	468.5	60	4	0	8	0	32	45
95FA0080037 706 07103 271.3 60 23 0 0 3 1211 1297 95FA0080038 709 JX106 346.5 60 1 0 0 0 130 95FA0080039 717 KB104 320.5 60 0 0 0 1 1 95FA0080040 723 KF102 336.0 60 0 0 0 1 1 95FA0080041 729 KG099 235.0 49 0 0 0 1 1 95FA0080044 704 JS101 290.0 60 0 0 1 1 29 33 95FA0080044 704 JS101 290.0 60 0 0 1 329 33 95FA0080046 705 JS096 243.5 60 0 0 1 362 629 993 95FA0080047 701 JP095 248.5 60 0 0 1 362 629 993 95FA0080047 711 JN090 212.5 <td>95PA0080036</td> <td>703</td> <td>JS106</td> <td>337.5</td> <td>60</td> <td>22</td> <td>10</td> <td>0</td> <td>3</td> <td>1071</td> <td>21</td>	95PA0080036	703	JS106	337.5	60	22	10	0	3	1071	21
DSFA0080039 717 KB104 320.5 60 0 0 4 0 1 55 SPSPA0080040723 KF102 336.0 60 0 0 0 1 1 SPSPA0080041723 KF102 336.0 60 0 0 0 1 1 SPSPA080041729 KE098 354.5 60 0 0 0 1 1 SPSPA080043711 JZ097278.5 60 0 0 0 1 1 SPSPA080044704 JS107278.5 60 0 0 1 3 29 33 SPA080044701 JS096243.5 60 0 0 1 362 629 933 SPA0080047701 JP095248.5 60 0 0 1 362 629 933 SPA0080051752 JZ103 266.5 60 2 0 3 1248 1253 SPA080052 754 JV106 315.0 30 1 0 1 1 336 SPA0080055 757	95PA0080037	706	JV105	346 5	60 60	23	0	0	3	1271	1297
95PA0080040 723 KF102 336.0 60 0 0 0 1 1 95PA0080041 722 KE098 354.5 60 0 0 0 1 1 95PA0080042 722 KE098 354.5 60 0 0 0 1 1 95PA0080043 711 JZ097 278.5 60 0 0 3 13 255 271 95PA0080044 704 JS101 290.0 60 0 0 1 1238 1240 95PA0080045 705 JS096 243.5 60 0 0 1 329 33 95PA0080047 701 JP095 248.5 60 0 0 1 362 629 933 95PA0080047 701 JN000 212.5 60 0 0 1 212.8 60 66 68 95PA0080051 753 JT103 264.5 60 0 1 216 216 216 216 216 216 216 </td <td>95PA0080039</td> <td>717</td> <td>KB104</td> <td>320.5</td> <td>60</td> <td>ō</td> <td>ŏ</td> <td>4</td> <td>ŏ</td> <td>130</td> <td>5</td>	95PA0080039	717	KB104	320.5	60	ō	ŏ	4	ŏ	130	5
95PA0080041 729 KG099 235.0 49 0 0 0 0 1 1 95PA0080042 722 KE098 354.5 60 0 0 0 1 1 95PA0080043 711 JZ097 278.5 60 0 0 3 13 255 271 95PA0080044 704 JS101 290.0 60 0 0 1 3 29 33 95PA0080045 705 JS096 243.5 60 0 0 1 1238 1240 95PA0080047 701 JP095 248.5 60 0 0 1 362 629 933 95PA0080047 701 JX090 212.5 60 0 0 1 37 7 95PA0080050 752 JZ103 266.5 60 2 0 0 1 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 <t< td=""><td>95PA0080040</td><td>723</td><td>KF102</td><td>336.0</td><td>60</td><td>0</td><td>Ő</td><td>0</td><td>ō</td><td>1</td><td>ī</td></t<>	95PA0080040	723	KF102	336.0	60	0	Ő	0	ō	1	ī
95PA0080042 722 KE098 354.5 60 0 0 0 1 1 95PA0080043 711 JZ097 278.5 60 0 0 3 13 255 271 95PA0080044 704 JS101 290.0 60 0 0 1 3 29 33 95PA0080045 702 JR098 315.5 60 0 0 1 3 29 33 95PA0080046 705 JS096 243.5 60 0 0 1 362 629 933 95PA0080047 701 JP095 248.5 60 0 0 1 362 629 933 95PA0080047 701 JX100 326.0 60 0 0 2 1 3 7 95PA0080050 752 JZ103 266.5 60 2 0 0 31248 1253 95PA0080052 754 JV107 369.0 60 0 0 1 1 36 340 95PA0080053 755 JV107 369.0 60	95PA0080041	729	KG099	235.0	49	0	0	0	0	1	1
95PA0080044 704 JS101 2007 276.3 60 0 0 3 13 255 271 95PA0080044 705 JS096 243.5 60 0 0 1 3 29 33 95PA0080047 701 JP095 248.5 60 0 0 1 362 629 933 95PA0080048 751 JN090 212.5 60 0 0 1 362 629 933 95PA0080048 751 JN090 212.5 60 0 0 1 362 629 933 95PA0080048 751 JN090 212.5 60 0 0 2 1 3 7 95PA0080050 752 JZ103 266.5 60 2 0 0 3 1248 1253 95PA0080051 753 JT103 264.5 60 0 0 1 1 336 340 95PA0080052 754 JV106 315.0 30 1 0 1 27 27 95PA0080057 759 KE112 367.5 60 8 0 2 0 3 13	95PA0080042	722	KE098	354.5	60 60	0	0	0	0	1	1
95PA0080045 702 JR098 315.5 60 0 1 3 29 33 95PA0080046 705 JS096 243.5 60 0 0 1 1238 1240 95PA0080047 701 JP095 248.5 60 0 0 1 362 629 993 95PA0080047 701 JX100 326.0 60 0 0 2 1 3 7 95PA0080051 752 JZ103 266.5 60 2 0 0 3 1248 1253 95PA0080051 753 JT103 264.5 60 0 0 1 1 336 340 95PA0080052 754 JV106 315.0 30 1 0 1 1 336 340 95PA0080054 756 KB111 426.0 60 10 0 6 5 20 3 13 95PA0080056 758 KE107 432.0 60 0 0 0 102 103	95PA0080043	704	JS101	290.0	60 60	0	0	् २	13	255	271
95PA0080046 705 JS096 243.5 60 0 0 1 1238 1240 95PA0080047 701 JP095 248.5 60 0 0 1 362 629 993 95PA0080048 751 JN090 212.5 60 0 0 2 1 3 7 95PA0080050 752 JZ103 266.5 60 2 0 0 3 1248 1253 95PA0080052 754 JV106 315.0 30 1 0 1 1 336 340 95PA0080053 755 JV107 369.0 60 0 0 1 27 27 95PA0080054 756 KB111 426.0 60 10 0 6 0 5 20 95PA0080055 757 KE107 432.0 60 35 0 8 0 5 48 95PA0080058 760 KH114 265.0 60 0 0 102 103 95PA0080	95PA0080045	702	JR098	315.5	60	ō	· Õ	ĭ	3	29	33
95PA0080047 701 JP095 248.5 60 0 0 1 362 629 993 95PA0080048 751 JN090 212.5 60 0 0 0 8 60 68 95PA0080050 752 JZ103 266.5 60 2 0 0 3 1248 1253 95PA0080051 753 JT103 264.5 60 0 0 0 1 1 336 340 95PA0080052 754 JV106 315.0 30 1 0 1 1 336 340 95PA0080053 755 JV107 369.0 60 10 0 6 0 5 20 95PA0080054 756 KB111 426.0 60 10 0 6 0 5 20 95PA0080055 757 KE112 367.5 60 8 0 5 48 9 95 3 3 3 95 48 0 0 102 103 3 <	95PA0080046	705	JS096	243.5	60	0	0	· 0	1	1238	1240
95PA0080048 751 JN090 212.5 60 0 0 0 8 60 68 95PA0080049 710 JX100 326.0 60 0 0 2 1 3 7 95PA0080050 752 JZ103 266.5 60 2 0 0 1 216 216 95PA0080051 753 JT103 264.5 60 0 0 0 1 216 216 95PA0080052 754 JV106 315.0 30 1 0 1 1 336 340 95PA0080053 755 JV107 369.0 60 0 0 0 1 27 27 95PA0080055 757 KE112 367.5 60 8 0 2 0 3 13 95PA0080057 759 KE107 432.0 60 0 0 1 32 17 95PA0080057 759 KE117 307.5 60 36 0 0 14 50	95PA0080047	701	JP095	248.5	60	0	0	1	362	629	993
95PA0080050 752 JZ103 266.5 60 2 0 0 3 1248 1253 95PA0080051 753 JT103 264.5 60 0 0 0 1 216 216 95PA0080052 754 JV106 315.0 30 1 0 1 1 336 340 95PA0080053 755 JV107 369.0 60 0 0 0 1 27 27 95PA0080054 756 KB111 426.0 60 10 0 6 0 5 20 95PA0080055 757 KE112 367.5 60 8 0 2 0 1 313 95PA0080057 759 KE107 432.0 60 0 0 0 102 103 95PA0080059 761 KG113 322.0 60 84 0 0 14 50 95PA0080061 763 KE116 318.0 60 31 0 0 4 35	95PA0080048	751	JN090 TV100	326 0	60 60	0	0	0	8 1	60 2	68
95PA0080051 753 JT103 264.5 60 0 0 1 216 216 95PA0080052 754 JV106 315.0 30 1 0 1 1 336 340 95PA0080053 755 JV107 369.0 60 0 0 0 1 27 27 95PA0080054 756 KB111 426.0 60 10 0 6 0 5 20 95PA0080055 757 KE112 367.5 60 8 0 2 0 3 13 95PA0080057 759 KE107 432.0 60 0 0 0 102 103 95PA0080058 760 KH114 265.0 60 0 0 1 32 117 95PA0080069 761 KG113 322.0 60 84 0 0 14 50 95PA0080060 762 KF115 307.5 60 36 0 0 4 35 95PA0080062 764 </td <td>95PA0080049</td> <td>752</td> <td>JZ103</td> <td>266.5</td> <td>60</td> <td>2</td> <td>0</td> <td>0</td> <td>3</td> <td>1248</td> <td>1253</td>	95PA0080049	752	JZ103	266.5	60	2	0	0	3	1248	1253
95PA0080052 754 JV106 315.0 30 1 0 1 1 336 340 95PA0080053 755 JV107 369.0 60 0 0 0 1 27 27 95PA0080054 756 KB111 426.0 60 10 0 6 0 5 20 95PA0080055 757 KE112 367.5 60 8 0 2 0 3 13 95PA0080056 758 KE110 492.0 60 35 0 8 0 5 48 95PA0080057 759 KE107 432.0 60 0 0 1 12 13 95PA0080059 761 KG113 322.0 60 84 0 0 14 50 95PA0080060 762 KF115 307.5 60 31 0 0 4 35 95PA0080061 763 KE116 318.0 60 15 0 0 14 50 95PA0080062	95PA0080051	753	JT103	264.5	60	ō	õ	Õ	ĩ	216	216
95PA0080053 755 JV107 369.0 60 0 0 0 1 27 27 95PA0080054 756 KB111 426.0 60 10 0 6 0 5 20 95PA0080055 757 KE112 367.5 60 8 0 2 0 3 13 95PA0080056 758 KE110 492.0 60 35 0 8 0 5 48 95PA0080057 759 KE107 432.0 60 0 0 0 1 32 117 95PA0080059 761 KG113 322.0 60 84 0 0 1 32 117 95PA0080060 762 KF115 307.5 60 36 0 0 0 14 50 95PA0080062 764 KE118 330.0 60 15 0 0 0 14 50 95PA0080063 765 KG113 326.0 60 56 1 0 17 74<	95PA0080052	754	JV106	315.0	30	1	0	1	1	336	340
95PA0080054 756 KB111 426.0 60 10 0 6 0 5 20 95PA0080055 757 KE112 367.5 60 8 0 2 0 3 13 95PA0080056 758 KE110 492.0 60 35 0 8 0 5 48 95PA0080057 759 KE107 432.0 60 0 0 2 0 1 33 95PA0080058 760 KH114 265.0 60 0 0 0 102 103 95PA0080059 761 KG113 322.0 60 84 0 0 1 32 117 95PA0080061 763 KE116 318.0 60 31 0 0 0 4 35 95PA0080062 764 KE118 330.0 60 15 0 0 17 74 95PA0080064 766 KF113 284.5 60 18 0 1 1 16 36	95PA0080053	755	JV107	369.0	60	0	0	0	1	27	27
95PA0080055 758 KE112 492.0 60 35 0 2 0 1 3 95PA0080057 759 KE107 432.0 60 0 0 2 0 1 3 95PA0080057 759 KE107 432.0 60 0 0 0 102 103 95PA0080059 761 KG113 322.0 60 84 0 0 1 32 117 95PA0080060 762 KF115 307.5 60 36 0 0 14 50 95PA0080061 763 KE116 318.0 60 31 0 0 4 35 95PA0080062 764 KE118 330.0 60 15 0 0 17 74 95PA0080063 765 KG113 326.0 60 56 0 1 0 17 74 95PA0080064 766 KF113 284.5 60 18 0 1 1 16 36 95PA0080067	95PA0080054	750	KBIII KE112	420.0	60 60	8 10	0	5	0	5	20
95PA0080057 759 KE107 432.0 60 0 0 2 0 1 3 95PA0080058 760 KH114 265.0 60 0 0 0 102 103 95PA0080059 761 KG113 322.0 60 84 0 0 1 32 117 95PA0080060 762 KF115 307.5 60 36 0 0 0 14 50 95PA0080061 763 KE116 318.0 60 31 0 0 0 4 35 95PA0080062 764 KE118 330.0 60 15 0 0 0 17 74 95PA0080063 765 KG113 326.0 60 56 0 1 0 17 74 95PA0080064 766 KF113 284.5 60 18 0 1 1 16 36 95PA0080067 769 KF114 325.0 60 302 1 1 1 27	95PA0080056	758	KE110	492.0	60	35	õ	8	ő	5	48
95PA0080058 760 KH114 265.0 60 0 0 0 102 103 95PA0080059 761 KG113 322.0 60 84 0 0 1 32 117 95PA0080060 762 KF115 307.5 60 36 0 0 14 50 95PA0080061 763 KE116 318.0 60 31 0 0 4 35 95PA0080062 764 KE118 330.0 60 15 0 0 0 5 19 95PA0080063 765 KG113 326.0 60 56 0 1 0 17 74 95PA0080064 766 KF113 284.5 60 18 0 1 1 16 36 95PA0080065 767 KG116 352.0 60 41 0 7 0 53 101 95PA0080067 769 KF114 325.0 60 302 1 1 1 27 331	95PA0080057	759	KE107	432.0	60	Ō	Ō	2	ō	ĩ	3
95PA0080059 761 KG113 322.0 60 84 0 0 1 32 117 95PA0080060 762 KF115 307.5 60 36 0 0 0 14 50 95PA0080061 763 KE116 318.0 60 31 0 0 0 4 35 95PA0080062 764 KE118 330.0 60 15 0 0 0 5 19 95PA0080063 765 KG113 326.0 60 56 0 1 0 17 74 95PA0080063 766 KF113 284.5 60 18 0 1 1 16 36 95PA0080065 767 KG116 352.0 60 41 0 7 0 53 101 95PA0080066 768 KF115 331.0 60 44 1 4 8 51 108 95PA0080067 769 KF114 325.0 60 302 1 1 1 <t< td=""><td>95PA0080058</td><td>760</td><td>KH114</td><td>265.0</td><td>60</td><td>0</td><td>0</td><td>0</td><td>0</td><td>102</td><td>103</td></t<>	95PA0080058	760	KH114	265.0	60	0	0	0	0	102	103
95FA0080060 762 KF115 307.5 60 36 0 0 0 14 50 95FA0080061 763 KE116 318.0 60 31 0 0 0 4 35 95FA0080062 764 KE118 330.0 60 15 0 0 0 5 19 95FA0080063 765 KG113 326.0 60 56 0 1 0 17 74 95FA0080063 765 KG113 326.0 60 56 0 1 0 17 74 95FA0080065 767 KG116 352.0 60 41 0 7 0 53 101 95FA0080066 768 KF113 331.0 60 44 1 4 8 51 108 95FA0080067 769 KF114 325.0 60 302 1 1 1 27 331 95FA0080068 770 KE120 313.0 61 23 0 0 331	95PA0080059	761	KG113	322.0	60 60	84	0	0	1	32	117
95PA0080062 763 KE118 330.0 60 15 0 0 0 5 19 95PA0080062 765 KG113 326.0 60 15 0 0 0 17 74 95PA0080064 765 KG113 326.0 60 56 0 1 0 17 74 95PA0080064 766 KF113 284.5 60 18 0 1 1 16 36 95PA0080065 767 KG116 352.0 60 41 0 7 0 53 101 95PA0080066 768 KF115 331.0 60 44 1 4 8 51 108 95PA0080067 769 KF114 325.0 60 302 1 1 1 27 331 95PA0080068 770 KE120 313.0 61 23 0 0 0 331 334 95PA0080069 771 KD120 348.0 60 2 0 0 35	95PA0080060 95PA0080061	762	KE115 KE116	307.5	60 60	30	0	0	0	14	50
95PA0080063 765 KG113 326.0 60 56 0 1 0 17 74 95PA0080064 766 KF113 284.5 60 18 0 1 1 16 36 95PA0080065 767 KG116 352.0 60 41 0 7 0 53 101 95PA0080065 767 KG116 352.0 60 41 0 7 0 53 101 95PA0080066 768 KF115 331.0 60 44 1 4 8 51 108 95PA0080067 769 KF114 325.0 60 302 1 1 1 27 331 95PA0080068 770 KE120 313.0 61 23 0 0 0 331 334 95PA0080069 771 KD120 348.0 60 2 0 0 35 38 95PA0080070 772 KD119 318.0 60 2 0 0 35 38	95PA0080062	764	KE118	330.0	60	15	ŏ	ŏ	ő	5	35 19
95PA0080064 766 KF113 284.5 60 18 0 1 1 16 36 95PA0080065 767 KG116 352.0 60 41 0 7 0 53 101 95PA0080065 767 KG116 352.0 60 41 0 7 0 53 101 95PA0080066 768 KF115 331.0 60 44 1 4 8 51 108 95PA0080067 769 KF114 325.0 60 302 1 1 1 27 331 95PA0080068 770 KE120 313.0 61 23 0 0 0 49 72 95PA0080069 771 KD120 348.0 60 3 0 0 0 331 334 95PA0080070 772 KD119 318.0 60 2 0 0 0 35 38 95PA0080071 773 KB18 293.0 60 2 0 0 989	95PA0080063	765	KG113	326.0	60	56	õ	ĩ	ŏ	17	74
95PA0080065 767 KG116 352.0 60 41 0 7 0 53 101 95PA0080066 768 KF115 331.0 60 44 1 4 8 51 108 95PA0080067 769 KF114 325.0 60 302 1 1 1 27 331 95PA0080068 770 KE120 313.0 61 23 0 0 0 49 72 95PA0080069 771 KD120 348.0 60 3 0 0 0 331 334 95PA0080070 772 KD119 318.0 60 2 0 0 35 38 95PA0080071 773 KB18 293.0 60 2 0 0 989 991 95PA0080072 774 KE119 329.5 60 1 0 2 0 37 40	95PA0080064	766	KF113	284.5	60	18	0	1	i	16	36
95FA0080067 769 KF115 331.0 60 44 1 4 8 51 108 95FA0080067 769 KF114 325.0 60 302 1 1 1 27 331 95FA0080068 770 KE120 313.0 61 23 0 0 0 49 72 95FA0080069 771 KD120 348.0 60 3 0 0 0 331 334 95FA0080070 772 KD119 318.0 60 2 0 0 0 35 38 95FA0080071 773 KB18 293.0 60 2 0 0 989 991 95FA0080072 774 KE119 329.5 60 1 0 2 0 37 40	95PA0080065	767	KG116	352.0	60 60	41	0	7	Ő	53	101
95PA0080068 770 KE120 313.0 61 23 0 0 49 72 95PA0080069 771 KD120 348.0 60 3 0 0 0 331 334 95PA0080070 772 KD119 318.0 60 2 0 0 0 355 38 95PA0080071 773 KB118 293.0 60 2 0 0 989 991 95PA0080072 774 KE119 329.5 60 1 0 2 0 37 40	95PA0080066	769	KF114	325.0	60	302	1 1	4	ช า	51 クマ	108
95PA0080069 771 KD120 348.0 60 3 0 0 0 331 334 95PA0080070 772 KD119 318.0 60 2 0 0 0 35 38 95PA0080071 773 KB118 293.0 60 2 0 0 0 989 991 95PA0080072 774 KE119 329.5 60 1 0 2 0 37 40	95PA0080068	770	KE120	313.0	61	23	ō	0	ō	49	331 72
95PA0080070 772 KD119 318.0 60 2 0 0 35 38 95PA0080071 773 KB118 293.0 60 2 0 0 989 991 95PA0080072 774 KE119 329.5 60 1 0 2 0 37 40	95PA0080069	771	KD120	348.0	60	3	Õ	ō,	ŏ	331	334
95PA0080072 774 KE119 329.5 60 1 0 2 0 37 40	95PA0080070	772	KD119	318.0	60	2	0	0	0	35	38
	95PA0080071	774	KE119	293.0	60 60	2 1	0	0	0	989 77	991 40

Table	2.	Number	of	shri	mp (t	housa	nds)	per	length	gro	bup	(CL)	in
	tota	l bioma	ass	estim	ate	north	of	65°N	, based	on	poo]	ling	of
	samp	les wei	ighte	ed by	catc	h and	str	atum	area.			_	

CL	Males	Prim.fem.	Mul.fem.	Total
10.0 10.5 11.0 11.5 12.0 13.5 14.0 14.5 15.0 16.5 17.0 18.0 19.5 20.5 21.0 20.5 22.5 24.5 25.0 20.5 22.5 24.5 25.5 26.5 29.5 30.5 31.5 32.5 33.5 34.5 35.5 36.5 36.5 Total	$\begin{array}{c} 21\\ 41\\ 13\\ 66\\ 101\\ 279\\ 258\\ 288\\ 358\\ 337\\ 890\\ 996\\ 1119\\ 2102\\ 2165\\ 2409\\ 2827\\ 5358\\ 7986\\ 9069\\ 13109\\ 15243\\ 15914\\ 18346\\ 18140\\ 17185\\ 18708\\ 22623\\ 22157\\ 21886\\ 23410\\ 19249\\ 18456\\ 14749\\ 8578\\ 5802\\ 2580\\ 1840\\ 557\\ 296\\ 45\\ 21\\ 0\\ 33\\ 30\\ 0\\ 16\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{c} 21\\ 41\\ 13\\ 66\\ 101\\ 279\\ 258\\ 288\\ 358\\ 337\\ 890\\ 996\\ 1119\\ 2155\\ 2173\\ 2409\\ 2827\\ 5586\\ 8003\\ 9123\\ 13174\\ 15302\\ 16236\\ 18593\\ 13174\\ 15302\\ 16236\\ 18593\\ 13174\\ 15302\\ 16236\\ 24064\\ 24454\\ 24066\\ 26519\\ 22136\\ 22608\\ 20068\\ 16276\\ 14274\\ 17873\\ 20067\\ 24064\\ 24454\\ 24066\\ 26519\\ 22136\\ 22608\\ 20068\\ 16276\\ 14274\\ 11711\\ 13842\\ 11115\\ 8872\\ 8409\\ 6439\\ 4894\\ 3505\\ 2175\\ 2015\\ 743\\ 450\\ 174\\ 131\\ 43\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$

ъ.

Figure 1. Map of the survey area (north of 65°N) and the area of the preceeding survey (south of 65°N) in Denmark Strait, with sampling sites and catch of shrimp (per km²). Strata with commercial fishery south of 65°N are indicated.

Figure 2. Sampling sites and calculated shrimp densities from the first phase of the survey.

Figure 3. Calculated shrimp densities from the total survey. Sampling sites of the second phase are shown as filled rectangles.

- 9 -

- 10 -

Figure 4. Numbers of shrimp by length group (CL) in the traditional survey area (north of 65°N) by year, based on pooling af samples weighted by catch and stratum area.

Figure 5. Numbers of shrimp by length group (CL) in strata south of 65°N in 1995, based on pooling of samples weighted by catch and stratum area (note different scales on Y-axes).

				212	~		$\frac{1}{2}$	~~~			
68°NI				my	RE S	N	Dra.				
00 11					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	2	3	4	5	
				ی کی		0.5	-	. 0.0	0.1	J	
			۰ د			0.1		0.0	0.0	ier v	
			2			0.6		0.1	0.2	ξ. 1. ¹	
			~~2		6	7	8	9	10	11	
			Jer 1		1.8	2.9			1.8		
			38		0.4	0.8 37			1.3]
67°N			SPr		2.2	3.7					
			2	12	13	14	15	16	17	18	
			5	0.0	0.6	34.7	143.5	43.7	5.4	0.8	
		SUF		0.1	0.2	39.1	33.7	36.4 80.1	8.5	1.0	
		<u> </u>									
	S A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19	20	21	22	23	24	25	26	
	55	<i>°</i>		2.8		36.8	16.3	2.5			
66°NI	es)			3.2		40.9	31.5/	5.8			
	5-1	07			20						
		21	28	29	30	120	32	33			
1		0.1	0.4	0.0	4.0	2.0		0.4			ļ
-		0.2	0.6	- 0.1	10.6	15.2		0.4		1	
	34	35	36				-/				
	0.1	0.5	0.0					ĺ			
	0.0	0.1	0.0				/				
65°N	0.1	0.6	0.0				V				
36	W	34	W	32	W	30	W	28	W	26	W
				1		/					
L	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	I	<u> </u>	L	<u>ا</u>	<u> </u>

Figure 6. Calculated numbers of shrimp (males, females and total, in millions) per stratum north of 65°N in 1995.

Figure 7. Density (in numbers) of male shrimp north of 65°N, calculated by the Spline Survey Designer based on shrimp samples from this area.

Figure 8. Density (in numbers) of female shrimp north of 65°N, calculated by the Spline Survey Designer based on shrimp samples from this area.