SCIENTIFIC COUNCIL MEETING - JUNE 1995

Portuguese Research Report for 1994
by
A. M. Ávila de Melo, R. Alpoim, M. L. Godinho, and E. Santos

Instituto Portugues de Investigaçao Maritima
Av. Brasilia 1400 Lisboa, Portugal

A. Status of the fisheries

The Portuguese nominal catches proceeding from NAFO Regulatory Area peaked in 1991 at 75,314 ton after a continuous increase since 1988. Since then nominal catches dropped to half of that level in 1992 and 1993 and reached a recent minimum in 1994 with 30,156 tons recorded. Most of this figure (76%) was caught by trawl in Flemish Cap, the only area where nominal catches increased from the previous year, due to an increase of the redfish catches, together with the increase of unquoted species such as Greenland halibut (for the time being), Roughhead grenadier, wolffishes and skates, corresponding to more than 60% of the overall trawl catch in Div. 3M (Table I) .

Nominal trawl catches of traditional species in Div. 3L continued to be mull (cod) or almost null (redfish and American plaice) in 1994, while the Greenland halibut catches declined to one third of the 1993 value. This is justified by the moratorium for cod in force since July 1992, so far the most attractive species for the Portuguese trawlers, which in turn pushed the fleet to the southern areas of the Grand Bank and to Flemish Cap.

In Div. 3N trawl catches also declined to one third of the 1993 level, being in 1994 in the same order of magnitude of the nominal catches reported for Div. 30, that also declined but to a lesser extent. Nevertheless in this last division catches were dominated by redfish (more than 90%), while in Div. 3N Greenland halibut represented almost 50% of the overall catch, followed by skates (37%).

Nominal catches of gillnets were stabilized between 1993 and 1994 around 1,950 ton, representing about 6% of the total. Almost 80% of this value was taken in Div. 3M, mainly composed by cod, Greenland halibut and redfish catches (Table I). Red hake continues to be the most important target species for gillneters outside the Flemish Cap.

Although the Portuguese fleet operating in the NAFO Regulatory Area in 1994 was the same as in 1993 (12 trawlers and 4 gillneters), due to quota restrictions trawl fishing effort was reduced in 1994 by 40% while the gillnet effort was only 10% less than in 1993 (Table II-A). Based in the logbook information of two trawlers and two gillneters operating in the Regulatory Area throughout the year, Flemish Cap was the major ground for the Portuguese fleets and 3 M cod the major target species. Nevertheless 25% and 30% of the directed effort of these trawlers was still spent in divisions 30 and 3 N , mainly fishing for redfish and Greenland halibut respectively, while for the monitorized gillneters only 12% of their fishing effort was spent outside the Flemish Cap, fishing for red hake in Div. 30 (Table II-B, Fig.1). Also as regards trawl fishing strategy in 1994 an increase of the effort directed to American plaice is recorded in Div. 3N and, for the first time since 1988, in Div. 30. Fishing for American plaice in both divisions represented in 1994 about 10% of the fishing effort for the trawlers surveyed, while the mean proportion for the 1989-92 period was at 5%.

B. Portuguese Annual Sampling Program

1. Biological Sampling

During 1994 biological sampling was obtained from one stern trawl fishing in all divisions from January to June and another one fishing in Div. 3M in December. One gillneter was also sampled from May to July in divisions 3 M and 30 , and throughout the last quarter of the year in Flemish Cap. In all vessels biological sampling was conducted for the most abundant species in each haul, following the NAFO sampling recommendations.

Cod, American plaice, Greenland halibut and redfish (S. mentella) were the trawl catches sampled in the nose and tail of the Bank during the first half of the year. By the end of June cod and redfish (S. marinus and S. mentella) trawl catches where the only ones sampled in Flemish Cap. The fishing strategy changed since then and until the end of 1994 the Flemish Cap was the major ground for the Portuguese fleets, namely due to the attractive catch rates of cod. For trawl, 3M cod catches were sampled only in December but for gillnets cod, redfish (S. mentella) and Greenland halibut catches were sampled in Flemish Cap from September till December (Table III). As in former years the redfish catches were dominated by S. mentella in all divisions and for both gears, but in the 3 M trawl fishery both S. mentella and S. marinus were caught and sampled in June.

Information on age composition for the 3 M redfish catches were obtained by using the S.mentella and S. marinus age length keys of the June/July 94 EC survey. Besides the species usually aged, otolith reading was also carried out for Greenland halibut and so the age composition of the 3 N catches for this species are presented for the first time in this report.

Length and age structure of the catches as well as respective mean weights and mean lengths by division and gear are presented from tables VIII to XVII and figures 6 to 31 .

2. Catch and effort sampling.

The catch and effort data series for Portuguese trawl and gillnet fisheries on NAFO Regulatory Area have been reconstructed through the revision of skipper logbooks, kindly supplied by their owners. Data from 8 trawlers and 5 gillneters have been made available and, although not all of them covering the same period of time, for each one of the years from 1988 to 1994, at least a couple of logbooks for each gear were revised. With the exception of one year (1988), for one trawler, where the existing information regards the overall catches (by species) and the corresponding fishing effort by trip, all the other information has been recorded and put on file on a daily basis as regards round weight of the catch by species and on a tow basis as regards fishing effort, positions and depths. The conversion factors used in each vessel were also used to convert its processed landings in catches.

Effort data obtained through the revision of the 1994 logbooks a vailable were processed in order to convert the 1994 portuguese effort in fishing days, reported on the 1994 Portuguese. STATLANT 21-B, into NAFO standard effort units (Table II-A). The daily catch and effort data from the 1994 logbooks were also used to estimate the direct effort and cpue for each of the target species/stocks, as well as the main by-catch species and depth range of the different fisheries, on a monthly basis. Data regarding directed effort and catch rates are presented in Table II-B, Fig. 1 and Fig. 2 and Table IV-A to VII-C, Fig. 3 to 5.

The catch rates presented and discussed in the next section are standardized trawl cpue's for each stock from 1988 onwards, corrected by an additive model for the month and division of each monthly observation. In this analysis, for each of the stocks, any observation corresponding to a month and a trawler with less than 10 hours of directed effort on that stock was rejected. The mean values of the corrected catch rates for each stock considered are presented in tables V and figures 3 to 5 , with the associated standard errors $(+/-2$ standard errors in the figures) and coefficients of variation. This model is fully described in a previous study of the Portuguese cod fisheries in divisions 3 N and 3 O (Ávila de Melo and Alpoim, 1994).

3. Comments on catch and effort data (based on the vessels sampled)

3.1. Cod in Division 3M

On Div. 3M cod trawl catch rates increased to 0.750 ton/h in 1989 (Table V-A; Fig.3), when the trawl directed effort to cod was concentrated on this division and the strong 1985 year-class dominated the catches, along with the 1986 and 1984 ones. In 1990 trawl directed effort to cod started to divert back to Division 3L when in Flemish Cap the 1985 year-class was already overexploited and the 1986 class supported the fishery, though with a catch rate down to 0.566 ton $/ \mathrm{h}$. In 1991 cod trawl fishery almost vanished from 3 M , due to the larger than usual concentrations of cod in Division 3L outside the 200 miles limit until the late spring of that year. The only couple of observations available for that year came from February (1.410 ton/h) and November (0.449 ton $/ \mathrm{h}$) but were too different to be included in the analysis. However the sequence of these values may indicate that the 1986 year-class loosed its strength in the trawlable biomass throughout 1991, and no other strong year-class had yet started to recruit. However since 1992 the catch rates increased steadily, reaching a maximum of 0.943 ton $/ \mathrm{h}$ in 1994. The continuous recruitment of two strong year-classes from 1990 and 1991, during a two years period (1991 and 1992) where the fishing pressure to cod in Division 3M was kept at a relative low level, allowed these two cohorts to growth with a higher survival rate and support the 3 M cod fishery at age 3 with high yields in 1993 and 94.

3.2. Cod in Divisions 3 N and 3 O .

Cod trawl catch rates declined between 1990 and 1992 in Div. 3N, when a minimum of $0.287 \mathrm{ton} / \mathrm{h}$ was reached (no direct trawl effort to cod is recorded in 1988 and 89). This continuous decline was rełated with the low recruitment occurring between 1983 and 1988. However in the beginning of 1993 the strong 1989 year-class had already entered into the trawl fishery, dominating the catches in that year and pushing up the catch rate to a maximum of $0.523 \mathrm{ton} / \mathrm{h}$ for that stock (Table V-A, Fig. 3). Although considered above the average, the 1990 year-class was not big enough to prevent a new decline of the 3 NO cod catch rate in 1994, this time to the former level of 1990 , around the 0.400 ton $/ \mathrm{h}$. Nevertheless the 1989 year-class was still well represented in the 1994 trawl fishery, being still the most abundant age group in Div. 30 where, for the first time since 1988, directed trawl effort to cod was recorded from March to June. In 1994 the cod trawl fishery in the tail of the Bank continued to reach bottoms well bellow what is considered to be the normal depth limits of distribution for this species (Table IV-B).

3.3. Redfish in Div. 3L, 3N and 3O.

The 3 LNO redfish stock, considered as a whole, presents no clear trend on the annual catch rates (when corrected for the month and area of each observation) which, from 1988 to 1994, oscillated between 0.360 ton $/ \mathrm{h}$ and 0.560 ton $/ \mathrm{h}$, with the first and last year of the time period recording the highest catch rates and also the highest variability for this trawl fishery (Table V-B, Fig.4). The results from the disagregated analysis for the two areas (Div. 3L and Div. 3NO, the last one considered as a whole since the majority of the hauls has been made around the border of these two divisions) showed that on Div. 3L catch rates remained rather stable, while directed effort to redfish gradually declined till 1994 when no directed effort was recorded. In Div. 3N0 a steady increase of the catch rates is apparent since 1991 till 1994, along with a progressive southwards shift of the corresponding fishing effort. This pattern is consistent with the increase of the relative abundance of redfish in Div. 3 N given by the Russian survey of 1993.

3.4. Redfish in Div. 3M

Redfish trawl catch rates on Div. 3M followed the same pattern observed on the trawlable biomass indices from the EC survey series on Flemish Cap (Fig. 4-A): a decline from 1989 (0.682 ton $/ \mathrm{h}$) to $1991(0.574$ ton $/ \mathrm{h})$, most probably as an immediate consequence of the unusually high catches observed in 1989-90, followed by a set of values that went up and down from 1992 to 1994 (Table V-B, Fig. 4). Although catch rates over the last 7 years reach a maximum in 1992 and 1994 , those sudden and wide oscillations of this index 1992 onwards can only be attributed to large shifts in the distribution of the Flemish Cap redfish populations within the water column over the last years, with direct impact on the accessibility of the fish to the bottom trawl gear, either from survey or from commercial trawlers. Variability of the standardized catch rates for the most recent years is higher than during the former period, 1988-91.

With a higher mean catch rate ($0.644 \mathrm{ton} / \mathrm{h}$) than the other two neighbour divisions (0.432 ton/h), the Flemish Cap appears as the main ground for trawling to redfish (Table V-E).

3.5. Greenland halibut in Div. 3L and 3N.

When the monthly trawl catch rates for Greenland halibut from the Divisions 3 L and 3 N are lumped together and corrected each for the month and area, a downward trend is observed from a level around 0.400 ton $/ \mathrm{h}$ in 1988-89 to 0.183 ton/h in 1991 (Table V-C, Fig.5). This decline was followed in 1992 by an increase to 0.321 ton/h. Catch rates stabilized in 1993 and 1994 at a lower level, between $0.260-0.270$ ton $/ \mathrm{h}$. This pattern is very similar to the one from the Spanish deepwater Greenland halibut fishery on those divisions from 1990 onwards (Cardenas, pers. comm.). However, looking at the two divisions separately, two distinct patterns emerge. On Div. 3L, more precisely on the deep grounds of the Flemish Pass, where this new fishery was first developed by few Portuguese trawlers in 1988, the Greenland halibut trawl catch rates dropped from values between 0.400-0.450 ton/h observed from 1988 to 1990 to half of that level, in 1991. Despite an anedoctical increase in 1993 to 0.365 ton/h the catch rates for 1992 and 1994 were of the same order of magnitude, $0.250-0.260$ ton $/ \mathrm{h}$, indicating that the abundance of this segment of the stock is in 1991-1994 lower than the one that produced the catch rates for 1988-1990, at the beginning of this new deep sea fishery. In 1988 and 1989 trawl directed effort to Greenland halibut was entirely spent on Div. 3L, but in 1990 the trawl effort directed to Greenland halibut start moving to new deep grounds on Div. 3N. Although in general terms the catch rates in this southern area are poorer than northwards, no obvious trends emerge from the catch rates analyzed, which in turn present low variability within each year.

3.6 American plaice in Div. 3 N and 3 O

No directed fishing on this stock is observed in 1988 and 1989. From 1990 onwards, the
fishery concentrated inn Div. 3N, with only a couple of observations recorded in Div. 30, both for 1994. Catch rates declined significantly from 1990 to 1992 and increased onwards until 1994, being again at a similar level to 1990. Within year variability is relatively low (Table V-G, Fig. $5 \mathrm{~A})$.

4. Comments on length and age composition

4.1 Division 3L

Information from catches in Div. 3L is very scarce due to the cod moratorium since 1992 and refers only to redfish and American plaice, sampled during May.
4.1.1 - For Div. 3L redfish catches some information is available for S. mentella based on a small sample of 619 fish. Data suggest that lengths between $24-30 \mathrm{~cm}$ dominate males while females were mainly composed of lengths between $24-38 \mathrm{~cm}$.

Comparatively to 1993 the mean length and mean weight in the catch increased in 1994 for both sexes. (Table IX-A, Fig.12). No age information is available.
4.1.2. Information on American plaice catches in Div 3L indicate that males were composed of a narrow range of lengths ($30-46 \mathrm{~cm}$), with $32-34 \mathrm{~cm}$ dominant.

Females present a larger range of lengths, between $28-60 \mathrm{~cm}$, with $32-44 \mathrm{~cm}$ clearly dominant (Tab.XI-A, Fig. 26). Compared to 1993 an evident increase of about 8 cm was observed for both sexes for the mean length in the catch, while the respective mean weight doubled. The corresponding age composition (based on a 3LNO age length key) indicates that the 1985 year-class dominated for males and females at age 9 , followed by age 8 (Tab. XVII-A, Fig. 28).

4.2. Division 3M

Biological information on cod $3 M$ is available for March, June and December for trawl and for September, November and December for gillnets. For both gears length and age composition are available.
4.2.1 - Cod trawl catches are represented by a relative narrow range of lengths (Tab.VIII-A, Fig. 6) and ages (Tab. XIII-A, Fig.8). The respective age composition was clearly dominated by the 1991 year-class at age 3, with 39.8 cm mean length. The 1990 year-class (with 4 years and 49.2 cm mean length) that at same age 3 dominates the 1993 catches with 68%, decreased notoriously in 1994 (to $\mathbf{1 8 \%}$) although still being the second more abundant. There was no fish older than 5 years in the trawl catches. Comparatively to 1993 the range of year-classes available to trawl in 1994 is reduced. For the dominant ages a significant increase, both in the mean length and mean weight at age, occurred in 1994.

The gillnet cod catches were dominated by the 1990 year-class at age 4 , with 58 cm mean length, followed by the 1989 and 1988 ones. As for trawl, the mean length and mean weight at age for the year-classes dominant in the portuguese gillnets increased in 1994, compared to 1993. Also the mean weight in the catch increased slightly in 1994, although mean length in the catch decreased 1 cm (Tab. VIII-D, Fig. 6 and Tab.XIV-D, Fig.8).
4.2.2 - Some information on redfish is available for both species S. mentella and S marinus from trawl and for S. mentella from gillnets.

Information on S. mentella from trawl catches based on a very small sample (91 individuals) from March, suggest a mode for males at 26 cm and two modes for females at 22 cm and 27 cm (Tab IX-B, Fig, 15). The respective age composition, derived from the (July) trawl research survey also suggest ages 7 and 8 as dominant (Tab XV-A and B, Fig,17).

Gillnet catches of S. mentella, (sampled in October and November and based on 600 fish measured) were dominated, for both males and females, by a relatively large range of lengths between 31 cm and 45 cm , with a mode at 39 cm (Tab. IX-E, Fig.16).

This length range corresponds to ages older than 11 years for males and females (Tab. XV-C and D, Fig. 18). The information available also suggest that mean length and mean weight in the catch increased from 1993 to 1994 about 1.5 cm . Information on S. marinus from trawl came also from a small sample (626 measured fish) and again suggest that catches were dominated by fish with a large range of lengths, between $26-37 \mathrm{~cm}$ for males and $24-47 \mathrm{~cm}$ for females (Tab. IX-G, Fig.20). Age composition is spread for a large range of ages, with the 12 years old dominant for males and 15 years old for females.
4.2.3.- Information on Greenland halibut is available only for the gillnet catches and is based on
a small sample (666 fish measured). Both males and females were dominated by lengths between 42 cm and 64 cm although females as large as 88 cm were also represented in the catches. Males are better represented between 56 cm and 64 cm and females between 54 cm and 60 cm (Tab. X-B, Fig. 25). There is no information on age composition.

4.3. Division 3 N and 3 O

Biological information is available from trawl for cod, redfish (S. mentella and S. marinus) and American plaice in Div. 3NO and Greenland halibut in Div. 3N. From gillnets there is information for cod, redfish (S. mentella and S. marinus) in Div. 30.
4.3.1 - Cod trawl catches in Div. 3N were mainly composed of lengths between 33 cm and 42 cm (Tab. VIII-B, Fig. 10). The 1990 year-class, that dominated the catches at age 3 in 1993, is still dominant at age 4 followed by age 5 . Ages older than 5 almost disappeared (Tab. XIV-B, Fig. 11).

Compared to 1993, mean length in the catch increased about 6 cm and the respective mean weight increased twice. Mean length and mean weight at age were relatively constant.

Information on cod catches in Div. 30 is based on a small sample either for trawl (507 fish measured) or gillnets (127 fish measured). Data available for trawl suggest that catches were mainly composed by lengths between 39 cm and 65 cm , with two modes at 39 cm and 51 cm (Tab. VIII-C, pag. Fig. 2). The year-class 1989 at age 5, with a mean length at 52.7 cm , was dominant followed by the 1990 at age 4 with 40 cm (Tab. XIV-C, Fig.9). Comparatively to Div. 3 N , the mean length and mean weight at same ages are larger in Div. 30. Also ages older than 5 are better represented in div. 30 trawl cod catches.

Biological information on cod from gillnets in Div 30 came from a very small sample (124 fish measured and only 60 aged). Based on that it is suggested that catches were mainly dominated by lengths between 60 cm to 69 cm (Tab VIII-E, Fig 7), corresponding to the yearclass 1989 at ages 5 (Tab. XIV-E, Fig. 9) . Despite the small number of observations, this sample indicates that this year-class also dominated the gillnet catches in 1994.
4.3.2. - Redfish (S. mentella) from trawl catches were sampled from March to June in Div. 3N and during March and May in Div 30. Only information on length composition is available (respectively in Tab. IX-C, Fig. 13 and Tab.IX-D, Fig. 14). In Div. 3N the bulk of lengths occurred between $22 \mathrm{~cm}-29 \mathrm{~cm}$ for males, with a mode at 26 cm , and between $22 \mathrm{~cm}-35 \mathrm{~cm}$ for female, without a clear modal length.

In Div 30 length composition of catches spreads for a larger range of lengths, dominated by fish between 18 cm and 38 cm for males and $16 \mathrm{~cm}-42 \mathrm{~cm}$ for females.

The mean length and respective mean weight in the catch decreased in both divisions, compared to 1993. Decrease was more evident in Div 3N. Information on S. mentella from gillnets in Div. 30 is based on a sample of 626 fish measured during May. Lengths ranged between 24 cm and 45 cm for males, with predominance of 30 cm and 36 cm and between 23 cm and 46 cm for females, more abundant at 31 cm and 39 cm (Tab. IX - F, fig 19).

The redfish (S. marinus) 30 catches from gillnets were again poorly sampled but suggest a very narrow range of lengths, both for males and females, with two modes at 30 cm and 35 cm for males and without clear modal lengths for females (Tab. IX - H, Fig. 21).
4.3.3 - Information on Greenland halibut is available for trawl catches from Div. 3 N , sampled during March, April and June. Catches were mainly dominated by lengths between $30 \mathrm{~cm}-38$ cm for males, with a mode at 34 cm , and $30 \mathrm{~cm}-46 \mathrm{~cm}$ for females, with a mode at 36 cm . Fishes bigger than 50 cm are scarce (Table X-A, Fig. 24). Mean length in the catch decreased about 10 cm from 1993 to 1994 for both sexes. This decrease in the mean length in the catch can be a consequence of the accessibility of the abundant 1990 year-class, already recruiting to the deep sea fishery in 1994, first detected as being above the average in the 1993 by the canadian survey in Div. 2J and 3KL. In fact age composition, available for the first time for portuguese catches, indicate that the 1990 year-class dominates the male catch at age 4, while in females this yearclass is the second age group represented in the 3 N trawl catches (the first one is age five from the 1989 year-class).
4.3.4 - Biological information relative to American plaice catches is available for trawl in Div. 3 N and 3 O , respectively from April to June and from April to May. Catches in Div. 3 N were mainly composed of lengths between $26 \mathrm{~cm}-42 \mathrm{~cm}$ for males and $26 \mathrm{~cm}-48 \mathrm{~cm}$ for females, with a mode respectively at 32 cm and 36 cm . Although present, females between 50 cm and 64 cm are poorly represented (Tab. XI-B, Fig. 27). For both sexes the 1985 year-class dominated at age 9, followed by the 1986 and 1987 ones, with 8 and 7 years old, respectively (Tab. XVII-C and D, Fig. 29). Mean length in the catch increased about 2 cm in 1994, compared to 1993, but mean length and mean weight at same age continue to decrease in 1994.

Catches in Div. 30 were dominated by a range of lengths between $28 \mathrm{~cm}-38 \mathrm{~cm}$ for males, with a mode at 32 cm , while females were dominated by lengths between $28 \mathrm{~cm}-46 \mathrm{~cm}$, with a clear dominance of the $32 \mathrm{~cm}-36 \mathrm{~cm}$ (Tab.XI-C, Fig. 30).
Like in Div. 3N, age composition was dominated by the 1985 year-class at age 9 followed by the 8 and 7 ones (Tab. XVII-E and F, Fig 31).

5. Others
 Information for red hake from gillnet catches was obtained for Div. 3 O in June (Tab. XII,). Lengths spreads between 45 cm and 79 cm without well defined modal lengths.

Some information roughhead grenadier, Div. 3M, gillnet catches is presented in table XIII. Lengths are referred to total length.

6. References

ÁVILA DE MELO, A. M., and R. ALPOIM. 1994. Portuguese cod fisheries in NAFO Divisions 3N and 3O, 1989-93. NAFO SCR Doc, No. 30, Serial No N2396, 25 p.
Page
TABLE I: Portuguese nominal catches (mt) in NAFO area, 1994 10
TABLE II-A: Portuguese effort in fishing days and fishing hours (trawl) or number of nets (gillnets), in NAFO area in 1994 11
TABLE II-B: Breakdown of the 1994 Portuguese directed effort by species and Division 12
TABLE III: Intensity of sampling during 1994, by gear,species, Division and month 13
TABLE IV-A: Portuguese trawl fishery: cpue and by-catch by month and Division, for 1994 14
TABLE IV-B: Portuguese gillnet fishery: cpue and by-catch by month and Division, for 1994 15
TABLE V-A: Cod trawl catch rates, 1988-94: mean annual cpue's corrected for the month and Division of each observation 15
TABLE V-B: Redfish trawl catch rates, 1988-94: mean annual cpue's corrected for the month and Division of each observation 15
TABLE V-C: Greenland halibut trawI catch rates, 1988-94: mean annual cpue's corrected for the month and Division of each observation 16
TABLE V-D: Cod trawl catch rates, 1988-94: mean cpue's by Division corrected for the year and month of each observation 16
TABLE V-E: Redfish trawl catch rates, 1988-94: mean cpue's by Division corrected for the year and month of each observation 16
TABLE V-F: Greenland halibut trawl catch rates, 1988-94: mean cpue's by Division corrected for the year and month of each observation 16
TABLE V-G: American plaice catch rates, 1988-94: mean annual CPUE's corrected for the month and Division of each observation 16
TABLE VI: Portuguese stern trawl fishery: Cpue (ton/h), mean weight (Kg) in the catch, sex ratio and cpue in number for males, females and total, by month and Division, for 1994 17
TABLE VII-A: Cod, 1994: Cpue in number at age per hour, for the portuguese stern trawl fishery 17
TABLE VII-B: American plaice, 1994: Cpue in number at age per hour, for the portuguese stern trawl fishery 17
TABLE VII-C: Greenland halibut, 1994: Cpue in number at age per hour, for the portuguese stern trawl fishery 18
TABLE VIII-A: Cod, Div. 3M, 1994: length composition of the trawl catches 18
TABLE VIII-B: Cod, Div. 3N, 1994: length composition of the trawl catches 19
TABLE VIII-C: Cod, Div. 3O, 1994: length composition of the trawl catches 19
TABLE VIII-D: Cod, Div. 3M, 1994: length composition of the gillnet catches 20
TABLE VIII-E: Cod, Div. 3O, 1994: length composition of the gillnet catches 20
TABLE IX-A: Redfish (S. mentella), Div. 3L, 1994: length composition of the trawl catches 21
TABLE IX-B: Redfish (S. mentella), Div. 3M, 1994: length composition of the trawl catches 21
TABLE IX-C: Redfish (S. mentella), Div. 3N, 1994: length composition of the trawl catches 22
TABLE IX-D: Redfish (S. mentella), Div. 30, 1994: length composition of the trawl catches 23
TABLE IX-E: Redfish (S. mentella), Div. 3M, 1994: length composition of the gillnet catches 24
TABLE IX-F: Redfish (S. mentella), Div. 3O, 1994: length composition of the gillnet catches 24
TABLE IX-G: Redfish (S. marinus), Div. 3M, 1994: length composition of the trawl catches 25
TABLE IX-H: Redfish (S. marinus), Div. 3O, 1994: length composition of the gillnet catches 25
TABLE X-A: Greenland halibut, Div. 3N, 1994: length composition of the trawl catches 26
TABLE X-B: Greenland halibut, Div. 3M, 1994: length composition of the gillnet catches 26
TABLE XI-A: American plaice, Div. 3L, 1994: length composition of the trawl catches 27
TABLE XI-B: American plaice, Div. 3N, 1994: length composition of the trawl catches 27
TABLE XI-C: American plaice, Div. 30, 1994: length composition of the trawl catches 28
TABLE XII: Red hake, Div. 30, 1994: length composition of the gillnet catches 28
TABLE XIII: Roughhead grenadier, Div. 3M, 1994: length composition of the gillnet catches 29
TABLE XIV-A: Cod, Div. 3M, 1994: age composition (\%), mean length (cm) and . mean weight (Kg) at age of the trawl catches 29
TABLE XIV-B: Cod, Div. 3N, 1994: age composition (\%o), mean length (cm) and mean weight (Kg) at age of the trawl catches 30
TABLE XIV-C: Cod, Div. 3O, 1994: age composition (\%o), mean length (cm) and mean weight (Kg) at age of the trawl catches 30
TABLE XIV-D: Cod, Div. 3M, 1994: age composition (\%), mean length (cm) and mean weight (Kg) at age of the gillnet catches 31
TABLE XIV-E: Cod, Div. 3O, 1994: age composition (\%), mean length (cm) and mean weight (Kg) at age of the gillnet catches 32
TABLE XV-A: Redfish S.mentella (males), Div. 3M, 1994: age composition (\%), mean length (cm) and mean weight (Kg) at age of the trawl catches 32
TABLE XV-B: Redfish S.mentella (females), Div. 3M, 1994: age composition (\%o), mean length (cm) and mean weight (Kg) at age of the trawl catches 32
TABLE XV-C: Redfish S.mentella (males), Div. 3M, 1994: age composition (\%o), mean length (cm) and mean weight (Kg) at age of the gillnet catches 33
TABLE XV-D: Redfish S.mentella (females), Div. 3M, 1994: age composition (\%o), mean length (cm) and mean weight (Kg) at age of the gillnet catches 33
TABLE XV-E: Redfish S.marinus (males), Div. 3M, 1994: age composition (\%o), mean length (cm) and mean weight (Kg) at age of the trawl catches 34
TABLE XV-F: Redfish S.marinus (females), Div. 3M, 1994: age composition (\%o), mean length (cm) and mean weight (Kg) at age of the trawl catches 34
TABLE XVI-A: Greenland halibut (males), Div. 3N, 1994: age composition (\%), mean length (cm) and mean weight (Kg) at age of the trawl catches 35
TABLE XVI-B: Greenland halibut (females), Div. 3N, 1994: age composition (\%o), mean length (cm) and mean weight (Kg) at age of the trawl catches 35
TABLE XVIL-A: American plaice (males), Div. 3L, 1994: age composition (\%o), mean length (cm) and mean weight (Kg) at age of the trawl catches 36
TABLE XVII-B: American plaice (females), Div. 3L, 1994: age composition (\%), mean length (cm) and mean weight (Kg) at age of the trawl catches 36
TABLE XVII-C: American plaice (males), Div. 3N, 1994: age composition (\%), mean length (cm) and mean weight (Kg) at age of the trawl catches 37
TABLE XVII-D: American plaice (females), Div. 3N, 1994: age composition (\%), mean length (cm) and mean weight (Kg) at age of the trawl catches 37
TABLE XVII-E: American plaice (males), Div. 30, 1994: age composition (\%o), mean length (cm) and mean weight (Kg) at age of the trawl catches 38
TABLE XVII-F: American plaice (females), Div. 3O, 1994: age composition (\%), mean length (cm) and mean weight (Kg) at age of the trawl catches 38
APPENDIX 39
FIGURE 1: Breakdown of the 1994 Portuguese directed effort by species 40
FIGURE 2: Breakdown of the 1994 Portuguese directed effort by division 40
FIGURE 3: Cod trawl catch rates by Division, 1988-94 41
FIGURE 3A: Comparison between 3 M cod commercial catch rates and 3 M cod trawlable biomass indices from the EC surveys (relative values presented as a proportion of the highest value of each series) 41
FIGURE 4: Redfish trawl catch rates by Division, 1988-94 42
FIGURE 4A: Comparison between 3M redfish commercial catch rates and 3 M redfish trawlable biomass indices from the EC surveys (relative values presented as a proportion of the highest value of each series) 43
FIGURE 5: Greenland halibut trawl catch rates by Division, 1988-94 (Canada) 44
FIGURE 5A: American plaice trawl catch rates in Div. 3NO 45
FIGURE 6: Annual length composition of cod in Div. 3M, trawl and gillnet fisheries in 1994 46
FIGURE 7: Annual length composition of cod in Div. 30, trawl and gillnet fisheries in 1994 46
FIGURE 8: Annual age composition of cod in Div. 3M, trawl and gillnet fisheries in 1994 46
FIGURE 9: Annual age composition of cod in Div. 30, trawl and gillnet fisheries in 1994 46
FIGURE 10: Annual length composition of cod in Div. 3N, trawl fishery in 1994 47
FIGURE 11: Annual age composition of cod in Div. 3N, trawl fishery in 1994 47
FIGURE 12: Annual length composition of redfish, S.mentella in Div. 3L, trawl fishery in 1994 48
FIGURE 13: Annual length composition of redfish, S.mentella in Div. 3N, trawl fishery in 1994 48
FIGURE 14: Annual length composition of redfish, S.mentella in Div. 30, trawl fishery in 1994 48
FIGURE 15: Annual length composition of redfish, S.mentella in Div. 3M, trawl fishery in 1994 49
FIGURE 16: Annual length composition of redfish, S.mentella in Div. 3M, gillnet fishery in 1994 49
FIGURE 17: Annual age composition of redfish, S.mentella in Div. 3M, trawl fishery in 1994 49
FIGURE 18: Annual age composition of redfish, S.mentella in Div. 3M, gillnet fishery in 1994 49
FIGURE 19: Annual length composition of redfish, S.mentella in Div. 30, gillnet fishery in 1994 50
FIGURE 20: Annual length composition of redfish, S.marinus in Div. 3M, trawl fishery in 1994 50
FIGURE 21: Annual length composition of redfish, S.marinus in Div. 30, gillnet fishery in 1994 50
FIGURE 22: Annual age composition of redfish, S.marinus in Div. 3M, trawl fishery in 1994 50
FIGURE 23: Annual length composition of Greenland halibut, in Div. 3N, trawl fishery in 1994 51
FIGURE 24: Annual age composition of Greenland halibut, in Div. 3N, trawl fishery in 1994 51
FIGURE 25: Annual length composition of Greenland halibut, in Div. 3M, gillnet fishery in 1994 51
FIGURE 26: Annual length composition of American plaice, in Div. 3L, trawl fishery in 1994 52
FIGURE 27: Annual length composition of American plaice, in Div. 3N, trawl fishery in 1994 52
FIGURE 28: Annual age composition of American plaice, in Div. 3L, trawl fishery in 1994 52
FIGURE 29: Annual age composition of American plaice, in Div. 3N, trawl fishery in 1994 52
FIGURE 30: Annual length composition of American plaice, in Div. 30, trawl fishery in 1994 53
FIGURE 31: Annual age composition of American plaice, in Div. 30, trawl fishery in 1994 53

TABLE I: PORTUGUESE NOMINAL CATCHES (mt) IN NAFO AREA, 1994

SPECIES	DIVISION								$\begin{array}{r} \text { TOTAL } \\ \quad 1994 \\ \hline \end{array}$
	3 L		3M		3 N		30		
	OT	GNS	OT	GNS	OT	GNS	OT	GNS	
Cod			1988.4	598.8	6.8		37.4	4.9	2636
Redfish	3.6		5319.1	311.2	59.4		2871.5	44.1	8609
American plaice Yellowtail(1)	2.8		243.6	6.4	48.7		41.4	1.3	344
Witch flounder	19.6		465.6	6.5	58.8		21.4	1	573
Greenland halibut	115		3753.7	324.1	1682	5.3	40.4	46	5967
Atlantic halibut	0.3		11.2		22.2		9.8	1.9	45
Roughead grenadier(2)	3.9		1923.4	15.1	272	0.1	5.7	2.8	2223
Anarhichas spp.	0.7		2929.9	244.2	31.3	2.5	10.0	0.5	3219
Hadocck							0.1	9.5	10
Pollock						12.5	0.3		13
Red hake						94.3	0.6	172.3	267
Capelin									
Monkfish									
Skates	22.2		4832.5	7.3	1271.1	0.9	100.0	3.5	6238
Unidentified	0.1						0.7	11.4	12
TOTAL	168.2		21467.4	1513.6	3452.3	115.6	3139.3	299.2	30156

(1) From the 1994 sampling, there were no yellowtail catches recorded
(2) Reported as Roundnose grenadier in years before.

TABLE 1: cont.

SPECIES 1 YEAR	$\begin{array}{r} \text { TOTAL } \\ 1994 \end{array}$	$\begin{array}{r} \text { TOTAL } \\ \quad 1993 \\ \hline \end{array}$	$\begin{array}{r} \text { TOTAL } \\ 1992 \\ \hline \end{array}$	$\begin{array}{r} \text { TOTAL } \\ 1991 \end{array}$	TOTAL 1990	$\begin{array}{r} \text { TOTAL } \\ 1989 \\ \hline \end{array}$	$\begin{array}{r} \text { TOTAL } \\ 1988 \end{array}$
Cod	2636	3651	5984	13357	15138	24129	12931
Redfish	8609	9828	6581	12163	17810	18870	17072
American plaice	344	347	451	1288	714	1821	1791
Yellowtail(1)			1	10	11	5	
Witch flounder	573	289	849	1982	2254	16	12
Greenland halibut	5967	8805	10539	13961	11170	3614	4194
Atlantic halibut	45	53	81	228	91		
Roughead grenadier(2)	2223	1969	2000	4486	3211	290	914
Anarhichas spp.	3219	2302	1696	2843	1940		
Hadocck	10	10	166	83	17		
Pollock	13	41,	28	421	. 11		
Red hake	267	366	466	1009	467		
Capelin					77		
Monkfish		8	37	10	2		
Skates	6238	7626	7017	23301	13569	663	1097
Unidentified	12	238	325	174	852		
TOTAL	30156	35532	36220	75314	67334	49408	38011

TABLE H-A: PORTUGUESE EFFORT IN FISHING DAYS AND FISHING HOURS (TRAWL) OR NUMBER OF NETS (CILLNETS) IN NAFO AREA IN 1994.

MONTH	31				3M				3N				30				TOTAL 1994			
			GNS		OT		GNS													
	DAYS HOURS		DAYS NETS		DAYS HOURS		DAYS	NETS	DAYS HOURS		DAYS	NETS	DAYS HOURS		DAYS	NETS	DAYS HOURS		DAYS NETS	
JAN.	1	16			73	818			2	15							76	849		
FEB.					96	893			13	102			6	67			115	1060		
MAR.					16	118	81	9388	100	1226	2	502	57	639			173	1984	83	9890
APR.	3	48			2	7	47	7440	96	1364	8	2008	45	624	3	753	146	2042	58	10201
MAY	20	321			3	49	28	5048	89	1299			24	391	37	9287	136	2060	65	14335
JUN.					52	882	12	2164	43	683			10	127	51	13224	105	1691	63	15388
JUL.					71	1277	50	13240									71	1277	50	13240
AUG.					80	1407	94	23876	9	88			13	196			102	1691	94	23876
SEP.					110	1990	108	28825	19	226			55	719			184	2935	108	28825
OCT.					186	3011	98	25803	2	24			21	338			209	3373	98	25803
NOV.					104	1466	49	1176									104	1466	49	1176
DEC.					99	1228	8	24000	17	211			16	198			132	1637		24000
TOTAL	24	385	0	0	892	13146	575	140961	390	5236	10	2510	247	3299	91	23264	1553	22065	676	166735
Note: Fishing hours and number of nets estimated from their monthiy rates to fishing days observed in the trawlers and gith sampled by the IPIMAR. Montthly effort of gifnetters is given by the sum of nets per fishing day																				

MONTH	TOTAL 1993				TOTAL 1992				TOTAL 1991				TOTAL 1990				TOTAL 1989			
	OT		GNS		OT		GNS		OT		GNS		Oí		GNS		OT		GNS	
	DAYS	HOURS	DAYS	NETS																
JAN.	125	1480			227	2513			99	949			123	1616	25	6241	351	4612		
FEB.	209	2656			244	3187			184	1774			155	2255	16	3994	348	5063		
MAR.	278	3442	65	14640	215	2521	6	1810	326	4293	40	11759	418	5785	43	10735	382	5287		
APR.	200	2695	78	13341	417	4522	50	15083	732	9760	51	14992	523	7019	45	14648	375	5033	6	1760
MAY	224	3168	35	12198	321	3775	73	26273	647	8412	104	29428	448	5833	74	24087	383	4987	127	43917
JUN.	144	1835	97	29083	268	4112	145	67829	522	8172	42	16174	400	5780	81	29962	501	7239	161	63144
JUL.	117	1755	137	33858	195	2658	128	61755	422	5986	71	31147	293	4647	164	61516	301	4774	112	44834
AUG.	266	3886	101	28358	174	2458	101	42690	407	5266	153	93191	482	8271	126	47263	178	3054	176	73251
SEP.	280	3769	43	15894	177	2452	118	35400	450	7330	69	33476	469	7663	39	14629	219	3578	52	19609
ocr.	277	3723	80	28745	118	1208	37	11100	674	10833	84	36540	466	6431	67	15377	361	4982	36	13885
NOV.	186	2000	75	27545	106	1085	14	4200	482	7137	87	32400	968	13358	30	9464	270	3726	22	8485
DEC.	190	2073	20	5873	208	2170			352	4915	11	3300	281	3878	4	816	181	2498		
TOTAL	2496	-32481	731	209536	2670	32662	672	266141	5297	74829	712	302407	5026	72536	714	238732	3850	54833	692	268885

TABLE II-B : Breakdown of the 1994 Portuguese directed effort by species and division.

DIVISION	COD	REDFISH G. HALIBUT A. PLAICE SKATES TOTALIDIV.				
3 M	38.5	2.2				40.7
3 N	5.3	5.3	12.1	6.7	2	31.4
30	6.4	11.9		3.6	2.4	24.4
3 L			3.5			3.5
TOTALISPECIES	50:2	19.5	15.6	10.4	4.3	

TABLE II - B: cont.
B-GILLNETS

DIVISION	COD	REDFISH G. HALIBUT RED HAKE	TOTAL/DIV.		
3M	53.2	13.5	21.5		88.2
3N		2.2		9.6	
30					
3L		15.7	21.5	9.6	
TOTAL/SPECIES	53.2				

TABLE III: Intensity of sampling during 1994, by gear, species, division and month.

A- STERN TRAWL						, ,	
SPECIES	DIV.	MONTH	$\mathrm{N}^{\circ} \mathrm{OF}$ SAMPLES	$\mathrm{N}^{\circ} \mathrm{FISH}$ MEASURED	SAMPLING WEIGHT(Kg)	$\begin{aligned} & \text { OTOL } \\ & \quad \mathrm{N}^{\mathrm{o}} \\ & \hline \end{aligned}$	ITHS LENGTH RANGE
COD	3M	MAR.	1	43	38	41	$32-90 \mathrm{~cm}$
		JUN.	15	3226	1935		
		DEC.	8	916	907		.
- .	3 N	FEB.	2	288	230	119	$31-75 \mathrm{~cm}$
		MAR.	19	5482	3579	193	$30-114 \mathrm{~cm}$
		APR.	5	1226	801		
	30	MAR.	3	507	927	256	30.118 cm
-			
REDFISH S.mentella	3L	MAY	5	619	276	178	24.46 cm
	3M	MAR.	1	91	23	28	$20-33 \mathrm{~cm}$
	3 N	FEB.	4	1048	278	146	$20-41 \mathrm{~cm}$
		MAR.	20	4641	1991	220	$18-51 \mathrm{~cm}$
		APR.	4	813	391	142	$22-49 \mathrm{~cm}$
		MAY	1	87	30	86	$24-40 \mathrm{~cm}$
		JUN.	8	429	175	63	$26-42 \mathrm{~cm}$
	30	MAR.	2	153	25	102	$16-41 \mathrm{~cm}$
		MAY	3	237	92	32	$25-41 \mathrm{~cm}$
REDFISH S.marinus	3M	JUN.	3	626	410		
AMERICAN PLAICE	3L	MAY	9	816	501	71	$32-58 \mathrm{~cm}$
	3 N	MAR.	19	2053	1025	276	$23-65 \mathrm{~cm}$
		APR.	25	5864	1929	240	$26-64 \mathrm{~cm}$
		MAY	15	1150	604	185	$25-62 \mathrm{~cm}$
		JUN.	6	612	261		
	30	APR.	3	490	163		
		MAY	3	282	138	87	$30-60 \mathrm{~cm}$
GREENLAND HALIBUT	3 N	MAR.	9	1101	860	32	31.59 cm
		APR.	24	5628	3531	157	$32-58 \mathrm{~cm}$
		JUN.	12	1278	590	90	$28-65 \mathrm{~cm}$
B-GILLNETS							
SPECIES	DIV.	MONTH	N° OF SAMPLES	N° FISH MEASURED	SAMPLING WEIGHT(Kg)	$\dot{\text { OTO }}$ N^{0}	LITHS LENGTH RANGE
COD	3 M	SEP.	1	70	187		
		NOV.	5	500	1886		
		DEC.	4	400	1159		
		M					
	30	MAY	6	124	295	63	$46-89 \mathrm{~cm}$
		\cdot			-	.	.
REDFISH S.mentella	3 M	OCT.	5	500	400		
		NOV.	1	100	93		
	30	MAY	12	480	361	156	$23-46 \mathrm{~cm}$
REDFISH S.marinus	30	MAY	9	180	115	84	$21-59 \mathrm{~cm}$
GREENLAND HALIBUT	3 M	JUL.	5	66	112	32	54-65 cm
		SEP.	1	100	130		
		OCT.	5	500	790		
RED HAKE	30	JUN.	5	117	259		
ROUGHEAD GRENADIER	3 M	JUL.	5	90	100	44	$48-64 \mathrm{~cm}$
		AUG.	5	83	78	38	$50-70 \mathrm{~cm}$

TABLE IV-A: Portuguese trawl fishery: cpue and bycatch by month and division, for 1994

DIVISION	TARGET SPECIES	MONTH	DEPTH RANGE (m)		C.P.U.E. (fon/hour)	MAIN BY-CATCH		$\begin{gathered} \text { TOTAL BYCATCH } \\ \% \\ \hline \hline \end{gathered}$
			MIN .	MAX.		SPECIES	\%	
3M	COD	JAN.			1.256			
3M	COD	MAR.	52	720	0.251	REDFISH	11.4	13.9
3M	COD	JUN.	180	469	1.002	REDFISH	6.7	9.3
3M	COD	JUL.	128	326	0.984	A.PLAICE	3.3	7.9
3M	COD	AUG.	128	345	1.012	REDFISH	4.6	11.5
3M	COD	SEP.	$129{ }^{\circ}$	404	1.135	A.PLAICE	4.3	8.5
3M	COD	OCT.	127	498	1.212	A.PLAICE	3.3	6.1
3M	COD	NOV.	131	144	1.800	A.PLAICE	1.4	1.7
3M	COD	DEC.	163	365	0.107	A.PLAICE	0.5	1.0
3 N	COD	FEB.	377	857	0.430	REDFISH	15.1	31.3
3 N	COD	MAR.	312	1220	0.766	REDFISH	10.6	22.4
3 N	COD	APR.	462	1117	0.172	A.PLAICE	20.8	56.3
30	COD	MAR.	132	870	0.846	REDFISH	14.5	22.4
30	COD	APR.	133	870	0.196	REDFISH	24.2	56.1
30	COD	MAY	80	885	0.340	SKATES	17.5	47.8
30	COD	JUN.	234	391	0.204	SKATES	27.7	47.8
3M	REDFISH	AUG.	184	345	0.350	COD	41.9	52.0
3M	REDFISH	SEP.	196	404	0.434	COD	39.6	51.3
3M	REDFISH	OCT.	133	498	0.533	COD	16.7	29.2
3 N	REDFISH	MAR.	233	1075	0.391	COD	21.9	50.2
3 N	REDFISH	APR.	426	1102	0.313	A.PLAICE	17.7	49.8
3 N	REDFISH	MAY	528	1156	0.103	G. HALIBUT	44.0	67.9
3 N	REDFISH	JUN.	428	1200	0.186	G.HALIBUT	31.3	66.6
3 N	REDFISH	AUG.	464	797	1.282	G.HALIBUT	8.6	10.8
30	REDFISH	MAR.	205	817	0.436	COD	9.5	31.4
30	REDFISH	APR.	133	870	0.215	COD	26.1	59.4
30	REDFISH	MAY	106	689	0.233	A.PLAICE	22.9	44.3
30	REDFISH	AUG.	472	721	1.085	G.HALIBUT	0.3	0.2
30	REDFISH	SEP.	321	919	1.057	COD	1.3	2.4
30	REDFISH	OCT.	310	850	0.803	G.HALIBUT	2.6	3.3
3N	A.PLAICE	MAR.	412	1240	0.272	COD	14.2	47.4
3N	A.PLAICE	APR.	345	1243	0.213	G.HALIBUT	27.6	48.5
3N	A.PLAICE	MAY	883	1201	0.105	G.HALIBUT	26.0	41.9
3 N	A.PLAICE	JUN.	614	1200	0.125	G.HALIBUT	34.3	73.7
30	A.PLAICE	APR.	274	996	0.129	COD	24.7	70.4
30	A.PLAICE	MAY	80	885	0.127	SKATES	25.1	69.8
3L	G.HALIBUT	MAY	629	827	0.147	A.PLAICE	22.1	50.4
3 N	G.HALIBUT	APR.	512	1287	0.169	A.PLAICE	33.0	54.5
3N	G.HALIBUT	MAY	528	1346	0.228	REDFISH	15.0	46.5
3N	G. HALIBUT	JUN.	315	1314	0.215	REDFISH	22.9	53.0
3 N	SKATES	APR.	526	1207	0.159	A.PLAICE	34.5	68.3
3 N	SKATES	MAY.	610	1229	0.189	G.HALIBUT	41.0	55.4
3N	SKATES	JUN.	428	1200	0.137	G.HALIBUT	33.4	61.9
30	SKATES	MAY	80	1073	0.223	A.PLAICE	22.0	61.9
30	SKATES	JUN.	234	391	0.193	COD	32.8	61.9

TABLE IV-B: Portuquese gillnet fishery: cpue and bycatch by month and division, for 1994.

DIVISION	TARGET SPECIES	MONTH	DEPTH RANGE (m)		C.P.U.E. (Kg/net/day)	MAIN BY-CATCH		$\begin{gathered} \text { TOTAL BYCATCH } \\ \% \\ \hline \end{gathered}$
			MIN.	MAX.		SPECIES	\%	
3M	COD	MAR.	437	673	27.2	REDFISH	4.8	5.7
3M	COD	APR.	291	619	15.9	REDFISH	1.4	1.4
3M	COD	MAY	273	655	11.3	REDFISH	8.5	8.5
3M	COD	JUL.	127	264	6.5	REDFISH	6.5	8.4
3M	COD	AUG.	133	228	10.5	A.PLAICE	1.0	2.2
3M	COD	SEP.	138	582	13.8	REDFISH	1.8	2.1
3M	COD	OCT.	175	253	16.0			
3M	COD	NOV.	140	240	10.2			
3M	COD	DEC.	240	370	9.1			
3M	REDFISH	MAY	346	692	2.3	COD	18.4	23.7
3M	REDFISH	AUG.	668	1006	9.4	G. HALIBUT	15.6	15.8
3M	REDFISH	OCT.	370	740	7.6	G. HALIBUT	33.3	38.8
3M	REDFISH	NOV.	540	550	12.7	G. HALIBUT	32.5	32.5
30	REDFISH	MAY	237	746	5.5	REDHAKE	45.1	59.4
3M	G. HALIBUT	JUN.	410	792	9.5	ROUGHEAD G.	21.6	22.4
3M	G. HALIBUT	JUL.	564	1000	10.9	ROUGHEAD G.	0.1	0.1
3M	G. HALIBUT	AUG.	546	956	7.6	ROUGHEAD G.	0.2	0.2
3M	G. HALIBUT	SEP.	440	790	6.5	REDFISH	24.2	28.2
3M	G. HALIBUT	OCT.	371	1040	5.9	REDFISH	43.6	43.6
3M	G. HALIBUT	NOV.	540	550	8.6	REDFISH	57.9	57.9
30	RED HAKE	MAY	215	666	16.1	REDFISH	13.9	29.9
30	RED HAKE	JUN.	158	706	36.1	G. HALIBUT	4.0	16.8

TABLE V - A: COD TRAWL CATCH RATES, 1988-94 : mean annual cpue's corrected for the month and division of each observation.

	3M			3NO			
	CPUE	RROR	C.V.	CPUE	RROR	C.V.	
1988	0.498	0.145	71.4				1998
1989	0.793	0.053	19.9				1989
1990	0.566	0.086	48.1	0.422	0.116	38.8	1990
1991				0.307	0.042	27.7	1991
1992	0.813	0.293	72.0	0.287	0.072	49.9	1992
1993	0.930	0.171	55.3	0.523	0.197	65.4	1993
1994	0.943	0.147	41.2	0.393	0.108	61.5	1994

TABLE V - B REDFISH TRAWL CATCH RATES, $1988-94$: mean anrual cpue's cortected for the month and division of cach observation

	3L			3NO			3LNO			3M			
.	CPUE	RPOR	C.V.	CPUE	STERROR	C.V.	CPUE	RROR	CV .	CPUE	STERROR	$\overline{C V}$	
1988	0.515	0.071	27.7				0.535	0.155	58.0	0.585	0.026	7.7	1938
1989	0.447	0.041	18.4				0.418	0.061	29.1	0.682	0.087	38.4	1989
1990	0.460	0.042	24.1	0.400	0.082	41.1	0.450	0.035	25.8	0.659	0.052	26.3	1990
1991	0.480	0.082	38.1	0.281	0.041	41.0	0.339	0.056	59.8	0.574	0.087	39.9	1391
1992	0.375	0.045	16.8	0.433	0.077	47.2	0.444	0.068	46.3	0.805	0.144	31.0	199?
1993	0.464			0.412	0.048	36.8	0.411	0.035	28.6	0.445	0.158	71.1	1993
1994				0.564	0.128	60.2	0.565	0.153	71.5	0.801	0.187	40.4	199.4

TABLE V-C: GREENLAND HALIBUT TRAWL CATCH RATES, 1988-94 : mean annual cpue's corrected for the month and division of each observation.

	3L			3N			3LN			
	CPUE	ST.ERROR	C.V.	CPUE	ST.ERROR	C.V.	CPUE	RROR	C.V.	
1988	0.403	0.067	28.8				0.392	0.084	37.3	1998
1989	0.454	0.060	35.0				0.413	0.060	38.5	1989
1990	0.404	0.038	26.6	0.246			0.353	0.033	28.4	1990
1991	0.219	0.056	44.2	0.168	0.033	34.6	0.185	0.030	39.2	1991
1992	0.261	0.029	24.8	0.335	0.027	21.5	0.321	0.037	39.9	1992
1993	0.365	0.005	1.9	0.204	0.021	27.4	0.273	0.025	27.5	1993
1994	0.251	0.041	23.0	0.212	0.009	7.4	0.260	0.041	35.2	1994

TABLE V-D: COD TRAWL CATCH RATES, 1988-94:
mean cpue's by division corrected for
the year and month of each observation.

TABLE V-E: REDFISH TRAWL CATCH RATES, 1988-94
mean cpue's by division corrected for the
year and month of each observation.

TABLE V-F: GREENLAND HALIBUT TRAWL CATCH RATES, 1988-94 :
mean cpue's by division corrected for the

year and month of each observation.					
	CPUE	ST.ERROR	C.V.		
3L	0.360	0.032	49.3	3 L	
3N	0.246	0.020	38.2	3 N	
3LN	0.313	0.022	50.6	3LN	

TABLE V.G. American plaice catch rates, 1988-94: mean annual CPUE's corrected for the month and Division of each observation.

| | 3NO
 CPUE | STANDARD ERROR |
| :--- | :--- | :---: | :---: | C.V. | | | | |
| :--- | :--- | :--- | :--- |
| YEAR | | | |
| 1988 | | | 11.0 |
| 1989 | 0.351 | 0.022 | 26.7 |
| 1990 | 0.254 | 0.026 | 12.1 |
| 1991 | 0.182 | 0.016 | 26.0 |
| 1992 | 0.287 | 0.033 | 12.2 |
| 1993 | 0.309 | 0.019 | |

TABLE VI: Portuguese stern trawl fishery: C.P.U.E. (ton/h), mean weigth (Kg) in the catch, sex ratio and C.P.U.E. in number for males, females and total, by month and division, for 1994.

TABLE VII-A:COD, 1994 cpue in number at age per hour, for the portuguese stern traw fishery.

DIVISION	TARGET SPECIES	MONTH	1	2.	3	4	5	6	7	E 8	9	10	11	12	13	14
3M	COD	MAR.		11.6	222.4	27.1	0.2			12.7						
3	COD	JUN.		64.9	1048.0	263.9	5.0									
3M	COD	DEC.	0.01	4.0	145.8	11.5	0.1									
3N	000	FEB.			5.5	348.8	242.6	15.1	11.0	0.6	0.6					
3 N	COD	MAR.			86.1	786.7	328.5	33.5	25.8	15	1.3	004		0.2		0.1
3 N	COD	APR.			4.4	113.0	74.1	13.0	11.3	1.3	0.8					0.1
30	COD	MAR			6.8	120.8	209.9	40.9	26.4	43.4	11.6	30.	0.7	10		

TABLE VII- B: AMERICAN PLAICE, 1994: cpue in number at age per hour, for the portuguese stern trawl fishery.

TABLE VII-C: GREENLAND HALIBUT, 1994: cpue in number at age per hour, for the portuguese stern traw fishery.

OIVISION	TARGET SPECIES	SEX	MONTH		AGE						
				3	4	5	6	7	8	9	10
3N	G.HALIBUT	MALE	APR.	23	26.4	35.3	25.4	4.6	0.1		
3N	G. HALIBUT	MALE	JUN.	4.0	86.1	540	10.6	2.9			
	chialibut										
3N	G.HALIBUT	FEMALE	APR.	2.0	48.4	100.4	61.0	39.4	4.7	0.2	0.1
3 N	G. HALIBUT	FEMALE	JUN.	19.3	104.1	132.0	64.2	45.4	98	1.4	0.6

TABLE VIII-A: COD DIV 3M, 1994: length composition of the traw catches.

LENGTH GROUP	- MAR. $=1 \mathrm{st} \mathrm{Q}$.	$J U N=2 n d Q$.	DEC $=4$ th Q .	TOTAL	LENGTH GROUP
24			1.1	0.1	24
27	.		6.5	0.4	27
30	46.5	65.4	19.3	62.5	30
33	186.0	103.9	76.9	102.7	33
36	302.3	160.7	138.8	160.2	36
39	186.0	217.9	329.4	224.4	39
42	93.0	160.3	336.8	170.5	42
45	69.8	153.0	65.0	147.3	45
48	23.3	77.5	8.3	73.0	48
51	23.3	37.2	10.3	35.5	51
54	23.3	13.3	4.8	12.9	54
57	.	5.9	2.8	5.7	57
60		3.5		3.2	60
63		1.5		1.4	63
' 66					66
69					69
72					72
75					75
78					78
81					81
84	23.3			0.1	84
87					87
90	23.3			0.1	90
TOTAL	1000	1000	1000	1000	
No. SAMPLES	1	15	8	24	
SAMPLING WEIGHT (kg)) 38	1935	907	2880	
N ${ }^{\circ} . F$ F.MEASURED	43	3226	916	4185	
MEAN LENGTH(cm)	41.3	41.3	40.6	41.2	.
MEAN WEIGHT (g)	916	725	664	723	
DEPTH RANGE (m)	364/520	180/335	163/801	163/801	

TABLE VIII - B: COD DIV.3N, 1994: length composition of the trawl catches.

LENGTH GROUP	FEB.	MAR.	APR. $=2 \mathrm{nd} \mathrm{Q}$.	1st Q.	TOTAL	LENGTH GROUP
30	7.2	65.5	3.2	59.9	57.5	30
33	31.9	199.3	139.6	183.0	181.2	33
36	217.4	206.6	162.5	207.7	205.7	36
39	208.5	165.8	171.3	170.0	170.0	39
42	216.6	135.8	144.2	143.6	143.7	42
45	147.3	80.6	102.5	87.1	87.7	45
48	102.9	66.4	88.0	69.9	70.7	48
51	39.4	32.3	56.9	33.0	34.0	51
54	5.4	20.6	56.9	19.1	20.7	54
57	18.1	13.1	20.9	13.6	13.9	57
60	1.1	7.6	22.1	6.9	7.6	60
63	2.2	4.3	18.9	4.1	4.8	63
66	1.1	1.3	5.4	1.2	1.4	66
69		0.4	5.2	0.3	0.5	69
72		0.3	2.6	0.3	0.4	72
75	1.1	0.03		0.1	0.1	75
78		0.03		0.03	0.03	78
81		0.01		0.01	0.01	81
84						84
87						87
90						90
93		0.1		0.1	0.1	93
TOTAL	1000	1000	1000	1000	1000	
N°. SAMPLES	2	- 19	5	21	26	
SAMPLING WEIGHT (kg)	230	3579	801	3809	4610	
No.F.MEASURED	288	5482	1226	5770	6996	
MEAN LENGTH(cm)	42.6	40.3	43.7	40.6	40.7	
MEAN WEIGHT (g)	689	606	790	614	622	
DEPTH RANGE (m)	336/929	312/946	420/965	312/946	312/965	

TABLE VII - C: COD DIV. 30,1994 :

length composition of the trawl catches. LENGTH GROUP		MAR. $=$ TOTAL	LENGTH GROUP
30			
33			
36			
39			

TABLE VIII-D: COD DIV. 3 M, 1994: length composition of the gillnet catches.

LENGTH GROUP	SEP. $=3 r d \mathrm{Q}$.	NOV.	DEC.	4th Q .	TOTAL	LENGTH GROUP
42		11.9		6.8	6.7	42
45	28.6	66.1	10.7	42.2	42.2	45
48	42.9	36.4	21.0	29.8	29.9	48
51	42.9	37.8	19.0	29.7	29.8	51
54	114.3	103.5	27.2	70.7	70.8	54
57	71.4	195.9	55.2	135.4	135.1	57
60	157.1	164.4	74.9	125.9	126.1	60
63	142.9	152.8	150.4	151.8	151.7	63
66	157.1	45.1	291.0	150.8	150.9	66
69	57.1	22.4	223.4	108.8	108.6	69
72	57.1	21.8	64.9	40.3	40.4	72
75	42.9	13.3	21.2	16.7	16.8	75
78	42.9	17.9	12.3	15.5	15.6	78
81	42.9	8.8	6.1	7.7	7.8	81
84		17.4		9.9	9.9	84
87		12.4	12.3	12.3	12.3	87
90		22.9	3.3	14.5	14.4	90
93		8.6	2.8	6.1	6.1	93
96		18.9	2.3	11.7	11.7	96
99		6.8		3.9	3.9	99
102	1	6.1	2.3	4.5	4.5	102
105		2.0		1.2	1.2	105
108		0.2		0.1	0.1	108
111		1.8		1.0	1.0	111
114		2.0		1.2	1.2	114
117						117
120		0.2		0.1	0.1	120
123		2.3		1.3	1.3	123
126		0.2		0.1	0.1	126
TOTAL	1000	1000	1000	1000	1000	
N°. SAMPLES .	1	5	4	9	10	
SAMPLING WEIGHT(kg)	187	1886	1159	3045	3232	
	70	500	400	900	970	
MEAN LENGTH(cm)	63.7	63.1	66.4	64.5	64.5	
MEAN WEIGHT (g)	2794	2964	3123	3032	3031	
DEPTH RANGE (m)	440	140/240	240/370	140/370	140/440	

TABLE VIII-E: COD DIV. 30. 1994:
length composition of the gillnet catches.

LENGTH GROUP	MAY = TOTAL	LENGTH GROUP
45	6.1	45
48	15.3	48
51	37.3	51
54		54
57	23.6	57
60	197.8	60
63	466.9	63°
66	161.7	66
69	35.8	69
72	27.7	72
75	13.9	75
78		78
81		81
84	2.9	84
87	11.0	87.
total	1000	
No. SAMPLES	6	
SAMPLING WEIGHT(kg)	295	
N°.F.MEASURED	124	-
MEAN LENGTH(cm)	63.9	
MEAN WEIGHT (9)	2340	
DEPTH RANGE (m)	215/728	

TABLE IX-A : RED-FISH (S.mentella), DIV. 3L, 1994:
length composition of the trawl catches.

LENGTH GROUP	MAY = TOTAL		LENGTH GROUP
	M	F	
24	26.1	41.1	24
25	47.3	57.4	25
26	46.6	44.5	26
27	43.5	47.2	27
28	36.8	41.0	28
29	35.9	47.2	29
30	31.0	40.4	30
31	15.6	41.9	31
32	11.7	32.8	32
33	10.1	24.6	33
34	19.1	29.6	34
35	12.5	31.9	35
36	11.8	26.9	36
37	11.2	33.6	37
38	14.4	15.3	38
39	6.3	18.8	39
40	3.8	11.8	40
41	3.8	10.2	41
42		5.4	42
43	1.1	5.3	43
44	1.1	1.6	44
45		0.6	45
46		1.1	46
TOTAL	389.8	610.2	
N°. SAMPLES		5	
SAMPLING WEIGHT(Kg)		276	
No.F.MEASURED	218	401	
MEAN LENGTH(cm)	30.0	31.4	
MEAN WEIGHT (g)	411	495	
MEAN WEIGHT ($\mathrm{M}+\mathrm{F}$)		462	
DEPTH RANGE (m)		9/819	

TABLE IX - B: REO-FISH (S.menelia), DIV. 3M, 1994:
length composition of the trawl catches.

	LENGTH GROUP	11.0	54.9

TABLE IX-D: RED-FISH (S mentella), DIV. 30, 1994: length composition of the trawl catches.

LENGTH GROUP	MAR $=1 \mathrm{st} \mathrm{Q}$.		MAY $=$ 2nd Q.		TOTAL		LENGTH GROUP
	M	F	M	F	M	F	
16	26.6				12.9		16
17	39.9	52.6			19.3	25.4	17
18	65.9	52.6			31.8	25.4	18
19	65.7	13.3			31.8	6.4	19
20	26.4	13.2			12.8	6.4	20
21	65.6	39.4			31.7	19.0	21
22	65.6	65.5			31.7	31.6	22
23	65.8	65.8			31.8	31.8	23
24	39.5	39.6			19.1	19.2	24
25	39.5	39.4	50.8	29.3	45.3	34.2	25
26		13.1	58.4	48.3	30.2	31.3	26
27	26.3	0.1	29.8	82.1	28.1	42.5	27
28	13.1	0.1	47.7	76.3	31.0	39.5	28
29			16.9	58.1	8.7	30.0	29
30			30.6	40.7	15.8	21.0	30
31			5.9	29.6	3.1	15.3	31
32		13.1	31.0	36.3	16.0	25.1	32
33			12.6	18.7	6.5	9.7	33
34				40.7		21.0	34
35		13.1	0.1	24.0	0.1	18.7	35
36			24.8	18.6	12.8	9.6	36
37			12.4	18.2	6.4	9.4	37
38			49.6	0.1	25.6	0.1	38
39		13.1		6.1		9.5	39
40		13.1	12.4	29.6	6.4	21.6	40
41		13.1	12.4	36.2	6.4	25.1	41
42				5.8		3.0	42
43							43
44				5.6		2.9	44
TOTAL	539.9	460.1	395.5	604.5	465.3	534.7	
No. SAMPLES		2		3		5	
SAMPLING WEIGHT (Kg)		25		92		117	
No.F.MEASURED	90	63	68	169	158	232	
MEAN LENGTH(cm)	21.6	24.1	31.3	31.8	25.9	28.6	
MEAN WEIGHT (g)	155	254	468	510	293	404	
MEAN WEIGHT (M+F)		201		494		352	
DEPTH RANGE (m)		447/851		253/578		253/851	

TABLE IX - E : RED-FISH (S.mentella), DIV. 3M, 1994: length composition of the gillnet catches.

LENGTH GROUP	OCT.		NOV.		4th Q. = TOTAL		LENGTH GROUP
	M	F	M	F	M	F	
26	1.3	0.7			0.7	0.4	26
27	2.2	1.8			1.2	0.9	27
28	2.4	1.7	5.9	4.1	4.0	2.8	28
29	9.1	6.8	5.7	4.3	7.5	5.6	29
30	7.1	5.7			3.8	3.0	30
31	32.5	33.8			17.1	17.8	31
32	22.9	18.2	11.2	8.8	17.4	13.7	32
33	32.2	36.1	23.6	26.4	28.1	31.5	33
34	31.8	25.6	16.6	13.4	24.6	19.8	34
35	41.8	38.1	26.2	23.8	34.4	31.3	35
36	37.0	35.8	20.3	19.7	29.1	28.1	36
37	58.1	54.3	31.0	29.0	45.3	42.3	37
38.	45.8	45.7	50.1	49.9	47.8	47.7	38
39	53.6	57.4	48.3	51.7	51.1	54.7	39
40	27.5	27.1	60.5	59.5	43.2	42.4	40
41	18.7	21.6	51.1	58.9	34.1	39.2	41
42	14.3	22.8	30.8	49.2	22.1	35.3	42
43	14.9	24.7	26.3	43.7	20.3	33.7	43
44	17.8	23.2	21.7	28.3	19.7	25.6	44
45	13.3	13.5	14.9	15.1	14.0	14.3	45
46	7.0	8.5	9.0	11.0	7.9	9.7	46
47	2.0	2.3	13.9	16.1	7.6	8.8	47
48			10.8	9.2	5.1	4.4	48
49	0.8	0.7			0.4	0.4	49
TOTAL	494.0	506.0	477.9	522.1	486.4	513.6	
N°. SAMPLES		5		1		6	
SAMPLING WEIGHT (Kg)		400		93		493	
N${ }^{\text {a }}$.F.MEASURED		500		100		600	
MEAN LENGTH(cm)	37.4	37.9	39.8	40.2	38.5	39.0	
MEAN WEIGHT (g)	764	837	910	993	832	912	
MEAN WEIGHT ($\mathrm{M}+\mathrm{F}$)		801		954		873	
DEPTH RANGE (m)		1/1040		540/550		1/1040	

TABLE IX - F: RED-FISH (S.mentella), DIV. 30, 1994: length composition of the gillnet catches.

LENGTH - GROUP	MAY $=$ TOTAL		LENGTH GROUP
	M	F	
23		11.8	23
24	1.8	1.8	24
25	15.3	3.6	25
26	1.7		26
27		2.7	27
28	11.5	27.3	28
29	1.3	1.7	29
30	106.9	55.5	30
31	31.6	62.3	31
32	30.4	35.1	32
33	24.8	33.0	33
34	30.6	54.5	34
35	42.8	27.9	35
36	82.1	4.7	36
37	5.6	20.0	37
38	33.7	41.0	38
39	39.2	56.9	39
40	12.0	20.2	40
41	3.0	36.4	41
42	2.4	2.3	42
43	4.7	3.0	43
44	0.1	0.1	44
45	14.2	0.9	45
46		1.4	46
TOTAL	495.8	504.2	
N^{*}. SAMPLES		12	
SAMPLING WEIGHT (Kg)		361	
$N^{\circ} . F$ MEASURED	246	234	
MEAN LENGTH(cm)	34.5	34.7	
MEAN WEIGHT (g)	607	650	
MEAN WEIGHT (M+F)		629	
DEPTH RANGE (m)		5/746	

length composition of the gillnet catches.
LENGTH
GROUP

TABLE IX-G: RED-FISH (S marinus), DIV. 3M, 1994:

[^0]TABLEX-A: GREENLAND HALIBUT, DIV 3N, 1994: length composition of the trawi catches

LENGTH	MAR $=1 \mathrm{st} \mathrm{Q}$.		APR.		JUN.		2ndQ		TOTAL		LENGTH GROUP
GROUP	M	F	M	F	M	F	M	F	M	F	
26						0.8		0.5		0.5	26
28	2.3		0.2		37.2	28.4	22.3	16.9	20.3	15.2	28
30	1.1	37.6	21.7	30.7	67.4	89.0	49.0	65.5	44.2	62.7	30
32	30.4	61.8	40.5	68.6	68.0	82.3	56.9	76.8	54.3	75.3	32
34	25.7	111.1	45.2	80.2	67.2	103.9	58.4	94.3	55.1	96.0	34
36	27.8	97.1	39.7	120.1	33.0	100.2	35.7	108.2	34.9	107.1	36
38	29.2	67.4	39.6	129.5	15.9	81.4	25.5	100.8	25.8	97.4	38
40	33.7	75.3	32.3	102.3	4.5	62.4	15.7	78.5	17.5	78.2	40
42	21.3	48.5	22.4	78.8	1.7	46.3	10.1	59.4	11.2	58.3	42
44	14.0	54.8	10.2	54.4		41.8	4.1	46.9	5.1	47.7	44
46	9.8	53.9	7.2	38.5		30.7	2.9	33.9	3.6	35.9	46
48	11.1	30.4	7.2	17.5		14.3	2.9	15.6	3.7	$\$ 7.1$	48
50	6.4	35.5	1.6	6.8		8.3	0.6	7.7	1.2	10.5	50
52	19.6	24.9	0.2	3.1		9.5	. 0.1	6.9	2.0	8.7	52
54	2.9	30.9	0.3	0.9		4.3	- 0.1	2.9	0.4	5.7	54
56	1.1	7.6	0.1			4.4	0.1	0.8	0.2	1.5	56
58		18.1		0.1				0.04		1.8	58
60		3.8								0.4	60
62		1.1								0.1	62
64		3.4								0.3	64
TOTAL	236.5	763.5	268.5	731.5	295.0	705.0	284.3	715.7	279.5	720.5	
N ${ }^{0}$ SAMPLES		9		24		12		36		45	
SAMPLING WEIGHT (kg)		860		3531		590		4121		9081	
N"F.MEASURED	241	860	1489	4139	330	948	1819	S081	2060	5947	
MEAN LENGTH(cm)	41.0	41.7	37.9	39.3	33.4	37.8	35.1	38.4	35.6	38.8	
MEAN WEIGHT (g)	596	653	441	499	283	453	344	472	365	491	
MEAN WEIGHT ($\mathrm{M}+\mathrm{F}$)		639		484		403		436		456	
DEPTHRANGE(m)		21314		5/1287		5/1314		/1314		/1314	

TABLE X-B: GREENLAND HALIBUT, DIV. $3 M, 1994$: length composition of the gillnet catches.

LENGTH GROUP	JUL.		SEP.		$\mathrm{OCT} .=4$ th Q.		3 rd Q .		TOTAL		LENGTH GROUP
	M	F	M	F	M	F	M	F	M	F	
38			2.8	7.2	2.7	6.9	0.1	0.3	1.2	3.0	38
40					8.5	20.3			3.5	8.3	40
42			16.3	33.7	27.7	57.1	0.6	1.3	11.7	24.2	42
44			25.0	45.0	42.1	76.0	1.0	' 1.8	17.9	32.2	44
46			42.4	107.6	47.1	119.6	1.7	4.3	20.3	51.6	46
48			47.0	123.0	32.9	86.2	1.9	4.9	14.6	38.2	48
50			44.2	95.8	28.9	62.7	1.8	3.8	12.9	27.9	50
52			12.1	37.9	9.1	28.4	0.5	1.5	4.0	12.5	52
54	20.0	144.5	16.0	74.0	9.5	44.0	19.8	141.7	15.6	101.7	54
56	121.9	66.6	7.1	72.9	5.3	54.4	117.4	66.9	71.4	61.8	56
58	60.2	234.8	2.6	- 67.4	2.0	53.2	57.9	228.2	35.0	156.4	58
60	135.1	67.8	1.2	38.8	1.6	53.1	129.8	66.7	77.2	61.4	60
62		10.3	0.4	19.6	0.7	37.9	0.01	10.7	0.3	21.8	62
64	125.8		1.5	48.5	1.0	32.6	120.9	1.9	71.7	14.5	64
66	12.9			10.0		6.6	12.4	0.4	7.3	2.9	66
68					0.1	9.3			0.04	3.8	68
70					0.3	8.2			0.1	3.4	70
72						3.2				1.3	72
74						7.5				3.1	74
76	.				0.2	4.3			0.1	1.8	76
78						5.4				2.2	78
80											80
82									-		82
84						0.9				0.4	84
86						1.3				0.5	86
88						1.3				0.5	88
TOTAL	475.9	524.1	218.4	781.6	219.6	780.4	465.7	534.3	364.8	635.2	
N ${ }^{\text {a }}$ SAMPLES		5		1		5		6		11	
SAMPLING WEIGHT (Kg)		112		130		790		242		1032	
N° F.MEASURED		66		100		500		166		666	
MEAN LENGTH(cm)	60.7	58.0	49.2	52.9	47.9	53.1	60.5	57.7	57.4	55.4	
MEAN WEIGHT (g)	2011	1737	1067	1366	985	1437	1994	1716	1745	1575	
MEAN WEIGHT ($\mathrm{M}+\mathrm{F}$)		1868		1301		1337		1845		1637	
DEPTH RANGE (m)		4/1001		$440 / 790$		1/1040		0/1001		$1 / 1040$	

TABLE XI-A: AMERICAN PLAICE, DIV. 3L, 1994: length composition of the trawl catches.
length composition of the trawl catches.
LENGTH
GROUP

TABLE XI - B: AMERICAN PLAICE, DIV. $3 N, 1994$: length composition of the trawl catches.

LENGTH	$M A R .=1 \mathrm{st} \mathrm{Q}$.		APR.		MAY		JUN.		2nd Q.		TOTAL LENGTH		
GROUP	M	F	M	F	M	\bar{F}	M	F	M	F	M	F	GROUP
22	0.6	20.0									0.1	5.4	22
24	8.8	52.2	1.5	7.9					1.3	6.5	3.3	18.7	24
26	21.0	47.3	32.4	31.4					26.8	26.0	25.2	31.7	26
28	34.0	506	44.3	55.1	52	6.0	6.6	3.7	37.5	46.5	36.6	47.6	28
30	37.7	75.3	44.1	68.3	33.2	72.0	49.9	84.0	43.1	69.5	41.6	71.1	30
32	39.1	57.8	52.9	82.2	51.9	112.7	67.5	105.6	53.5	87.1	49.6	79.3	32
34	33.4	485	57.4	91.3	29.4	130.7	70.3	97.4	54.6	96.5	48.9	83.7	34
36	34.1	48.7	48.4	94.6	206	123.5	32.1	1320	44.2	100.0	41.5	86.3	36
38	26.8	73.4	29.6	71.8	21.2	99.5	22.2	115.3	28.2	77.4	27.8	76.3	38
40	19.9	64.7	18.2	50.7	8.7	85.2	0.5	97.1	16.1	57.3	17.1	59.3	40
42	19.5	48.2	6.9	36.5	7.1	59.6		52.6	6.6	40.2	10.0	42.3	42
44	8.6	40.6	6.6	23.9	5.5	40.6		37.9	6.2	26.6	6.8	30.4	44
46	5.9	34.1	3.1	17.2	1.5	36.9		20.6	2.7	19.8	3.6	23.6	46
48	2.0	17.1	1.2	11.3	3.6	21.4		4.5	1.5	12.2	1.6	13.5	48
50	0.4	8.2	0.1	6.8		5.5			0.1	6.3	0.2	6.8	50
52	1.1	8.9		3.1		9.2				3.7	0.3	5.1	52
54		4.5		0.7		4.8				1.2		2.1	54
56		0.1		0.03		1.1				02		0.1	56
58		1.4		0.1		1.1				02		0.6	58
60		1.9										0.5	60
62		27		0.2		2.2				0.5		1.1	62
64		0.6		0.04						0.03		0.2	64
TOTAL	293.0	707.0	346.8	653.2	188.0	812.0	249.2	750.8	322.3	677.7	314.4	685.6	
N°. SAMPLES		19		25		15		6		46		65	
SAMPLING WETGHT(Kg)		1025		1929		604		261		2794		3819	
$N^{\circ} . F . M E A S U R E D$	594	- 1459	2056	3808	222	928	142	470	2420	5206	3014	6665	
MEAN LENGTH(cm)	34.9	36.3	34.1	36.2	35.5	38.3	34.1	37.5	34.2	36.6	34.4	36.5	
MEAN WEIGHT (g)	443	531	403	493	451	580	389	529	406	508	415	514	
MEAN WEIGHT(M+F)		505		462		556		494		475		483	
DEPTH RANGE (m)		$312 / 1240$		5/1287		0/1346		6/1229		5/1346		$2 / 1346$	

TABLE XI-C: AMERICAN PLAICE, DIV. 30, 1994: length composition of the trawl catches.

LENGTH GROUP	APR.		MAY		2nd Q. $=$ TOTAL.		LENGTH GROUP
	M	F	M	F	M	F	
24	0.8		,		0.5		24
26	10.9	13.7			- 7:1	8.9	26
28	42.6	35.5	1.3	10.9	28.3	26.9	28
30	48.8	77.3	25.3	71.3	40.7	75.2	30
32	71.0	101.8	34.7	133.7	58.4	112.9	32
34	67.9	78.1	10.9	174.5	48.1	111.6	34
36	46.5	94.6	23.8	159.8	38.6	117.2	36
38	29.0	81.5	1.3	132.4	19.4	99.2	38
40	13.4	85.7	2.6	80.8	9.6	84.0	40
42	6.7	28.2	5.9	41.7	6.4	32.9	42
44	5.9	12.5	4.7	43.8	5.5	23.4	44
46		17.3		15.5		16.7.	46
48		9.0		14.7		10.9	48
50		9.0		3.6		7.1	50
52		8.2		2.3		6.1	52
54		4.1				2.7	54
56				2.3		0.8	56
58							58
59				2.3	-	0.8	59
TOTAL	343.7	656.3	110.4	889.6	262.7	737.3	
No. SAMPLES		3		3		6	
SAMPLING WEIGHT (Kg)		163		138		301	
N°.F.MEASURED	159	331	35	247	194	578	
MEAN LENGTH(cm)	34.2	36.9	34.9	37.4	34.3	37.1	
MEAN WEIGHT (g)	399	520	424	528	403	523	
MEAN WEIGHT ($\mathrm{M}+\mathrm{F}$)		478		517		492	
DEPTH RANGE (m)		353/751		253/578		253/751	

TABLE XII : RED HAKE DIV. 30 1994:

| | length composition of the gillnet catches.
 LENGTH
 GROUP | JUN. $=$ TOTAL |
| :---: | :---: | :---: | :---: |

N$^{\circ}$. SAMPLES	5
SAMPLING WEIGHT (kg)	259
No. MEASURED	117
MEAN LENGTH (cm)	59.6
DEPTH RANGE (m)	$157 / 706$

TABLE XIII: ROUGHEAD GRENADIER, DIV. $3 \mathrm{M}, 1994$: length composition of the gillnet catches.

LENGTH GROUP	JUL.		AUG.		3rd Q. $=$ TOTAL		LENGTH GROUP
	M	F	M	F	M	F	
48	22.2	11.1			11.6	5.8	48
49							49
50	177.8	88.9	96.4	144.6	138.7	115.6	50
51				24.1		11.6	51
52	22.2	111.1			11.6	57.8	52
53				156.6		75.1	53
54	144.4	77.8	-	168.7	75.1	121.4	54
55			216.9	24.1	104.0	11.6	55
56							56
57	44.4	- 22.2			23.1	11.6	57
58							58
59			24.1	96.4	11.6	46.2	59
60							60
61	111.1				57.8		61
62							62
63							63
64		166.7				86.7	64
65			12.0	24.1	5.8	11.6	65
66							66
67							67
68							68
69							69
70				12.0		5.8	70
TOTAL	522.2	477.8	349.4	650.6	439.3	560.7	
No. SAMPLES		5		5		10	
SAMPLING WEIGHT (Kg)		100		78		178	
N${ }^{\circ}$. F.MEASURED $^{\text {a }}$	43	47	29	54	72	101	
MEAN LENGTH(cm)	54.5	56.8	54.7	54.7	54.6	55.6	
DEPTH RANGE (m)		0/1001		9/1006		9/1006	

TABLE XIV-A: COD, DIV. 3M, 1994: age composition (\%\%), mean length (cm) and mean weight (Kg) at age of the trawl catches

AGE	MAR. $=1$ st Q .			$\mathrm{JUN} .=2 \mathrm{nd} \mathrm{Q}$.			$D E C .=4$ h Q.			TOTAL			AGE
	AGE COMP	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{aligned} & \text { AGE } \\ & \text { COMP. } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{aligned} & \mathrm{AGE} \\ & \mathrm{COMP} \end{aligned}$	MEAN LENGTH	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{aligned} & \text { AGE } \\ & \text { COMP. } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	MEAN WEIGHT	
1							0.1	25.0	0.142	0.003	25.0	0.142	1
2	42.4	32.2	0.314	47.0	31.6	0.296	25.0	30.8	0.279	45.6	31.6	0.295	2
3	811.5	38.1	0.544	758.4	39.8	0.628	902.6	40.3	0.644	767.4	39.8	0.628	3
4	98.7	49.8	1.244	191.0	49.2	1.201	71.5	46.9	1.047	183.3	49.2	1.198	4
5	0.9	46.8	1.008	3.6	53.1	1.592	0.8	48.7	1.179	3.5	530	1.585	5
6											53.		6
7													6 7
8	46.5	88.0	7.258							0.3	88.0	7.258	8
TOTAL	1000			1000			1000	- .		1000			
No FISH	GED									1664	\checkmark		

TABLE XIV-B: COD, DIVISION $3 N, 1994$: age composition ($\%$), mean length (cm) and mean weight (Kg) at age of the trawl catches.

AGE	FEB.			MAR.			APR.			1 st Q .			TOTAL			AGE
	AGE COMP.	MEAN LENGTH	MEAN WEIGHT	AGE COMP	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{gathered} \text { AGE } \\ \text { COMP. } \end{gathered}$	MEAN LENGTH	MEAN	$\begin{aligned} & \text { AGE } \\ & \text { COMP. } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	MEAN WEIGHT	$\begin{gathered} \text { AGE } \\ \text { COMP. } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	
3	8.8	32.4	0.284	68.1	32.1	0.276	20.3	33.7	0.318	62.4	32.1	0.277	60.6	32.2	0.277	3
4	558.9	39.5	0.526	622.6	37.5	0.455	518.3	38.3	0.484	616.4	37.7	0.461	612.2	37.7	0.462	4
5	388.7	45.9	0.844	260.0	46.2	0.866	339.8	47.3	0.931	272.4	46.2	0.863	275.3	46.2	0.867	5
6.	24.2	52.9	1.317	26.5	54.9	1.470	59.6	56.4	1.595	26.3	54.7	1.456	27.7	54.9	1.469	6
7	17.6	56.1	1.577	20.5	56.9	1.634	51.7	58.7	1.807	20.2	56.8	1.629	21.5	57.0	1.647	7
8	0.9	72.0	3.354	1.2	65.7	2.539	5.9	67.8	2.785	1.1	66.2	2.601	1.3	66.5	2.636	8
9	0.9	59.1	1.806	1.0	61.9	2.118	3.8	65.7	2.543	1.0	61.7	2.091	1.1	62.2	2.156	9
10 11				0.03	79.0	4.399				0.03	79.0	4.399	0.03	79.0	4.399	10
11 12				0.1	94.0	7521				0.1	94.0		0.1	940	7.521	11
13						7.521				0.1	94.0	7.521	0.1			12
14				0.05	70.0	3.029	0.6	70.0	3.029	0.04	70.0	3.029	0.1	70.0	3.029	14
TOTAL	1000			1000			1000			1000			1000			
No FISH	ED								\because				310			

TABLE XIV-C : COD, DIV. 30, 1994:

TABLE XIV-D : COD DIV, 3M, 1994: age composition (\%。) mean length (cm) and mean weight (Kg) at age of the gillnet catches.

AGE	SEP. $=1$ st Q .			Nov.			DEC.			4ih Q .			TOTAL			AGE
	AGE COMP.	MEAN LENGTH	MEAN WEIGHT	AGE COMP.	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{gathered} \text { AGE } \\ \text { COMP. } \end{gathered}$	MEAN LENGTH	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{aligned} & \mathrm{AGE} \\ & \text { COMP. } \end{aligned}$	MEAN LENGTH	MEAN WEIGHT	$\begin{gathered} \text { AGE } \\ \text { COMP. } \end{gathered}$	MEAN LENGTH	MEAN WEIGHT	
3	25.1	46.9	1.013	59.3	45.7	0.940	10.2	47.0	1.026	38.2	45.9	0.950	38.1	45.9	0.950	3
4	480.9	57.6	1.965	601.8	57.7	1.968	261.0	59.0	2.113	455.2	58.0	2.004	455.3	58.0	2.004	4
5	215.8	65.9	2.955	144.8	64.1	2.713	340.5	66.9	3.079	229.0	65.9	2.947	228.9	65.9	2.947	5
6	147.6	69.8	3.532	50.1	70.1	3.572	312.8	69.4	3.451	163.1	69.5	3.472	163.0	69.5	3.472	6
7	13.0	74.6	4.331	5.1	74.7	4.352	11.8	73.5	4.126	8.0	73.9	4.208	8.0	73.9	4.209	7
8	111.9	78.8	5.152	74.5	84.1	6.405	51.3	79.6	5.388	64.5	82.6	6.057	64.7	82.6	6.051	8
9	3.7	80.6	5.500	41.6	92.5	8.526	9.1	90.2	7.889	27.6	92.2	8.436	27.5	92.2	8.435	9
10	1.9	82.0	5.798	18.0	101.7	11.472	3.5	98.9	10.543	11.8	101.3	11.354	11.7	101.3	11.350	10
11				- .												11
12				4.8	120.1	19.213				2.7	120.1	19.213	2.7	120.1	19.213	12
TOTAL	1000			1000			1000			1000			1000			
No FISH	GED											\cdot	1764	-		

TABLE XIV - E : COD, DIV. 30, 1994:
age composition (\%o), mean length (cm) and
mean weight (Kg) at age of the gillnet catches.

TABLE XV - A: REDFISH S.mentella (males), DIV. 3M, 1994: age composition (\%), mean length (cm) and mean weight (Kg) at age of the trawl catches.

TABLE XV- B: REDFISH S.mentella (females), DIV. 3M, 1994: age composition (\%), mean length (cm) and mean weight (Kg) at age of the trawl catches

AGE	MAR. $=$ TOTAL			AGE
	AGE COMP.	MEAN LENGTH	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	
5	7.8	20.5	0.126	5
6	65.6	21.1	0.139	6
7	200.3	23.3	0.187	7
8	123.6	25.9	0.257	8
9	75.9	26.9	0.292	9
10	72.7	27.6	0.317	10
11	36.3	. 30.6	0.425	11
12	26.8	31.3	0.452	12
13	13.7	30.6	0.433	13
14	11.8	29.5	0.385	14
15	1.4	33.1	0.536	15
16	1.4	33.1	0.536	16

TABLE XV - C : REDFISH S.mentella (males), DIV. $3 \mathrm{M}, 1994$: age composition (\%), mean length (cm) and mean weight (Kg) at age of the gillnet catches.

AGE	OCT.			NOV.			4th Q. = TOTAL			AGE
	AGE COMP.	MEAN LENGTH	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{aligned} & \text { AGE } \\ & \text { COMP. } \end{aligned}$	MEAN LENGTH	$\begin{gathered} \text { MEAN } \\ \text { WEIGHT } \end{gathered}$	$\begin{aligned} & \text { AGE } \\ & \text { COMP. } \end{aligned}$	MEAN LENGTH	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	
6	2.3	35.5	0.632	1.5	35.5	0.632	1.9	35.5	0.632	6
7	2.0	32.3	0.481	1.0	32.5	0.487	1.5	32.4	0.483	7
8	1.1	27.0	0.282	0.7	28.5	0.330	0.9	27.5	0.300	8
9	5.1	28.4	0.326	3.9	28.8	0.340	4.5	28.5	0.332	9
10	5.3	29.5	0.367	3.8	29.0	0.346	4.6	29.3	0.359	10
11	18.9	32.1	0.480	4.8	33.2	0.534	12.2	32.3	0.490	11
12	18.2	31.9	0.463	4.6	32.6	0.493	11.8	32.0	0.468	12
13	36.2	33.0	0.513	16.0	33.8	0.546	26.6	33.2	0.522	13
14	30.0	33.7	0.544	15.7	34.0	0.559	23.2	33.8	0.549	14
15	51.3	35.9	0.656	30.0	35.8	0.651	41.2	35.9	0.654	15
16	48.4	35.8	0.651	26.8	35.7	0.649	38.2	35.8	0.650	16
17	23.1	36.6	0.696 .	16.6	37.5	0.744	20.0	36.9	0.715	17
18	13.8	37.5	0.745	12.9	37.8	0.764	13.4	37.6	0.754	18
19	37.8	37.5	0.743	25.4	37.7	0.755	31.9	37.6	0.748	19
20	16.1	37.5	0.744	14.0	37.8	0.764	15.1	37.6	0.753	20
21	21.6	40.5	0.942	52.6	41.3	0.989	36.3	41.0	0.974	21
$22+$	162.6	41.7	1.026	247.7	42.4	1.080	202.9	42.1	1.057	22+
TOTAL	494.0			477.9			486.4			
N^{0} FISH AGED							370			

TABLE XV - D : REDFISH S.mentella (females), DIV. 3M, 1994: age composition (\%), mean length (cm)

AGE	OCT.			NOV.			4th $\mathrm{Q}=$ TOTAL			AGE
	AGE COMP.	MEAN LENGTH	$\begin{gathered} \text { MEAN } \\ \text { WEIGHT } \end{gathered}$	AGE COMP.	MEAN LENGTH	$\begin{gathered} \text { MEAN } \\ \text { WEIGHT } \end{gathered}$	$\begin{gathered} \mathrm{AGE} \\ \mathrm{COMP} . \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { FNGTH } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { WEIGHT } \end{gathered}$	
6	0.1	28.5	0.341	0.2	28.5	0.341	0.1	28.5	0.341	6
7	1.1	31.8	0.477	0.4	32.5	0.507	0.8	32.0	0.485	7
8	1.5	27.9	0.321	0.3	28.5	0.341	0.9	28.0	0.324	8
9	2.4	28.6	0.347	1.4	28.8	0.354	1.9	28.7	0.349	9
10	4.9	29.3	0.371	4.8	29.0	0.358	4.8	29.1	0.365	10
11	29.4	31.8	0.474	6.8	32.5	0.509	18.7	31.9	0.480	11
12	39.8	32.9	0.527	14.6	33.9	0.578	27.9	33.1	0.540	12
13	22.0	33.4	0.550	14.0	33.5	0.554	18.3	33.4	0.551	13
14	21.8	33.9	0.579	10.8	34.3	0.601	16.6	34.0	0.586	14
15	30.9	36.3	0.713	20.5	36.5	0.729	26.0	36.4	0.719	15
16	26.5	35.9	0.691	14.7	35.9	0.687	20.9	35.9	0.689	16
17	39.3	37.4	0.776	31.9	37.7	0.796	35.8	37.5	0.785	17
18	43.3	37.7	0.796	30.8	38.0	0.812	37.4	37.8	0.802	18
19	61.1	38.4	0.849	74.5	39.6	0.927	67.5	39.0	0.890	19
20	47.0	40.0	0.954	72.0	40.7	1.002	58.9	40.4	0.982	20
21	11.8	40.0	0.946	17.6	40.2	0.962	14.6	40.1	0.955	21
22	7.2	41.5	1.060	19.6	41.5	1.060	13.1	41.5	1.060	22
23	30.3	40.9	1.019	52.2	41.5	1.065	40.7	41.3	1.047	23
24	54.3	43.5	1.223	77.7	43.6	1.231	65.4	43.5	1.228	24
$25+$	31.4	44.8	1.350	57.2	46.1	1.472	43.6	45.6	1.426	$25+$
TOTAL	506.0			522.1			513.6			
N ${ }^{0}$ FISH AGED							362			

TABLE XV - E: REDFISH S.marinus (males), DIV. 3M, 1994: age composition (\%), mean length (cm) and mean weight (Kg) at age of the trawl catches

AGE	JUN. = TOTAL			AGE
	AGE COMP	$\begin{gathered} \text { MEAN } \\ \text { LENGTH } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	
5	0.1	20.2	0.120	5
6	8.0	21.7	0.149	6
7	28.9	24.4	0.215	7
8	25.2	26.1	0.256	8
9	28.1	28.5	0.331	9
10	35.2	30.5	0.402	10
11	24.4	31.5	0.444	11
12	43.9	32.5	0.488	12
13	18.6	32.6	0.494	13
14	35.8	35.3	0.626	14
15	9.3	35.9	0.655	15
16	19.5	35.4	0.634	16
17	5.9	39.9	0.896	17
18	7.8	39.2	0.850	18
19				19
$20+$	10.4	43.4	1.148	$20+$
TOTAL	301.2			
N° FISH AGED	318			

TABLE XV - F: REDFISH S.marinus (females), DIV. 3M, 1994 age composition (\%), mean length (cm) and mean weight (Kg) at age of the trawl catches.

AGE	JUN $=$ TOTAL			AGE
	$\begin{aligned} & \mathrm{AGE} \\ & \mathrm{COMP} \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	
4	3.7	30.5	0.418	4
5	6.5	19.5	0.109	5
6	31.2	20.3	0.123	6
7	44.3	25.0	0.243	7
8	56.6	26.4	0.273	8
9	53.6	28.6	0.345	9
10	49.0	29.6	0.384	10
11	34.7	31.5	0.462	11
12	37.6	33.8	0.575	12
13	77.9	36.2	0.714	13
14	36.7	34.6	0.615	14
15	90.8	39.0	0.889	15
16	21.6	44.5	1.309	16
17				17
18	42.2	40.9	1.019	18
19	50.6	42.8	1.166	19
20	33.3	44.9	1.363	20
21				21
22	8.2	45.5	1.400	22
23	4.1	45.5	1.400	23
24	4.6	48.5	1.698	24
$25+$	11.5	47.8	1.627	25+
TOTAL	698.8			
$N^{\circ} \mathrm{FISH}$ AGED	305			

AGE	MAR $=1$ st Q .			APR.			JUN.			2nd Q.			TOTAL			AGE
	AGE COMP	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	AGE COMP.	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{aligned} & \text { AGE } \\ & \text { COMP } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{aligned} & \text { AGE } \\ & \text { COMP } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	AGE COMP.	MEAN LENGTH	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	
3	4.2	36.1	0.356	6.5	36.0	0.353	7.6	35.7	0.344	7.1	35.8	0.347	6.8	35.9	0.347	3
4	43.7	35.3	0.341	75.4	34.5	0.315	161.1	31.9	0.240	126.6	32.5	0.258	118.3	32.6	0.261	4
5	76.6	38.4	0.462	100.8	37.1	0.403	101.1	34.8	0.318	100.9	35.7	0.352	98.5	35.9	0.361	5
6	79.6	43.4	0.684	72.5	41.7	0.592	19.9	37.7	0.417	41.1	40.6	0.541	44.9	41.1	0.567	6
7	17.9	46.5	0.883	13.0	42.5	0.656	5.4	35.8	0.349	8.5	39.9	0.538	9.4	41.2	0.604	7
8	14.6	53.2	1.298	0.3	54.0	1.367			0.000	0.1	54.0	1.367	1.6	53.3	1.303	8
TOTAL	236.5			268.5			295.0			284.3			279.5			
N° FISH AGED													102			
TABLE XVI-B ; GREENLAND HALIBUT (females), DIVISION 3N, 1994: age composition (\%o), mean length (cm) and mean weight (Kg) at age of the trawl catches.																
AGE	MAR. $=1 \mathrm{st}$ Q			APR.			JUN.			2nd Q.			TOTAL			AGE
	AGE COMP.	MEAN LENGTH	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	AGE COMP.	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { WEIGHT } \end{gathered}$	AGE COMP.	MEAN LENGTH	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	AGE COMP.	MEAN LENGTH	MEAN WEIGHT	AGE COMP.	MEAN LENGTH	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	
3	5.1	33.0	0.263	5.7	33.0	0.263	36.1	29.7	0.187	23.8	30.0	0.194	22.0	30.1	0.196	3
4	134.5	34.0	0.298	138.3	34.4	0.310	194.7	33.2	0.275	172.0	33.6	0.286	168.2	33.6	0.287	4
5	238.6	37.2	0.399	286.8	37.9	0.423	247.0	37.0	0.393	263.1	37.4	0.406	260.6	37.4	0.406	5
6	136.2	41.7	0.595	174.1	41.3	0.567	120.2	41.1	0.563	141.9	41.2	0.565	141.3	41.2	0.568	6
7	136.9	47.0	0.878	112.4	45.3	0.767	84.8	45.9	0.806	95.9	45.6	0.788	100.0	45.8	0.800	7
8	66.7	51.8	1.198	13.5	49.1	1.012	18.3	50.7	1.119	16.4	50.2	1.083	21.4	50.7	1.119	8
9	20.3	57.2	1.662	0.5	53.6	1.332	2.7	55.0	1.458	1.8	54.8	1.444	3.7	56.1	1.565	9
10	25.2	59.1	1.865	0.3	55.7	1.513	1.1	55.0	1.450	0.8	55.1	1.460	3.2	58.2	1.779	10
TOTAL	763.5			731.5			705.0			715.7			720.5			
$N^{\circ} \mathrm{FISH}$	ED												156			

AGE	MAY = TOTAL			AGE
	AGE COMP.	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	MEAN WEIGHT	
5	2.0	32.3	0.324	5
6	9.1	33.0	0.352	6
7	28.0	33.9	0.379	7
8	46.4	34.5	0.401	8
9	70.0	37.0	0.502	9
10	19.6	40.0	0.637	10
11	9.2	41.8	0.714	11
12	6.5	43.2	0.788	12
13	1.5	41.9	0.717	13
TOTAL	192.4			
N ${ }^{\circ}$ FISH AGED	263			
TABLE XVII - B: AMERICAN PLAICE (females), DIV. 3L, 1994 age composition (\%o), mean length (cm) and mean weight (Kg) at age of the trawl catches.				
	MAY $=$ TOTAL			
AGE	$\begin{aligned} & \text { AGE } \\ & \text { COMP. } \end{aligned}$	MEAN LENGTH	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	AGE
5	5.4	32.6	0.337	5
6	26.2	33.2	0.354	6
7	97.1	34.6	0.402	7
8	156.5	36.7	0.490	8
9	250.3	38.9	0.581	9
10	99.6	41.8	0.726	10
11	54.2	44.0	0.839	11
12	56.3	46.3	0.993 .	12
13	20.2	48.1	1.101	13
14	13.5	51.8	1.384	14
15	5.7	52.3	1.403	15
16	5.9	53.4	1.515	16
17+	16.8	55.6	1.693	$17+$
TOTAL	807.6			
N ${ }^{\text {F FISH AGED }}$	535			

TABLE XVII-C: AMERICAN PLAICE (males), DIV. 3 N , 1994: age composition (\%o), mean length (cm) and mean weight (Kg) at age of the traw catches.

AGE	MAR = 1 st Q .			APR.			MAY			JUN.			2nd Q			TOTAL			AGE
	$\begin{aligned} & \mathrm{AGE} \\ & \mathrm{COMP} . \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{aligned} & \text { AGE } \\ & \text { COMP. } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{aligned} & \mathrm{AGE} \\ & \text { COMP. } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { LENGTH } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	AGE COMP	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	AGE COMP.	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { WEIGHT } \end{gathered}$	AGE COMP.	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	
5	26.5	27.3	0.197	26.6	28.1	0.214	3.7	31.4	0.298	5.0	31.4	0.298	22.7	28.2	0.217	23.7	27.9	0.211	5
6	34.0	29.8	0.260	44.6	29.8	0.259	14.9	32.0	0.318	21.8	32.0	0.318	39.8	30.0	0.264	38.3	29.9	0.263	6
7	45.6	32.1	0.325	61.8	32.2	0.329	33.1	33.0	0.350	51.7	33.2	0.356	57.7	32.3	0.332	54.5	32.3	0.331	7
8	56.0	33.8	0.381	76.0	33.7	0.377	48.4	33.9	0.380	74.2	33.9	0.379	72.5	33.7	0.377	68.1	33.7	0.378	8
9	79.0	37.3	0.519	97.4	36.5	0.480	58.4	36.4	0.480	79.8	35.1	0.420	91.7	36.4	0.478	88.3	36.6	0.487	9
10	25.6	40.7	0.671	23.6	39.4	0.609	16.9	40.1	0.648	13.6	37.0	0.493	22.3	39.4	0.609	23.2	39.8	0.627	10
11	12.9	42.0	0.730	9.3	41.0	0.677	6.3	41.4	0.697	3.0	38.3	0.543	8.6	41.0	0.676	9.8	41.3	0.695	11
12	11.4	45.1	0.915	6.3	43.9	0.830	5.4	45.2	0.911	0.1	41.0	0.668	5.8	44.0	0.839	7.3	44.5	0.871	12
13	1.9	42.1	0.723	1.2	41.6	0.699	0.8	42.0	0.718	0.02	41.0	0.668	1.1	41.6	0.701	1.3	41.8	0.710	13
total	293.0			346.8			188.0			249.2			322.3			314.4			
No FISH	ED															263			

TABLE XVII-D : AMERICAN PLAICE (females), DIV. 3N, 1994: age composition (\%o) mean length (cm) and mean weight (Kg) at age of the trawl catches.

AGE	MAR $=1 \mathrm{st} \mathrm{Q}$			APR.			MAY			JUN.			2nd 0.			TOTAL			AGE
	$\begin{aligned} & \bar{A} \bar{G} E \\ & C O M P . \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{aligned} & \text { AGE } \\ & \text { COMP. } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{aligned} & \text { AGE } \\ & \text { COMP. } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	AGE COMP.	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{aligned} & \text { AGE } \\ & \text { COMP. } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{aligned} & \text { AGE } \\ & \text { COMP. } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	
5	70.6	27.1	0.194	39.5	28.6	0.227	13.0	31.7	0.309	13.3	31.5	0.303	34.9	28.8	0.233	44.4	28.1	0.216	
6	61.4	28.8	0.238	50.8	30.7	0.284	39.5	32.7	0.337	39.6	32.6	$0: 334$	48.8	31.0	0.292	52.2	30.3	0.275	6
7	137.0	30.1	0.278	130.7	32.4	0.336	129.2	33.9	0.381	122.6	33.9	0.379	130.1	32.7	0.344	131.9	32.0	0.325	7
8	110.1	35.3	0.442	142.2	35.2	0.432	176.7	35.9	0.459	173.4	36.0	0.461	148.1	35.3	0.438	137.9	35.3	0.439	8
9	147.9	39.1	0.593	166.8	38.0	0.544	240.4	38.3	0.558	240.6	38.3	0.557	179.6	38.1	0.547	171.1	38.3	0.558	9
10	63.5	42.3	0.752	55.1	40.9	0.682	86.8	41.3	0.704	81.6	40.6	0.665	60.4	40.9	0.685	61.2	41.3	0.704	10
11	40.5	44.3	0.856	27.1	43.8	0.827	47.1	44.1	0.845	39.7	43.1	0.786	30.2	43.8	0.828	33.0	44.0	0.837	11
12	39.7	46.1	0.972	24.9	45.5	0.934	44.3	45.8	0.954	29.6	43.8	0.825	27.5	45.5	0.932	30.8	45.7	0.946	12
13	13.6	47.9	1.091	8.2	47.5	1.058	14.2	47.4	1.052	6.8	45.3	0.909	8.9	47.4	1.051	10.1	47.6	1.066	13
14	7.6	50.2	1.265	3.7	49.0	1.162	7.8	50.1	1.260	2.6	46.3	0.966	4.1	49.2	1.179	5.1	49.6	1.213	14
15	3.6	539	1.569	1.5	51.4	1.338	3.1	52.5	1.437	0.2	49.0	1.148	1.6	51.7	1.361	2.2	52.7	1.453	15
16	33	53.0	1.496	1.1	50.1	1.249	3.1	52.1	1.413	0.6	47.0	1.011	1.3	50.6	1.292	1.8	51.8	1.391	16
17+	8.5	58.0	1.952	1.6	54.2	1.582	6.9	56.9	1.837				2.2	55.2	1.681	3.9	56.9	1.840	$17+$
TOTAL	707.0			653.2			812.0			750.8			677.7			685.6			
No FISH																535			

TABLE XVII-E : AMERICAN PLAICE (males), DIV. 30, 1994: age composition (\%o), mean length (cm) and mean weight (Kg) at age of the trawl catches.

AGE	APR.			MAY			2nd Q = TOTAL			AGE
	AGE COMP.	MEAN LENGTH	$\begin{gathered} \text { MEAN } \\ \text { WEIGHT } \end{gathered}$	$\begin{aligned} & \text { AGE } \\ & \text { COMP. } \end{aligned}$	MEAN LENGTH	MEAN WEIGHT	AGE COMP.	MEAN LENGTH	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	
5	17.1	29.0	0.236	2.2	31.8	0.310	11.9	29.2	0.241	5
6	39.0	30.5	0.279	9.0	31.6	0.304	28.6	30.7	0.281	6
7	65.4	32.6	0.338	21.8	$33.0{ }^{\circ}$	0.349	50.3	32.6	0.340	7
8	85.4	33.8	0.377	30.7	33.7	0.372	66.4	33.7	0.376	8
9	101.7	35.9	0.457	33.5	35.8	0.457	78.1	35.9	0.457	9
10	22.3	38.7	0.574	7.2	39.8	0.632	17.0	38.9	0.582	10
11	8.0	40.5	0.650	3.5	41.7	0.714	6.4	40.7	0.662	11
12	3.8	42.5	0.750	2.0	43.4	0.795	3.2	42.7	0.760	12
13	1.0	41.7	0.706	0.4	42.5	0.743	0.8	41.9	0.713	13
TOTAL	343.7			110.4			262.7			
$\mathrm{N}^{\circ} \mathrm{FISH}$	ED						263			

TABLE XVII - F : AMERICAN PLAICE (females), DIV. 30, 1994: age composition (\%), mean length (cm) and mean weight (Kg) at age of the trawl catches.

AGE	APR.			MAY			2nd $Q=$ TOTAL			AGE
	AGE COMP.	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	AGE COMP	$\begin{aligned} & \text { MEAN } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	$\begin{aligned} & \text { AGE } \\ & \text { COMP. } \end{aligned}$	MEAN LENGTH	$\begin{aligned} & \text { MEAN } \\ & \text { WEIGHT } \end{aligned}$	
5	24.2	29.7	0.255	14.8	31.8	0.312	20.9	30.2	0.269	5
6	46.1	31.5	0.305	45.5	32.8	0.341	45.9	31.9	0.317	6
7	123.1	33.0	0.352	157.2	34.0	0.384	135.0	33.4	0.365	7
8	147.2	35.4	0.442	216.6	35.9	0.455	171.3	35.6	0.447	8
9	180.6	38.1	0.544	279.9	37.9	0.535	215.1	38.0	0.540	9
10	60.5	40.6	0.667	83.9	40.4	0.656	68.6	40.5	0.662	10
11	26.9	43.1	0.792	40.2	43.5	0.808	31.5	43.3	0.799	11
12	26.2	45.8	0.960	32.3	44.7	0.883	28.3	45.3	0.929	12
13	8.6	48.5	1.130	8.3	46.8	1.012	8.5	47.9	1.090	13
14	4.6	50.3	1.258	4.3	49.0	1.175	4.5	49.9	1.230	14
15	2.5	52.1	1.389	1.5	52.9	1.482	2.2	52.3	1.412	15
16	2.1	52.2	1.411	0.6	47.9	1.077	1.6	51.6	1.364	16
17+	3.6	53.4	1.495	4.5	58.0	1.937	3.9	55.2	1.670	$17+$
TOTAL	656.3			889.6			737.3			
$\mathrm{N}^{\circ} \mathrm{FISH}$		1					535			

APPENDIX

COD, divisions 3L, 3N and 30

```
log w = -5.2106+3.034log| (Hodder, 1964)
```

COD, division 3M
3.1249

$$
w=0.006065 * 1 \quad \text { (Vazquez, 1994) }
$$

REDFISH, divisions 3L, 3M, 3N and 30
2.9548
males $w=0.01659 *$
3.0210
females $w=0.01372^{*}$ (Power and Atkinson, 1990)

AMERICAN PLAICE, divisions $3 \mathrm{~L}, 3 \mathrm{~N}$ and 30
$\log w=-5.080+3.041 \log I \quad(P i t t, 1978)$

GREENLAND HALIBUT, division 3N
3.3454
$w=0.002184^{*} \quad$ (Bowering and Stansbury, 1984)

GREENLAND HALIBUT, division 3M
3.3339
$w=0.002985^{*}$
(Vazquez, 1994)

Fig.1: Breakdown of the 1994 Portuguese directed effort by species

Fig.2: Breakdown of the 1994 Portuguese directed effort by division

CPUE (ton/h)

Div. 3M

Div. 3NO

Fig 3: Cod trawl catch rates by division, 1988 1994.

Fig. 3A: Comparison between 3 M cod commercial catch rates and $3 \mathrm{M} \operatorname{cod}$ trawlable biomass indices from the EC surveys (relative values presented as a proportion of the highest value of each series)

Fig. 4A: Comparison between 3 M redfish commercial catch rates and 3 M redfish trawlable biomass indices from the EC surveys (relative values presented as a proportion of the highest value of each series)

Div. 3L

Div. 3N

Div. 3LN

Fig 5: Greenland halibut trawl catch rates by division, 1988-1994.

Fig. 5A. American plaice trawl catch rates in Div. 3LNO.

Fig. 10 - Annual length composition of Cod in Division 3N, trawl fishery in 1994.

Fig. 11 - Annual age composition of Cod in Division 3N, trawl fishery in 1994.

Fig. 12 - Annual length composition of Redfish, S.mentella in Division 3L,trawl fishery in 1994.

Fig. 13 - Annual length composition of Redfish, S.mentella in Division 3N, trawl fishery in 1994.

Fig. 14 - Annual length composition of Redfish, S.mentella in Division 30, trawl fishery in 1994.

Fig. 16 - Annual length composition of Redfish, S.mentella in Division 3M, gillnet fishery in 1994.

Fig. 18 - Annual age composition of Redfish, S.mentella in Division 3M, gillnet fishery in 1994.

Fig. 23 - Annual length composition of Greenland halibut, in Division 3N, trawl fishery in 1994.

Fig. 24 - Annual age composition of Greenland halibut, in Division 3N, trawl fishery in 1994.

Fig. 25 - Annual length composition of Greenland halibut, in Division 3M, gillnet fishery in 1994.

Fig. 30 - Annual length composition of American plaice, in Division 30, trawl fishery in 1994.

Fig. 31 - Annual age composition of American plaice, in Division 30, trawl fishery in 1994.

[^0]: 3
 410
 426
 34.5
 695
 629
 $204 / 303$
 $\begin{array}{lr}\text { TOTAL } & 301.2 \\ \text { No. SAMPLES } & \\ \text { SAMPLING WEIGHT(Kg) } & \\ \text { No. F.MEASURED } & 200 \\ \text { MEAN LENGTH }(\mathrm{cm}) & 31.5 \\ \text { MEAN WEIGHT (g) } & 477 \\ \text { MEAN WEIGHT }(\mathrm{M}+\mathrm{F}) & \\ \text { DEPTH RANGE }(\mathrm{m}) & \end{array}$

