SCIENTIFIC COUNCIL MEETING - JUNE 1999

Fishery Effects on Spawner Escapement in the Northwest Atlantic Illex illecebrosus Stock

by
Lisa C. Hendrickson
U.S. National Marine Fisheries Service
166 Water Street
Woods Hole, MA 0543

Abstract

Trends in relative fishing mortality rates in relation to spawner biomass levels, during 1983-1997, show that spawner biomass is low, generally below average, when relative fishing mortality rates for the stock are high. This indicates that fishing mortality rates from all Subareas (SA 2-6) have an effect on the spawner escapement biomass of this stock. A prolonged decline in the mean weights of Illex squid caught in the SA $5+6$ and the SA 4 surveys is evident from annual data. Mean weights of squid from both surveys declined in 1982, following the period of high landings which occurred in SA 3+4 during 1976-1981, and have remained low since this time

Regardless of the autumn spawning migration route, an adequate level of spawner escapement from all fishery areas is required to maintain recruitment to the stock during the subsequent year. During the past ten years, management of the Illex argentinus fishery in the Falkland Islands has been based on maintaining a target of 40% proportional escapement which, under average recruitment, implies absolute escapement above a threshold minimum spawning stock biomass

During the high productivity period, 1976-1981, the SA 4 July survey biomass index averaged $12.6 \mathrm{~kg} /$ tow and abundance averaged 74.8 squid per tow. The low productivity period which occurred prior to this time (1970-1975) was also a period of low relative fishing mortality in Subareas $3+4$, so survey indices from this period could be used as a basis for comparison with the high productivity regime. During 1970-1975, the average biomass index was $2.0 \mathrm{~kg} / \mathrm{tow}$ and the average abundance index was 18.3 squid per tow. This represents an 84% difference in mean weight per tow and 75% difference in mean number per tow. Mean weights of squid caught in this survey during the current low productivity period (75 g) are 50% lower than those during the high productivity period $(150 \mathrm{~g})$. Given these data, a change to a high productivity regime could be defined as an 80% increase, during one year, of the SA 4 July survey biomass and abundance indices with indices at the same value or higher during the subsequent year. In addition, there should be a 50% increase in survey mean weights during the same two-year period.

Introduction

Based on a review of the biology and population dynamics of northern shortfin squid (Illex illecebrosus) in the northwest Atlantic Ocean, this species is now considered to constitute a unit stock throughout its range in NAFO Subareas 2-6 (Dawe and Hendrickson 1998; NAFO 1998). As such, fishing mortality rates in SA 3+4 must be considered in relation to those in SA $5+6$ with respect to ensuring that the annual level of spawner escapement is sufficient to provide a high probability of successful recruitment during the subsequent year. Sufficient spawner escapement is particularly important for an annual species such as Illex illecebrosus in that recruitment is highly variable and overfishing during a year of poor recruitment
could lead to stock collapse. During the past ten years, the management of another ommastrephid squid fishery, the Illex argentinus fishery in the Falkland Islands, has been based on maintaining a target of 40% proportional escapement, which under average recruitment, implies absolute escapement above a threshold minimum spawning stock biomass (Beddington et. al. 1990; Rosenberg et. al. 1990; Basson et. al. 1998).

Material s and Methods

Subarea $5+6$ autumn bottom trawl survey indices of Illex squid relative biomass (standardized, stratified mean kg per tow) can be considered an indication of relative spawner escapement levels. This survey occurs around the timing of the offshore spawning migration of this species and near the end of the fishing season (Hendrickson et. al. 1996). Relative biomass indices of Illex squid from the Scotian Shelf bottom trawl survey can be considered as pre-fishery biomass indices in that this survey occurs during July, which is at the start of the fishing season in Subareas 3+4. In order to standardize these indices, a General Linear Model (GLM) was run with log-transformed relative biomass indices from both surveys, weighted by the area covered by each survey, for 1970-1997 (Table 1). Table 2 shows the GLM output ($\mathrm{r}^{2}=0.679 ; \mathrm{CV}=6.59 \%$ and MSE $=0.74$). Total stock landings (SA 3-6) (Table 3) were divided by the year coefficients from the GLM to produce a time series of relative fishing mortality rates. However, relative F values are inaccurate prior to 1979 due to under-reporting of Illex squid landings in the U.S. EEZ by distant water fleets and the lack of reporting domestic landings of squid by species. In addition, 1982 data from SA 4 were excluded from the GLM analysis because a different vessel and gear were employed during that year.

Results and Conclusions

The stock has been defined to be at a low productivity level since 1982 (Rivard et. al. 1998). Trends in stock relative F values in relation to spawner biomass levels, during 1983-1997, are shown in Figure 1 for this low productivity time period. This Figure indicates that spawner biomass is low, generally below average, when relative fishing mortality rates for the stock are high. This indicates that fishing mortality rates from all Subareas (SA 2-6) have an effect on the spawner escapement biomass of this stock. Negative biological effects, such as truncation of age groups or reduction in mean weights, may be difficult to detect in this annual species without the benefit of biological data collected during time scales shorter than its life span. However, a prolonged decline in the mean weights of Illex squid caught in the SA $5+6$ and the SA 4 surveys is evident from annual data. Mean weights of squid from both surveys declined in 1982, following the period of high landings which occurred in SA 3+4 during 1976-1981, and have remained low since this time (Figure 2).

Acknowledgments

Gratitude is expressed to Mark Showell (Department of Fisheries and Oceans, BIO, Dartmouth Nova Scotia) for providing the Scotian Shelf survey indices.

References

Basson, M., J.R. Beddington, J.A. Crombie, S.J. Holden, L.V. Purchase and G.A. Tingely. 1996. Assessment and management techniques for migratory annual squid stocks: the Illex argentinus fishery in the southwest Atlantic as an example. Fish. Res., 28:3-27.
Beddington, J.R., A.A. Rosenberg., J.A. Crombie and G.P. Kirkwood. 1990. Stock assessment and the provision of management advice for the short fin squid fishery in Falkland Island waters. Fish. Res., 8:351-365.
Dawe, E. G. and L. C. Hendrickson. 1998. A review of the biology, population dynamics, and exploitation of short-finned squid in the Northwest Atlantic Ocean, in relation to assessment and management of the resource. NAFO SCR Doc. 98/59.
Hendrickson, L.C., J. Brodziak, M. Basson, and P. Rago. 1996. Stock assessment of northern shortfin squid in the northwest Atlantic during 1993. Northeast Fish. Sci. Cent. Ref. Doc. 96-05g; 63 p.
Northwest Atlantic Fisheries Organization (NAFO). 1998. Report of NAFO Scientific Council, 1998.
Rivard, D., L. C. Hendrickson and F. M. Serchuk. 1998. Yield estimates for short-finned squid (Illex illecebrosus) in SA 3-4 from research vessel survey relative biomass indices. NAFO SCR Doc. 98/75.
Rosenberg, A.A., Kirkwood, G.P., Crombie, J. and Beddington, J.R. 1990. The assessment of stocks of annual squid species. Fish. Res. 8:335-350.

Table 1. Stratified mean weight (kg) per tow of Illex illecebrosus caught during SA 5+6 (autumn) and SA 4 (July) research bottom trawl surveys and standardized relative biomass indices calculated from a GLM.

Year	SA 4 Biomass Index (kg/tow)	SA 5+6 Biomass Index (kg/tow)	Standardized Survey Biomass Index
1970	0.4	0.268	
1971	2.8	0.337	0.26
1972	0.7	0.292	0.78
1973	1.5	0.353	0.37
1974	1.8	0.392	0.59
1975	5.0	1.417	2.15
1976	42.7	7.018	13.98
1977	9.5	3.740	4.81
1978	2.3	4.529	2.61
1979	14.2	6.053	7.48
1980	2.2	3.285	2.17
1981	4.9	9.340	5.46
1982	2.1	0.602	.
1983	2.1	0.233	0.56
1984	1.5	0.519	0.71
1985	2.7	0.355	0.79
1986	0.4	0.257	0.26
1987	0.4	1.527	0.63
1988	2.7	2.997	2.30
1989	2.7	3.307	2.41
1990	4.8	2.401	2.74
1991	1.8	0.691	0.90
1992	7.3	0.804	1.96
1993	5.4	1.595	2.37
1994	4.2	0.860	1.53
1995	2.4	0.700	1.05
1996	0.9	0.926	0.74
1997	4.8	0.521	1.00

* No value calculated due to vessel change

Table 2.
ALM :
TAGTORS ARE TEAR, sA

Gecera: inticat Modele Procecure

こepegaedi variable: inacatr:

soarce	-	Sue of scmatre	yean square	Fralur	Pr \sim F
$y=4 \times 1$	13	40.65618600	3.12970262	6.45	0.0014
Error	12	3.E?4:000\%	0.46455834		

*-square	c.v.	R006 165	inngater mean
0.674955	3.576602	0.69610225	,

3ource	Dr	TYpe I ss	Mean squary	F vaiue	Fi > 1
trat	12	37.84196377	3.16218031	6.33	0.0014
32	1	2.74423233	2.7422223	5.65	$0.034 *$
3aurte	br	Type III ss	Nean square	Y Value	F7 2 F
rean	12	37.94146377	3.26103031	4.35	0.0014
32	1	2.76422783	2.7442223	5.55	0.0348

Parameter		EFr,amate
ixperest		10.26287203 5
\%EAR	1970	-0.75913906 *
	1971	0.32436326 m
	1972	-0.03644641
	1972	2-0394E036
	1974	0.10303652 E
	1975	
	1976	3.20872935 I
	1977	2.14357932 m
	1978	1.52909592 B
	1979	2.54420080 E
	1980	1.36630279 E
	1981	2.26916132 B
	9998	0.00000000
54	4	c. 4.9975980
	99	0.0000000

? : :ог но, Parameter=0	$P r=\|T\|$	sed Ertar of Extimate
30.09	0.0001	0.31079880
-1.09	0.2969	0.69610225
0.47	0.5455	0.69610225
-0.63	0.5424	a. 69610225
0.05	0.9557	0.69630225
0.26	0.7973	0.68610225
1.92	0.0790	0.67610223
4.45	0.0005	0.69610225
3.06	0.0006	0.69610223
2.20	0.0494	0.69610225
3.71	0.0030	0.69610225
1.93	0.0770	0.686:0225
3.26	0.0068	0.69610225
-	-	.
2.28	0.0348	0. 27903377

Table 2.

 mactons Ang teak, sh

Gezeral ingear mocein grocetire
dependent Variable: tinacatry

Source	\%F	sum of उquares	mean Squafe	T \%aise	$\mathrm{Pr} \boldsymbol{\sim} \mathrm{F}$
mode:	15	14.40653271	1.09376483	1.36	0.1044
Etror	14	*.7200066)	D. 53171490		
crrresed toral	29	24.12034130			
	k-squarz	\#.v.	NOSE MSE		UNACATMT Meas
	0.67990%	6.583030	0.76277514		11.26404722
saurce	DF	fype : 55	xean stunge	F value	Pr $>\boldsymbol{F}$
fema	14	12.73:30945	0.91295070	2.63	0.1786
sA	1	3.62322206	3.52822246	6.57	0.0225
source	br	Type : 71 ss	meat squafe	7 value	$\mathrm{Pr}>\mathrm{F}$
texk	14	12.70130985	0.97795070	1.65	0.1746
ss	1	3.52523206	3.62522856	6,57	0.0225

Paran		Extimate
ENTE		10.24013044 B
tear	1984	0.23219714 B
	1985	0.33619025
	1984	-0.76009416
	1947	0.21069796
	1908	1.40202261
	1809	1.452037268
	1990	1.57964137
	1991	0.45647306 !
	1912	\$-34284967
	1995	1.43402729 a
	1994	0.9085214: 5
	1998:	0.62676767 B
	1996	a.75627015 8
	1997	0.0i56954 ${ }^{\text {a }}$
	8998	0.00000000 a
SA	4	0.685243161
	99	a.0000000a

 Parameter=c		sed Error of
14.08	0.0001	0.54244626
0.31	0.7592	0.74277314
0.45	0.6578	0.74277814
-1.03	$0.21: 4$	0.74279514
9.25	0.8034	0.76277514
1.65	0.0796	0.74277314
1.95	0.0709	0.74277314
7.37	0.0517	0.74277516
0.63	0.5401	0.74277514
1.67	0.1265	0.74277516
2.93	0.0740	0.74277524
2.35	0.1996	0.74277514
0.03	0.4207	0.74277314
0.36	0.7253	0.74277514
1.10	0.2907	0.74277514
-	,	-
2.34	0.0225	0.27122313
.	.	.

Table 3. Illex landings (mt) in NAFO Subareas 5+6 (U.S. EEZ) and Subareas 3+4 during 1963-1998 1,2,3,4,5 and TACs.

Year	Cape Hatteras to the Gulf of Maine (Subareas 5+6)			Subareas $(\mathbf{3}+\mathbf{4})$ Total (mt)	$\begin{gathered} \begin{array}{c} \text { All Subareas } \\ (3-6) \end{array} \\ \hline \begin{array}{c} \text { Total } \\ (\mathrm{mt}) \end{array} \\ \hline \end{gathered}$	TAC (mt)	
	Domestic (mt) \qquad	Foreign (mt)	Total (mt)				
1963	810		810	2,222	3,032		
1964	358	2	360	10,777	11,137		
1965	444	78	522	8,264	8,786		
1966	452	118	570	5,218	5,788		
1967	707	288	995	7,033	8,028		
1968	678	2593	3,271	56	3,327		
1969	562	975	1,537	86	1,623		
1970	408	2418	2,826	1,385	4,211		
1971	455	6159	6,614	8,906	15,520		
1972	472	17169	17,641	1,868	19,509		
1973	530	18625	19,155	9,877	29,032		
1974	148	20480	20,628	437	21,065		71,000
1975	107	17819	17,926	17,696	35,622	25,000	71,000
1976	229	24707	24,936	41,767	66,703	25,000	30,000
1977	1,024	23771	24,795	83,480	108,275	25,000	35,000
1978	385	17207	17,592	94,064	111,656	100,000	30,000
1979	1,493	15748	17,241	162,092	179,333	120,000	30,000
1980	299	17529	17,828	69,606	87,434	150,000	30,000
1981	615	14956	15,571	32,862	48,433	150,000	30,000
1982	5,871	12762	18,633	12,908	31,541	150,000	30,000
1983	9,775	1809	11,584	426	12,010	150,000	30,000
1984	9,343	576	9,919	715	10,634	150,000	30,000
1985	5,033	1082	6,115	673	6,788	150,000	30,000
1986	6,493	977	7,470	111	7,581	150,000	30,000
1987	10,102	0	10,102	566	10,668	150,000	30,000
1988	1,958	0	1,958	800	2,758	150,000	30,000
1989	6,801	0	6,801	7,000	13,801	150,000	30,000
1990	11,670	0	11,670	11,000	22,670	150,000	30,000
1991	11,908	0	11,908	3,996	15,904	150,000	30,000
1992	17,827	0	17,827	2,000	19,827	150,000	30,000
1993	18,012	0	18,012	2,668	20,680	150,000	30,000
1994	18,350	0	18,350	5,970	24,320	150,000	30,000
1995	14,058	0	14,058	1,032	15,090	150,000	30,000
1996	16,969	0	16,969	8,731	25,700	150,000	21,000
1997	13,629	0	13,629	14,521	28,150	150,000	19,000
1998	22.705	0	22,705	1,918	24,623	150,000	19,000
AVERAGES							
1976-1981	674	18,986	19,661	80,645	100,306		
1982-1987	7,770	2,868	10,637	2,567	13,204		
1988-1993	11,363	0	11,363	4,577	15,940		
1994-1998	17,142	0	17,142	6,434	23,577		
${ }^{1}$ Landings during 1963-1978 were not reported by species, but are proration-based estimates by Lange and Sissenwine (1980)							
${ }^{2}$ Landings during 1979-1997 are from the NEFSC Weighout Database and the Joint Venture Database							
${ }^{3}$ Domestic landings during 1982-1991 include Joint-Venture landings							
${ }^{4}$ Includes landings from Subarea 2							
${ }^{5}$ Landings during 1998 are preliminary for all Subareas							

Figure 1. Trends in relative fishing mortality rates for the Illex illecebrosus stock (SA 3-6 landings/SA 4 July survey biomass index), during 1983-1997, and SA 5+6 autumn survey stratified mean biomass (kg/tow) index during 1982-1998.

Figure 2. Trends in A.) stratified mean weight (kg) per tow indices of Illex illecebrosus captured in SA 5+6 autumn surveys (1967-1998) and SA 4 Scotian Shelf July survey indices (1970-1! B.) trends in landings for Subareas 5+6 and Subareas 3+4 (1967-1998); and C.) trends in Illex squid mean weights of IIlex squid captured in SA $5+6$ and SA 4 Scotian Shelf surveys

