# SCIENTIFIC COUNCIL MEETING - NOVEMBER 1999 

The International Fishery for Shrimp (Pandalus borealis) in Division 3M (Flemish Cap), 1993-1999

by
U. Skuladottir ${ }^{1}$, D .G. Parsons ${ }^{2}$ and D. Orr ${ }^{2}$
${ }^{1}$ Marine Research Institute, Skulagata 4, P.O. Box 1390, 121 Reykjavik, Iceland
${ }^{2}$ Science Branch, Department of Fisheries and Oceans
P.O. Box 5667, St. John's, Newfoundland, Canada, A1C 5X1

## 1. INTRODUCTION

The fishery for northern shrimp at Flemish Cap began in the spring of 1993 and has since continued with estimated annual catches (unofficial) of approximately $28,000,24,000,33,000,49,000,25,000$ and 30,000 tons from 1993 to 1998, respectively. Removals to October 1999 of about 32,000 tons are higher than those reported for the same period in 1998 ( 27,000 tons). Vessels from as many as 15 nations have participated in this fishery since its beginning.

The following is an overview of the international fishery for shrimp on Flemish Cap. Trends in catch and effort from data provided by the fleets of several nations are described. Standardized catch per unit effort (CPUE) series, addressing differences in catch rate due to nation, fishing power of individual vessels, seasonality of the fishery, gear type and area fished, are used as possible indicators of change in the stock over time. Sampling of commercial catches provides CPUE indices separated by age and sex.

Background on the assessment and management of this resource since 1993 can be found in Parsons (1998) and NAFO Scientific Council Reports (1998).

## 2. COMMERCIAL FISHERY

### 2.1 History of the Fishery

The shrimp fishery in Div. 3M began in late April 1993. Fishing activity (monitored by Canada) increased to include about 50 vessels from several nations in early July but subsequently declined over the remainder of the year. Only 4 vessels were reported fishing shrimp at the end of December. Fishing continued into 1994 at low intensity. Activity increased over winter to 17 vessels by late February and remained near that level until late March, decreasing thereafter. From early April to mid June, the number of vessels increased from 7 to 47 and then decreased steadily to 3 at the end of the year.

The pattern of increasing activity to about mid-year followed by a decrease to the end of the year continued in subsequent years. Since 1994, maximum vessels observed were 71 in July 1995, 91 in July 1996, 34 in June-July 1997, 33 in June 1998 and 38 in July-August 1999.

A summary of the number of vessels by country and year is given below. The numbers represent best estimates of fleet size but might not be accurate for all nations.

VESSELS

| Country/Year | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CAN | 13 | 7 | 7 | 6 | 4 | 4 | 3 |
| E/DNK | 2 | 2 | 1 | - | - | 1 | 1 |
| EST | - | 4 | 6 | 5 | 5 | 7 | 8 |
| EU | - | 2 | 2 | 1 | 1 | 6 | 1 |
| FRA | - | - | - | - | 1 | - | - |
| FRO | 11 | 10 | 9 | 11 | 8 | 7 | 6 |
| GRL | 12 | 8 | 5 | 4 | 2 | 2 | 1 |
| ISL | 5 | 9 | 21 | 40 | 14 | 7 | 10 |
| LVA | - | 2 | 3 | 4 | 2 | 2 | 4 |
| LTU | - | 2 | 4 | 6 | 5 | 6 | 5 |
| NOR | 21 | 19 | 26 | 15 | 2 | 2 | 2 |
| POL | - | - | - | - | 1 | - | 1 |
| POR | - | - | 1 | - | - | - | 2 |
| RUS | 2 | 4 | 15 | 17 | 3 | - | 2 |
| St. Vin | - | 1 | - | - | - | - | - |
| N. Zea | - | - | - | 1 | - | - | - |
| TOTAL | $\mathbf{6 6}$ | $\mathbf{7 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 1 0}$ | $\mathbf{4 8}$ | $\mathbf{4 8}$ | $\mathbf{4 6}$ |

2.2. Trends in Catch
2.2.1. By Nation and Year

Preliminary estimates of catch (tons) by nation and year are provided in the following table.

## CATCH (TONS)

| Nation | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9 *}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Canada | 3724 | 1041 | 970 | 906 | 807 | 484 | 490 |
| EU/Denmark | 800 | 400 | 200 | - | - | 437 | - |
| Estonia | - | 1081 | 2092 | 1900 | 3240 | 5694 | 7142 |
| Faroe Is. | 8545 | 6567 | 5987 | 8677 | 7387 | 9179 | 7456 |
| Greenland | 3788 | 2275 | 2400 | 1107 | 105 | 865 | 580 |
| Honduras | 1265 | - | - | - | - | - | - |
| Iceland | 2243 | 2300 | 7623 | 20681 | 6483 | 6572 | 7147 |
| Latvia | - | 300 | 350 | 1940 | 997 | 1191 | 2393 |
| Lithuania | - | 1225 | 675 | 2900 | 1785 | 3106 | 2487 |
| Norway | 7183 | 8461 | 9533 | 5683 | 1831 | 1339 | 2002 |
| Poland | - | - | - | - | 288 | 148 | 707 |
| Portugal | 300 | - | 150 | - | 170 | 203 |  |
| Russia | - | 300 | 2838 | 4444 | 1090 | - | 652 |
| EU/Spain | 240 | 300 | 158 | 50 | 421 | 913 | 517 |
| St. Vincent's | - | 75 | - | - | 150 | - | - |
| Total | $\mathbf{2 8} \mathbf{0 8 8}$ | $\mathbf{2 4} \mathbf{3 2 5}$ | $\mathbf{3 2 ~ 9 7 6}$ | $\mathbf{4 8} \mathbf{2 8 8}$ | $\mathbf{2 4} \mathbf{7 5 4}$ | $\mathbf{3 0} \mathbf{1 3 1}$ | $\mathbf{3 1 5 7 3}$ |

* Provisional to October.

In 1993, Faroe Islands and Norway took $56 \%$ of the estimated total catch in tons. Canada and Greenland each caught approximately 3700 tons, Iceland about 2200 and Honduras 1265. Lesser amounts were reported for other nations.

Faroese and Norwegian vessels accounted for over $60 \%$ of the estimated catch in 1994. Estonia, Latvia and Lithuania joined the fishery that year and, combined, caught about 2600 tons. Canadian vessels caught 1041 tons, substantially less than in 1993. Greenlandic and Danish catches were also less than those of the previous year whereas Icelandic catches remained about the same.

Data for 1995 showed some changes in the distribution of the catches by nation. Most noteworthy are the substantial increases in catches by Iceland and Russia. Catches by Canada, Faroe Islands and Greenland were about the same as in 1994. One vessel from Portugal fished for shrimp in 1995 with an estimated catch of 150 tons.

The 1996 data show substantial increases in catch for several nations. Icelandic catches increased from about 7600 tons in 1995 to 21,000 tons in 1996. Catches by Faroe Islands increased from 6000 tons to 8700 tons and Russian catches from 2800 to 4400 tons. Latvia and Lithuania also increased their catches from 1995 to 1996 while catches by Canada, Greenland and Norway decreased.

Catches in 1997 of about 25,000 tons were much lower than in 1996. The reduction was, in part, due to the Icelandic quota of 6800 tons (in effect, about 14,000 tons less catch than in 1996) and possibly a generally depressed market for northern shrimp which affected all nations.

Catches in 1998 of about 30,000 tons were higher than in 1997. Catches to October, 1999 were approximately 32,000 tons.

### 2.2.2. By Month and Year

Following a recommendation of an $a d$ hoc working group on shrimp in Div. 3M (NAFO SCS Doc. 96/19), a standard catch and effort data set was constructed. The current version includes data from Canada, Greenland, Iceland and Norway. Although these data represent only part of the total catch and effort, they are assumed to reflect temporal and spatial trends in the fishery.

## CATCH (TONS)

| Month/Year | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| JAN | - | 485 | 28 | 363 | 73 | - | - |
| FEB | - | 975 | 130 | 355 | 133 | 65 | 134 |
| MAR | - | 679 | 387 | 1220 | 190 | 203 | 770 |
| APR | 0 | 501 | 814 | 3007 | 960 | 371 | 1314 |
| MAY | 837 | 1740 | 2611 | 3647 | 1049 | 985 | 2218 |
| JUN | 6129 | 3593 | 4754 | 4730 | 1235 | 1758 | 918 |
| JUL | 4098 | 2645 | 5439 | 3761 | 1396 | 2026 | 1850 |
| AUG | 1928 | 1356 | 2265 | 2422 | 1031 | 1109 | 919 |
| SEP | 1404 | 593 | 940 | 1566 | 872 | 1163 | 286 |
| OCT | 876 | 317 | 624 | 973 | 692 | 794 | - |
| NOV | 542 | 21 | 187 | 397 | 286 | 382 | - |
| DEC | 281 | 64 | 162 | 136 | 146 | 150 | - |
| TOTAL | $\mathbf{1 6 0 9 5}$ | $\mathbf{1 2 9 6 9}$ | $\mathbf{1 8 3 4 2}$ | $\mathbf{2 2 5 7 6}$ | $\mathbf{8 0 6 3}$ | $\mathbf{9 0 0 7}$ | $\mathbf{1 0 0 6 6}$ |

Monthly catches show an increasing trend from January to June or July, followed by a decrease to the end of the year. The June-July period accounted for more than $48 \%$ of the logged catch each year from 1993 to 1995 but, since then, adjacent months in spring and fall also have contributed notable catches.

### 2.2.3. By Area and Year

The standard, four-country data set included a reference to area fished for each nation except Norway. The Cap was separated into four areas (northeast, southeast, southwest and northwest) at $47^{\circ} 10^{\prime} \mathrm{N}$ and $45^{\circ} \mathrm{W}$. Logbook data showed that most of the recorded catch was taken in the northwest quadrant (area 4) each year. However, changes are evident between years. Most of the catch was taken in the north (areas 1 and 4) in 1993 compared to the west (areas 3 and 4) in 1994. In 1995, the west was again the most productive area but a substantial catch was also taken in the northeast (area 1). All areas produced significant catches in 1996, including the southeast quadrant (area 2). The northwestern sector remained the preferred area in 1997, 1998 and 1999 although records indicate that substantial catches were taken in the northeast (area 1). Preliminary data for 1999 also show notable catch from the southeast (area 2).

## CATCH (TONS)

| Area/Year | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2870 | 294 | 1365 | 3079 | 1492 | 2304 | 1825 |
| 2 | 190 | 1 | 61 | 1221 | 182 | 88 | 688 |
| 3 | 1605 | 1997 | 3488 | 4601 | 1501 | 853 | 1294 |
| 4 | 4246 | 2216 | 3896 | 7992 | 3057 | 4447 | 4384 |
| TOTAL | $\mathbf{8 9 1 1}$ | $\mathbf{4 5 0 8}$ | $\mathbf{8 8 0 9}$ | $\mathbf{1 6 8 9 3}$ | $\mathbf{6 2 3 2}$ | $\mathbf{7 6 9 2}$ | $\mathbf{8 1 9 1}$ |

### 2.3. Trends in Effort

The standard, four-country data set also was used to describe trends in fishing effort, assuming the data are representative of total fleet activities. The observations are hours fished for both single and double trawls. Usage of double trawls by nations included in the data increased over time from <5\% of total hours in 1993 and 1994 to >50\% from 1997 to 1999. Two-thirds of the 1998 effort reported by these nations was due to double trawls.

### 2.3.1. By Month and Year

The temporal trend in effort is similar to that for catch. Activity generally increased from January to June-July and then decreased to December. The May to August period accounted for more than $50 \%$ of the logged effort each year to 1998 and, the June - July period, more than one-third. Activities of some fleets are reported separately in research documents.

EFFORT (HRS)

| Month/Year | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| JAN | - | 1887 | 149 | 1504 | 414 | - | - |
| FEB | - | 3067 | 520 | 1061 | 626 | 156 | 243 |
| MAR | - | 3209 | 1661 | 3590 | 574 | 533 | 1880 |
| APR | 4 | 2433 | 3553 | 12126 | 2736 | 959 | 3634 |
| MAY | 1381 | 5939 | 8366 | 14801 | 4318 | 2372 | 6188 |
| JUN | 14419 | 13622 | 14878 | 18446 | 4801 | 3729 | 5729 |
| JUL | 12634 | 10669 | 17864 | 16850 | 4605 | 4837 | 4271 |
| AUG | 6674 | 6821 | 10156 | 11328 | 3753 | 3035 | 1939 |
| SEP | 4875 | 3578 | 5469 | 8122 | 2962 | 3899 | 665 |
| OCT | 3640 | 2243 | 2808 | 5901 | 2262 | 2351 | - |
| NOV | 2242 | 181 | 1094 | 2042 | 945 | 1233 | - |
| DEC | 865 | 309 | 942 | 651 | 486 | 513 | - |
| TOTAL | $\mathbf{4 6 7 3 4}$ | $\mathbf{5 3 9 5 8}$ | $\mathbf{6 7 4 6 0}$ | $\mathbf{9 6 4 2 2}$ | $\mathbf{2 8 4 8 2}$ | $\mathbf{2 3 6 1 7}$ | $\mathbf{2 4 5 4 9}$ |

### 2.3.2. By Area and Year

The effort data were further examined based on the spatial designation described above. In 1993, fishing activity was concentrated in the north (areas 1 and 4), particularly in the northwest (area 4). More effort was deployed in the southwest (area 3) in 1994 while there was a large reduction in activity in the northeast (area 1). Effort increased in all areas in 1995 with renewed interest in the northeast. The 1996 effort was extensive over the entire Cap, including the southeast sector (area 2). Effort was greatly reduced over all areas in 1997 and 1998 with most of the reported activity occurring in the northwest. The records available for 1999 show that the northwest continues to be the main fishing area but, as in 1996, there was notable effort in the southeast (area 2).

## EFFORT (HRS)

| Area/Year | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 7541 | 1533 | 5210 | 11701 | 5059 | 5273 | 4524 |
| 2 | 521 | 4 | 215 | 4583 | 542 | 206 | 1253 |
| 3 | 3543 | 7411 | 11772 | 21019 | 5848 | 2642 | 3804 |
| 4 | 10473 | 7931 | 12618 | 32084 | 11108 | 11787 | 10710 |
| TOTAL | $\mathbf{2 2 0 7 8}$ | $\mathbf{1 6 8 7 9}$ | $\mathbf{2 9 8 1 5}$ | $\mathbf{6 9 3 8 7}$ | $\mathbf{2 2 5 5 7}$ | $\mathbf{1 9 9 0 8}$ | $\mathbf{2 0 2 9 1}$ |

### 2.4. Trends in Catch Rates

The main purpose for constructing the four-country catch and effort data set was for the calculation of catch per unit of effort (CPUE). The summary of the raw data is for single trawl only, as in previous assessments (Parsons, 1998).

### 2.4.1. By Month and Year

Seasonality in catch rates is evident in the data presented in the tables below. The fishery began in spring 1993 and catch rates in May were about $600 \mathrm{~kg} / \mathrm{hr}$. CPUE declined steadily to November and recovered slightly during the December February period. During the remainder of 1994, CPUE increased from a low of $180-200 \mathrm{~kg} / \mathrm{hr}$ in March to about 290 in May, declining thereafter to November. In 1995, catch rates again were highest in May at $300 \mathrm{~kg} / \mathrm{hr}$, declined to August and then varied between 150 and $200 \mathrm{~kg} / \mathrm{hr}$ to the end of the year. The pattern in 1996 is different in that catch rates were more stable over the year. CPUE's in the second half of the year were lower than those of earlier months when values were about $200 \mathrm{~kg} / \mathrm{hr}$ or greater. In 1997, catch rates varied during the first half of the year but stabilized during July to October. Data for 1998 indicate an increase to June, a decline to September and an increase, thereafter. Preliminary records for 1999 show high catch rates in February, compared to previous years, and a decline to May followed by some recovery during the summer.

CATCH PER HOUR (KG) - SINGLE TRAWL

| Month/Year | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JAN | - | 251 | 189 | 217 | 175 | - | - |
| FEB | - | 281 | 250 | 240 | 213 | - | 523 |
| MAR | - | 178 | 233 | 236 | 341 | - | 285 |
| APR | 63 | 206 | 227 | 213 | 272 | 132 | 277 |
| MAY | 606 | 293 | 299 | 210 | 185 | 245 | 269 |
| JUN | 420 | 259 | 289 | 221 | 201 | 300 | 341 |
| JUL | 317 | 239 | 258 | 202 | 254 | 299 | 332 |
| AUG | 273 | 185 | 204 | 196 | 241 | 292 | 335 |
| SEP | 258 | 166 | 166 | 174 | 259 | 229 | - |
| OCT | 230 | 141 | 199 | 155 | 242 | 304 | - |
| NOV | 187 | 116 | 154 | 180 | 296 | 236 | - |
| DEC | 262 | 206 | 172 | 209 | - | 281 | - |

The general pattern in the first three years was an increase in CPUE to May followed by a decline to November and some recovery during winter. This convention breaks down, beginning in 1996. The pattern for 1999, with partial data, is not yet clear.

### 2.4.2. By Area and Year

CPUE (excluding Norwegian data) also can be presented spatially, based on the four general areas described above. Catch rates were similar over all areas in 1993, 1995 and 1996. In 1994, catch rates in the northeast (area 1) were lower than to the west (areas 3 and 4) and there was virtually no fishing in the southeast (area 2). Although effort remained relatively low in the southeast, CPUE's from this area were higher than all other areas in 1997 and to date in 1999. The catch rate in the northeast (area 1) also was higher in 1998 and 1999 than in the previous four years.

CATCH PER HOUR (KG) - SINGLE TRAWL

| Area/Year | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 371 | 167 | 233 | 207 | 252 | 296 | 295 |
| 2 | 358 | - | 243 | 210 | 328 | 319 | 329 |
| 3 | 386 | 256 | 237 | 189 | 221 | 226 | 279 |
| 4 | 396 | 238 | 238 | 204 | 223 | 263 | 264 |

### 2.4.3. By Nation and Year

Annual catch rates in the following table show variation among nations. CPUE's from all nations declined from 1993 to 1994. Canadian rates continued to decline until 1996 and, except for the single trawl estimate in 1997, have remained low. Greenlandic CPUE from 1995 to 1998 remained below the 1993 estimate but increased notably in 1999. Icelandic rates remained low from 1995 to 1997 but increased in 1998 and 1999. Norwegian CPUE increased from 1996/97 to 1999.

CATCH PER HOUR (KG) - SINGLE TRAWL

| Nation/Year | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CAN | 403 | 263 | 235 | 229 | 318 | 223 | 231 |
| GRL | 379 | 267 | 294 | 258 | 172 | 215 | 387 |
| ICE | 359 | 181 | 232 | 197 | 229 | 270 | 278 |
| NOR | 291 | 228 | 253 | 210 | 242 | 335 | 433 |

The annual CPUE's ( $\Sigma$ catch $\div \Sigma$ effort) from the standard four country data set for single trawls from all nations were 333, 232, 248, 203, 233, 278 and 305 kg per hour for 1993 to 1999, respectively. The series showed a decrease between 1993 and 1994, some recovery or stability in 1995, a further decrease in 1996 and an increase, thereafter.


### 2.4.4. Standardized CPUE

Standardized catch rate series were developed in an attempt to account for effects such as seasonality, fishing power of vessels and/or nations, trawl type and area fished. Two formulations are provided.

Model 1. The single trawl model presented in the previous assessment (Parsons, 1998) was applied using updated information from 1998 and preliminary data for 1999 (to September). The $\log$ (ln(catch/effort)) data (Norway omitted) were analysed for year, vessel, month and area effects using a SAS multiple regression procedure (GLM).

The updated model, with 3 outlying observations deleted in the final run (IF $-1.5<$ RESID. $<1.5$ ), used records where CATCH $>0 \mathrm{~kg}$ and EFFORT > 10 hours. Also, the number of tows associated with each catch-effort record was used as a weighting factor. The model explained $75 \%$ of the variation and all class variables except AREA were significant at $\mathrm{P}<0.05$ (Table 1) using type III sum of squares. (For AREA, $P=0.056$ ) Results showed that the estimate for all years except 1995 and 1998 were significantly different ( $\mathrm{P}<0.05$ ) from zero, the 1999 standard. A plot of residuals is given in Figure 1.

Model 2. Multiple linear regression was used to standardize single + double trawl (ln(catch/effort)) data after inspection of both gear types showed similar trends. The model accounting for the largest amount of variance in the data (78\%; MSE $=1.07$ ) included year, fishing power, month, area (Norway omitted) and gear. As in model 1, only records in which CATCH
$>0 \mathrm{~kg}$ and EFFORT > 10 hours were included, and number of tows associated with each catch-effort record was used as a weighting factor. However, at the November 1999 meeting, it was agreed that residuals would not be used in data deletion. In this model all of the class variables were significant at $\mathrm{P}<0.05$ (Table 2) using type III sum of squares. As with model 1, results indicated that estimates for 1995 and 1998 were significantly different ( $\mathrm{P}<0.05$ ) from the 1999 standard. A plot of residuals is given in Figure 2.


Although both models follow similar trends, the second model provides CPUE estimates that are usually below standardized single trawl estimates. The differences between the estimates are small, and the proportion of single trawls used in the 3M fishery is decreasing over time, therefore, the multiplicative model using single + double trawl data should be used to track long term changes in CPUE.

### 2.4.5. Sex Disaggregated CPUE

The following graph presents sex disaggregated catches per unit of effort ( $\mathrm{kg} / \mathrm{hr}$ ) for the standardized single + double trawl (model 2) data. Data for sex and age composition were analyzed for January - July, so that data would be comparable throughout all years, and were from the following countries: Canada for the years 1993 - 1995, Iceland for 1996 - 1997, Canada, Greenland and Iceland for 1998 and finally Canada and Iceland for 1999.


For the most part, the same trends as shown in the previous standardized graphs are evident. The ratios of male to female CPUEs were low during 1993 and 1999. However, between 1994 and 1998 the male and female CPUEs were similar. The highest standardized female ( $243 \mathrm{~kg} / \mathrm{hr}$ ) CPUE was obtained during 1993. The highest standardized male ( $140 \mathrm{~kg} / \mathrm{hr}$ ) CPUE was obtained during 1998. Between 1994 and 1997 the male and female CPUEs were all relatively low and stable. Since 1997 the female CPUE has been increasing.

### 2.4.6. Age Disaggregated CPUE

Results of the age analysis of biological samples obtained from Canadian, Icelandic and Greenlandic vessels also were applied to the standardized, international CPUE for both single and double trawls, providing kilograms and number per hour by age and sex.

For preparing the age analysis, oblique carapace length of shrimp in the samples was measured using sliding calipers and grouped in $0.5-\mathrm{mm}$ length-classes. The shrimp were separated into three categories according to the sternal spine criterion (McCrary, 1971): males, primiparous females and multiparous females. Samples were combined by month and adjusted to the monthly catch of shrimp for each nation. (When calculating the CPUE indices for either weight (kg) or numbers per hour, the proportion per age group, male or female was found by applying the modal analysis on the length distributions of males, primiparous and multiparous females respectively.)

First, monthly samples from each country were run through the modal analysis (Macdonald and Pitcher, 1979). From this came mean lengths and proportions at age and sex ( 3 categories, males, primiparous females and multiparous females). By using the respective weight/length relationships per month (Skúladóttir, 1997), mean lengths were converted to mean weights at age. An international database was formed on a monthly basis using the catch of each country for weighting. As January through July was the main period comparable to the first years, the next step was to calculate weighted mean weights per age and sex-class on one hand and mean proportion on the other for this period. The weighting factor was the total monthly catch of the four countries (Canada, Greenland, Iceland and Norway) which submitted logbook data to the international database for CPUE standardization.

As the Canadian data (Parsons and Veitch 1996) were only available as yearly results for the years 1993-1995 there was need to turn these into numbers and kg per hour per age and sex group for comparison with the years 1996-1999. The length/weight relationships chosen for this purpose were the ones for the month April, from Skúladóttir (1997) namely the two following equations:

For males and primiparous females:
$\ln \mathrm{y}=3.037 * \ln \mathrm{x}-7.549$
For multiparous females:

$$
\ln y=2.778 * \ln x-6.689
$$

These equations were applied in the following manner: mean length at age was converted to weight at age only for the years 1993-1995; from the proportions by number the proportions by weight were then calculated.

The results of aging are shown in Table 3 for the period January through July. In this table the results have been weighted together first for all countries combined and then the data of the individual months (the so-called international data) have also been weighted together to get means for the period January-July as described above.

This age assessment must be considered preliminary, as there are more data to be included from the past years that arrived too late for this meeting. Table 3 gives mean weight at age and sex class. The annual standardized CPUE for double and single trawl is shown here divided into sex and age classes. Dividing $\mathrm{kg} / \mathrm{hr}$ at age by mean weight at age produces estimates of number/hour. Table 4 shows the number per hour at age each year. Number per trawling hour should be proportional to the number in stock if the coverage of samples is sufficient and there is no change in gear technology or catchability.

The 1993 year-class was the strongest in the series at ages 2 and 3 . The 1994 year-class dominated ages 4 and 5 and the 1988 year-class was prominent in 1993. In 1995 the no./hr. of the two year olds was very high, i.e. the presumed 1993 year class. This year-class can be followed through to 6 year olds in 1999 when it is still contributed to the commercial catches. On the whole, the four year olds have been quite abundant in the years 1997 through 1999 due first to the 1993 year-class followed by the strong year-classes of 1994 and 1995. At the same time the mean weight of four year old males has dropped
from 8.2 g in 1993 to 5.4 g in 1999. But again it must be stressed that there could be a misinterpretation of real age involved here. The coverage of Canadian samples in 1993 to 1995 was reasonable and age assessment had already been carried out, so the proportions of age classes of those years were taken from Parsons and Veitch (1996). The multiparous group was not age assessed by Parsons and Veitch and all the multiparous females were assumed to be of age 6+.

The standardized catch (kg) per trawling hour by age is presented in Table 5. The results are rather similar to that of no. per hour by age group although the shrimp 5 years and older (usually females) are much more important by weight. Note especially the high CPUE of 5 year olds (1994 year-class) in 1999. Presumably, the 6 year olds may turn out to be quite noticeable in the catches in year 2000.

The age at change of sex has been variable if judged from the proportion within the primiparous group. In 1993 and 1994 all males were considered to change sex at the age of 5 . Thus all the primiparous females were considered to be of age 5 . In $199535 \%$ of the primiparous females were 4 year olds and the rest were 5 year olds. In 1996 the age at sex change was at its lowest, namely $19 \%$ of the primiparous females were considered 3 year olds and $81 \%$ four year olds. After this there was a change back where in 1997 all primiparous females appeared to be four year olds. In $199886 \%$ of the primiparous females were four years old, the rest were 5 year olds and finally in $199944 \%$ of the primiparous females were 4 year olds and the rest were 5 year olds. So age at sex change appears to be increasing and getting nearer the results of the years 1993 and 1994. These preliminary results suggest that when the shrimp are older at sex change, the growth rate appears to be reduced.

## 3. SUMMARY

Catches of shrimp on Flemish Cap have been maintained at a high level (averaging more than 30,000 tons annually since the fishery began) due to: increasing effort up to 1996; an expansion of the fishing grounds to target smaller shrimp in shallower water (NAFO, 1997); and, more recently, a possible increase in biomass (NAFO, 1998). Both the unstandardized and standardized catch rates for 1994 were lower than the 1993 estimate. CPUE varied with no clear trend between 1994 and 1997. The female and combined CPUE estimates increased since 1997. Meanwhile the male CPUE index has been fluctuating throughout the seven year period.

Although the CPUE index has been improved further by standardizing for single and double trawl effort, results are still difficult to interpret as an index of stock size due to changes in fishing pattern between years.

The data suggest that during 1993 and 1994, males underwent sex inversion at 5 years of age. During the mid 90 's, the age of sex inversion decreased to the point at which $19 \%$ of the 3 year olds and $81 \%$ of the 4 year olds became female during 1996. The proportion of shrimp undergoing sex inversion at early ages decreased since 1997. The 1999 data suggest that the age of sex inversion has once again increased to occur at 5 years of age. There appears to be an inverse relationship between age of sex inversion and growth rate.

## 4. ACKNOWLEDGEMENT

Appreciation is expressed to all those who provided data for inclusion in this paper in advance of the 1999 November Meeting.

## 5. REFERENCES

Macdonald, P.D.M. and Y.J. Pitcher. 1979. Age-groups from size-frequency data: A versatile and efficient method of analyzing distribution mixtures. J. Fish. Res. Board Can., 36: 987-1011.

McCrary, J. A. 1971. Sternal spines as a characteristic for differentiating between females of some Pandalidae. J. Fish. Res. Board Can. 28: 98-100.

NAFO. 1997. Scientific Council Reports, 1997, p. 182-183 and 207.
NAFO. 1998. Scientific Council Reports, 1998, p. 162-163 and 189.

Parsons, D.G. and P.J. Veitch. 1996. The Canadian Fishery for Northern Shrimp (Pandalus borealis) on Flemish Cap (NAFO Division 3M), 1993 to 1996. NAFO SCR Doc. 96/93 Serial No. N2776: 12 p.

Parsons, D.G., 1998. The International Fishery for Shrimp (Pandalus borealis) in Division 3M (Flemish Cap), 1993 1998. NAFO SCR Doc. 98/92, Serial No. N3093: 12p.

Skúladóttir, U. 1997. The Icelandic shrimp fishery (Pandalus borealis Kr.) at the Flemish Cap in 1993-1997. NAFO SCR Doc. 97/85 Serial No. N2931. 30 p.

TABLE 1. Multiplicative, year/vessel/month/area model (1) using single trawl logbook CPUE data for the period 1993-1999.

General Li near Mbdel s Procedure
a ass Level I nfornation

| d ass | Level s | Val ues |
| :---: | :---: | :---: |
| YEAR | 7 | 93949596979899 |
| VESSEL | 77 | 1128121352138314071462148415061514157616091628163417421752 |
|  |  | 175317571768180718091903190519422013206121215519021972204 |
|  |  | 220622112212221622182220223722422244224922582259226222662279 |
|  |  | 22862288233229404143444755866686970 OKV OCQ OVBG OVQ OVI |
|  |  | ONM OYBZ OYCK OYHD OYKK OYRT OYXT OKZ OZIH OZKQ OZMA ZII |
| MONTH | 12 | 1234578910111299 |
| AREA | 4 | 1234 |

Nunber of observations in data set $=1027$

| ght: Dependent Variable: LNCPUE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>\mathrm{F}$ |
| Mbdel | 96 | 2723. 57845087 | 28. 37060886 | 28. 48 | 0. 0001 |
| Error | 930 | 926. 58945969 | 0. 99633275 |  |  |
| Corrected Total | 1026 | 3650. 16791056 |  |  |  |
|  | R-Square 0.746152 | $\begin{gathered} \text { C. V. } \\ \text { 18. } 13645 \end{gathered}$ | $\begin{aligned} & \text { Root MSE } \\ & 0.9981646 \end{aligned}$ |  | $\begin{aligned} & \text { PUE Mean } \\ & 50363882 \end{aligned}$ |
| Source | DF | Type I SS | Mean Square | F Val ue | Pr $>\mathrm{F}$ |
| YEAR | 6 | 1352. 88764091 | 225. 48127349 | 226. 31 | 0. 0001 |
| VESSEL | 76 | 1222. 22938779 | 16. 08196563 | 16. 14 | 0. 0001 |
| MONTH | 11 | 140. 90752617 | 12. 80977511 | 12. 86 | 0. 0001 |
| AREA | 3 | 7. 55389599 | 2. 51796533 | 2. 53 | 0. 0562 |
| Source | DF | Type III SS | Mean Square | F Val ue | $\mathrm{Pr}>\mathrm{F}$ |
| YEAR | 6 | 464. 17418425 | 77. 36236404 | 77.65 | 0. 0001 |
| VESSEL | 76 | 1090. 79233800 | 14. 35253076 | 14. 41 | 0. 0001 |
| MONTH | 11 | 147. 47755672 | 13. 40705061 | 13. 46 | 0. 0001 |
| AREA | 3 | 7. 55389599 | 2. 51796533 | 2. 53 | 0. 0562 |


| Paraneter | Esti mate | T for HD : Par anet er $=0$ | $\operatorname{Pr}>\|T\|$ | Std Error of Esti mate |
| :---: | :---: | :---: | :---: | :---: |
| I NIERCEPT | 5. 872553108 B | 87.72 | 0. 0001 | 0. 06694476 |
| YEAR 93 | 0. 418685428 B | 7. 39 | 0. 0001 | 0. 05668765 |
| 94 | -0.170338594 В | -3. 12 | 0. 0019 | 0. 05463805 |
| 95 | 0. 028372288 B | 0.52 | 0. 6039 | 0. 05467563 |
| 96 | -0. 170464216 B | -3. 52 | 0. 0004 | 0. 04838450 |
| 97 | -0. 132069273 B | -2. 52 | 0. 0119 | 0. 05242769 |
| 98 | 0. 057413410 B | 1. 06 | 0. 2897 | 0. 05419928 |

TABLE 2. Multiplicative, year/vessel/month/area/gear model (2) using single + double trawl logbook CPUE data for the period 1993 - 1999.

General Li near Mbdel s Procedure
a ass Level Information

| d ass | Level s | Val ues |
| :---: | :---: | :---: |
| YEAR | 7 | 93949596979899 |
| VESSEL | 79 | 1128121352138314071462148415061514157616091628163417421752 |
|  |  | 1753175717681807180919031905194220132061212155191901972204 |
|  |  | 220622112212221622182220223722422244224922582259226222662279 |
|  |  | 2286228823322940414344475586668697071 OKV OOQ OVEG OVQU |
|  |  | OMI ONM OYBZ OYCK OYCZ OYHD OYKK OrRT OXXT OYZ OITH OZKQ OZMA ZIT |
| MONTH | 12 | 1234578910111299 |
| AREA | 4 | 1234 |
| GAR | 2 | 29 |

Nunber of observations in data set $=1564$
Dependent Vari abl e: LNCPUE
Vei ght:

| Source | DF |
| :--- | ---: |
| Mbdel | 99 |
| Error | 1464 |
| Corrected Total | 1563 |

Sum of Squares
5483. 36100675
1573. 36582207
7056.72682882

R-Square
0. 777040

## C. V. <br> 18. 29572

Type I SS
1716. 03195879
3344. 17704498 232. 21772312
19. 20266864
171. 73161122

Type III SS
620. 12605655
1486. 95282443
240. 26270494
18. 44992162
171. 73161122

| Mean Square | F Val ue | Pr $>$ F |
| ---: | ---: | ---: |
| 55. 38748492 | 51.54 | 0.0001 |
| 1.07470343 |  |  |
|  |  |  |
| Root MSE |  |  |
| LNCPUE Mean |  |  |
| 1. 0366790 | 5.66623906 |  |


| Source | DF | Type I SS | Mean Square | F Val ue | Pr >F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | 6 | 1716. 03195879 | 286. 00532646 | 266. 12 | 0. 0001 |
| VESSEL | 78 | 3344. 17704498 | 42. 87406468 | 39. 89 | 0. 0001 |
| MONTH | 11 | 232. 21772312 | 21. 11070210 | 19. 64 | 0. 0001 |
| AREA | 3 | 19. 20266864 | 6. 40088955 | 5. 96 | 0. 0005 |
| GAR | 1 | 171. 73161122 | 171. 73161122 | 159. 79 | 0. 0001 |
| Source | DF | Type III SS | Mean Square | F Val ue | Pr $>\mathrm{F}$ |
| YEAR | 6 | 620. 12605655 | 103. 35434276 | 96. 17 | 0. 0001 |
| VESSEL | 78 | 1486. 95282443 | 19. 06349775 | 17. 74 | 0. 0001 |
| MONTH | 11 | 240. 26270494 | 21. 84206409 | 20. 32 | 0. 0001 |
| AREA | 3 | 18. 44992162 | 6. 14997387 | 5. 72 | 0. 0007 |
| GAR | 1 | 171. 73161122 | 171. 73161122 | 159. 79 | 0. 0001 |


| Par aneter I NIERCEPT |  | Esti mate | T for HO: Par anet er $=0$ | $\operatorname{Pr}>\|T\|$ | Std Error of Esti mate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5. 945622870 B | 110. 43 | 0. 0001 | 0. 05384279 |
| YEAR | 93 | 0.340283396 B | 8. 90 | 0. 0001 | 0.03822190 |
|  | 94 | -0.210330887 B | -5. 61 | 0. 0001 | 0. 03745982 |
|  | 95 | -0.036399319 В | -1. 03 | 0. 3046 | 0. 03544124 |
|  | 96 | -0.220365003 В | -7. 10 | 0.0001 | 0.03105712 |
|  | 97 | -0.130054687 В | -3. 96 | 0. 0001 | 0. 03285939 |
|  | 98 | 0. 037537839 B | 1. 28 | 0. 1994 | 0. 02923633 |
|  | 99 | 0.000000000 B |  |  |  |
| GモAR | 2 | 0. 293199510 B | 12. 64 | 0. 0001 | 0. 02319436 |
|  | 9 | 0.000000000 B |  |  |  |

Table 3. Proportion of nominal catch by sex and age over period 1993-1999. Also provided in this table are the standardized (year/ vessel/ month/ area/ gear (model 2) CPUEs in terms of weight and numbers caught per hour.

1993

| Sex | Age | Prop. <br> by no. | Mean weight $\mathrm{g}$ | Prop. <br> X mean weight | Nominal catch 28088 tons | $\begin{array}{r} \mathrm{kg} / \mathrm{hr} \\ 340 \end{array}$ | No./hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Males | 1 | 0.0041 | 0.646 | 0.00265 | 9 | 0.1 | 169 |
| Males | 2 | 0.1148 | 2.772 | 0.31823 | 1083 | 13.1 | 4728 |
| Males | 3 | 0.2146 | 5.225 | 1.12129 | 3815 | 46.2 | 8838 |
| Males | 4 | 0.1156 | 8.188 | 0.94653 | 3220 | 39.0 | 4761 |
| Primip. | 5 | 0.2619 | 10.441 | 2.73450 | 9303 | 112.6 | 10785 |
| Multip. | 6+ | 0.2800 | 11.189 | 3.13292 | 10658 | 129.0 | 11531 |
| Total |  | 0.9910 |  | 8.25611 | 28088 | 340 | 40811 |
|  | 1994 |  |  |  |  |  |  |
| Sex | Age | Prop. <br> by no. | Mean weight g | Prop. <br> X mean weight | Nominal catch 24324 tons | $\begin{array}{r} \mathrm{kg} / \mathrm{hr} \\ 238 \end{array}$ | No./hour |
| Males | 1 |  |  | 0 | 0 | 0 |  |
| Males | 2 | 0.1817 | 2.576 | 0.46806 | 1651 | 16.2 | 6276 |
| Males | 3 | 0.3629 | 4.998 | 1.81377 | 6398 | 62.7 | 12535 |
| Males | 4 | 0.0854 | 7.101 | 0.60643 | 2139 | 20.9 | 2950 |
| Primip. | 5 | 0.1944 | 10.08 | 1.95955 | 6912 | 67.7 | 6715 |
| Multip. | 6+ | 0.1756 | 11.664 | 2.04820 | 7225 | 70.7 | 6066 |
| Total |  | 1 |  | 6.89601 | 24324 | 238.2 | 34542 |

Table 3.
Continued
1995

| Sex | Age | Prop. <br> by no. | Mean weight g | Prop. <br> X mean weight | Nominal catch 32977 tons | $\begin{array}{r} \mathrm{kg} / \mathrm{hr} \\ 259 \end{array}$ | No./hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Males | 1 |  |  |  |  |  |  |
| Males | 2 | 0.4516 | 1.965 | 0.88739 | 5989 | 47.0 | 23937 |
| Males | 3 | 0.2714 | 4.924 | 1.33637 | 9019 | 70.8 | 14386 |
| Primip. | 4 | 0.0507 | 6.462 | 0.32762 | 2211 | 17.4 | 2687 |
| Primip. | 5 | 0.0962 | 9.611 | 0.92458 | 6240 | 49.0 | 5099 |
| Multip. | $6+$ | 0.1301 | 10.84 | 1.41028 | 9518 | 74.8 | 6896 |
| Total | 1 |  |  | 4.88625 | 32977 | 259.0 | 53006 |
|  | 1996 |  |  |  |  |  |  |
| Sex | Age | Prop. <br> by no. | Mean weight g | Prop. <br> X mean weight | Nominal catch 48288 tons | kg/hr 218 | No./hour |
| Males | 1 |  |  |  |  |  |  |
| Males | 2 | 0.0398 | 1.745 | 0.06945 | 529 | 2.4 | 1369 |
| Males | 3 | 0.5835 | 4.678 | 2.72961 | 20804 | 93.9 | 20078 |
| Primip. | 3 | 0.0448 | 5.707 | 0.25567 | 1949 | 8.8 | 1542 |
| Primip. | 4 | 0.1857 | 9.006 | 1.67241 | 12747 | 57.5 | 6390 |
| Multip. | 3 | 0.0059 | 6.327 | 0.03733 | 285 | 1.3 | 203 |
| Multip. | 4 | 0.0446 | 8.431 | 0.37602 | 2866 | 12.9 | 1535 |
| Multip. | 5 | 0.0629 | 11.439 | 0.71951 | 5484 | 24.8 | 2164 |
| Multip. | 6 | 0.0328 | 14.498 | 0.47553 | 3624 | 16.4 | 1129 |
| Total |  | 1 |  | 6.33555 | 48288 | 218.0 | 34409 |

Table 3. 1997

## Continued

| Sex | Age | Prop. <br> by no. | Mean weight G | Prop. <br> X mean weight | $\begin{array}{r} \text { Nominal catch } \\ 24754 \end{array}$ | $\mathrm{kg} / \mathrm{hr}$ 239 | No./hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Males | 1 |  |  |  |  |  |  |
| Males | 2 | 0.0247 | 2.19 | 0.05409 | 205 | 2.0 | 903 |
| Males | 3 | 0.3432 | 4.018 | 1.37898 | 5224 | 50.4 | 12553 |
| Males | 4 | 0.2467 | 6.5 | 1.60355 | 6075 | 58.7 | 9024 |
| Primip. | 4 | 0.2514 | 8.335 | 2.09542 | 7938 | 76.6 | 9196 |
| Multip. | 3 | 0.0024 | 4.25 | 0.01020 | 39 | 0.4 | 88 |
| Multip. | 4 | 0.0207 | 8.259 | 0.17096 | 648 | 6.3 | 757 |
| Multip. | 5 | 0.0941 | 10.482 | 0.98636 | 3737 | 36.1 | 3442 |
| Multip. | 6 | 0.0143 | 13.905 | 0.19884 | 753 | 7.3 | 523 |
| Multip. | 7 | 0.0024 | 14.85 | 0.03564 | 135 | 1.3 | 88 |
| Total |  | 0.9999 |  | 6.53404 | 24754 | 239.0 | 36574 |
|  | 1998 |  |  |  |  |  |  |
| Sex | Age | Prop. <br> by no. | $\begin{aligned} & \text { Mean weight } \\ & \text { G } \end{aligned}$ | Prop. X mean weight | Nominal catch $30131$ | $\begin{array}{r} \mathrm{kg} / \mathrm{hr} \\ 311 \end{array}$ | No./hour |
| Males | 1 |  |  | 0 | 0 | 0 |  |
| Males | 2 | 0.0481 | 1.769 | 0.08509 | 423 | 4.4 | 2469 |
| Males | 3 | 0.3581 | 3.867 | 1.38477 | 6886 | 71.1 | 18379 |
| Males | 4 | 0.2000 | 5.574 | 1.11480 | 5543 | 57.2 | 10265 |
| Males | 5 | 0.0048 | 8.397 | 0.04031 | 200 | 2.1 | 246 |
| Primip. | 4 | 0.1860 | 7.386 | 1.37380 | 6831 | 70.5 | 9546 |
| Primip. | 5 | 0.0293 | 10.238 | 0.29997 | 1492 | 15.4 | 1504 |
| Multip. | 3 | 0.0029 | 4.417 | 0.01281 | 64 | 0.7 | 149 |
| Multip. | 4 | 0.0777 | 8.452 | 0.65672 | 3265 | 33.7 | 3988 |
| Multip. | 5 | 0.0733 | 10.665 | 0.78174 | 3887 | 40.1 | 3762 |
| Multip. | 6 | 0.0079 | 14.463 | 0.11426 | 568 | 5.9 | 405 |
| Multip. | 7 | 0.0120 | 16.28 | 0.19536 | 971 | 10.0 | 616 |
| Total |  | 1.0001 |  | 6.05963 | 30131 | 311.0 | 51328 |

Table 3.
Continued


Table 4. Number of shrimp per hour at age (based on Table 3 results).

| Age gr. | 1993 | 1994 | 1995 | Age gr. | 1996 | 1997 | 1998 | 1999 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 169 |  |  | 1 |  |  |  | 22 |
| 2 | 4728 | 6276 | 23937 | 2 | 1369 | 903 | 2469 | 2132 |
| 3 | 8838 | 12535 | 14386 | 3 | 21822 | 12641 | 18526 | 12927 |
| 4 | 4761 | 2950 | 2687 | 4 | 7924 | 18977 | 23799 | 20995 |
| 5 | 10785 | 6715 | 5099 | 5 | 2164 | 3442 | 5512 | 14091 |
| $6+$ | 11531 | 6066 | 6896 | 6 | 1129 | 523 | 405 | 4384 |
|  |  |  |  | 7 |  | 88 | 616 | 109 |
| Total | 40812 | 34542 | 53005 |  | 34408 | 36574 | 51327 | 54660 |

Table 5. Standardized kg per hour at age (based on Table 3 results).

| Age gr. | 1993 | 1994 | 1995 | Age gr. | 1996 | 1997 | 1998 | 1999 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.1 |  |  | 1 |  |  |  |  |
| 2 | 13.1 | 16.2 | 47.0 | 2 | 2.4 | 2 | 4.4 | 4.0 |
| 3 | 46.2 | 62.6 | 70.8 | 3 | 103.9 | 50.4 | 71.7 | 40.4 |
| 4 | 39.0 | 20.9 | 17.4 | 4 | 70.5 | 141.6 | 161.4 | 125.8 |
| 5 | 112.6 | 67.6 | 49.0 | 5 | 24.8 | 36.1 | 57.6 | 121.4 |
| 6+ | 129.0 | 70.7 | 74.8 | 6 | 16.4 | 7.3 | 5.9 | 49.7 |
|  |  |  |  | 7 |  | 1.3 | 10.0 | 1.7 |
| Total | 340 | 238 | 259 |  | 218 | 239 | 311 | 343 |

Figure 1. Residuals for the Year/Month/Vessel/Area model (1) for single trawl CPUE logbook data for the period 1993-1999.


Figure 2. Residuals for the Year/Month/Vessel/Area/Gear model (2) for single + double trawl CPUE logbook data for the period 1993-1999.

Pl ot of $R^{*}$ P. Legend: $A=1$ obs, $B=2$ obs, etc.


A

A
$-2.0^{\prime}$
, ,
$-2.5^{\text {i }}$
,
$-3.0^{\prime}$
Sั้^ffffffff^ffffffff^ffffffff^ffffffff^ffffffff^ffffffff^ffffffff^ffffffff^ffffffff^ffffffff^ $\begin{array}{llllllllllll}4.25 & 4.50 & 4.75 & 5.00 & 5.25 & 5.50 & 5.75 & 6.00 & 6.25 & 6.50 & 6.75\end{array}$

