

Serial No. N4882

NAFO SCR Doc. 03/63

SCIENTIFIC COUNCIL MEETING - JUNE 2003

An Assessment of the Status of the Redfish in NAFO Division 30

by
D. Power

Science, Oceans and Environment Branch, Department of Fisheries and Oceans
P. O. Box 5667, St. John's, NL, Canada A1C 5X1

Abstract

There are two species of redfish, the deep sea redfish (Sebastes mentella) and the Acadian redfish (Sebastes fasciatus) that have been commercially fished and reported collectively in fishery statistics in Div. 30. Nominal catches have ranged between 3000 tons and 35000 tons since 1960 (Table 1, Fig. 1). Up to 1986 catches averaged 13000 tons, increased to 27000 tons in 1987 with a further increase to 35000 tons in 1988, exceeding TACs by 7000 tons and 21000 tons respectively. Catches declined to 13000 tons in 1989 , increased gradually to about 16000 tons in 1993 and declined further to about 3000 tons in 1995 , partly due to reductions in foreign allocations within the Canadian zone since 1993. Catches increased to 14000 tons by 1998, declined to 10000 tons in 2000 and increased to 20000 in 2001. The 2002 catch was at 17000 tons. Assessment of this stock has been primarily based on research data due to variable commercial indices and fleets prosecuting different areas of the stock. It is difficult to reconcile year to year changes in seasonal research vessel (RV) surveys, but generally, the spring survey biomass index suggests the stock may have increased since the early-1990s, fluctuated over 100000 tons from 1994 to 1999 and declined to 2002. The autumn surveys, while more stable in the early-1990s, generally supports this pattern. RV surveys do not adequately sample fish greater than 25 cm which up to 1997 have generally comprised the main portion of the fishery, which, makes it is difficult to interpret survey estimates in relation to what is happening to the stock as a whole. The fishery since 1998 appeared to target the relatively strong 1988 year-class that has grown sufficiently to exceed the small fish protocol of 22 cm . There is concern that there has been little sign in recent surveys of size groups smaller than 17 cm despite using a shrimp trawl, which is very effective at catching small fish.

Introduction

There are two species of Sebastes that have been commercially fished in Div. 30, the deep sea redfish (Sebastes mentella) and the Acadian redfish (Sebastes fasciatus). The external characteristics are very similar, making them difficult to distinguish, and as a consequence they are reported collectively as "redfish" in the commercial fishery statistics. Redfish in Div. 30 have been subject to management regulation since 1974 within Canada's 200 mile Exclusive Economic Zone (EEZ). About 8% of the inhabitable redfish area within Div. 30 lies within the NAFO Regulatory Area (NRA) which is currently only regulated by mesh restrictions. In addition to Catch regulation within Canada, a small fish protocol at 22 cm was implemented in 1995.

Nominal Catches and TACs

Nominal catches have ranged between 3000 tons and 35000 tons since 1960 (Table 1, Fig. 1). Up to 1986 catches averaged 13000 tons, increased to 27000 tons in 1987 with a further increase to 35000 tons in 1988, exceeding TACs by 7000 tons and 21000 tons, respectively. Catches declined to 13000 tons in 1989, increased gradually to about 16000 tons in 1993 and declined further to about 3000 tons in 1995, partly due to reductions in
foreign allocations within the Canadian zone since 1993. Catches increased to 14000 tons by 1998, declined to 10000 tons in 2000 and increased to 20000 in 2001. The 2002 catch was at 17000 tons

The large catches in 1987 and 1988 were due mainly to increased activity in the NRA by South Korea and non-Contracting parties (NCPs), primarily by Panama. There hasn't been any activity in the NRA by NCPs since 1994. Estimates of under-reported catch have ranged from 200 tons to 23500 tons. There have also been estimates of over-reported catch in recent years. These have ranged from 1800 tons to 2800 tons.

A TAC of 16000 tons was first implemented by Canada within its 200 -mile limit in 1974. The TAC was increased in 1978 to 20000 tons and generally remained at that level through to 1987. The TAC for 1988 was reduced to 14000 tons and remained unchanged until 1994 when it was reduced to 10000 tons as a precautionary measure and maintained at that level to 2003. During 1999 a shift was implemented from a calendar year based TAC to a fiscal year based TAC currently in effect from April 1, 2000 to March 31, 2001 at 10000 tons. To facilitate this temporal shift in TAC, the 1999 calendar year TAC was extended to March 31, 2000 and increased from 10000 tons to 10200 tons to accommodate the extension.

Description of the Fishery

Russia predominated in this fishery up until 1993 (Table 2) and generally caught its share (about 50\%) of the total non-Canadian allocation, which accounted for about 2/3 of the TAC. From 1987 to 1993 Russian catches ranged from 3800 tons to 7200 tons Russia and Cuba, impacted by the reduction and eventual elimination of foreign allocations by Canada, ceased directed fishing in 1994. Russia resumed directed fishing in 2000 rapidly increasing their catch from 2200 tons to about 11000 tons in 2001 and 2002. Portugal began fishing in 1992 averaged about 1800 tons between 1992 to 1998. Their reported catches escalated to 5500 tons in 1999 and have averaged about 4200 tons to 2002. Spain, who had taken less than 50 tons before 1995, increased catches from 1200 tons in 1997 to a peak of 4500 tons in 1999 with a subsequent decline to 700 tons in 2002.

Canada has had limited interest in a fishery in Div. 30 because of small sizes of redfish encountered in areas suitable for trawling. Canadian landings were less than 200 tons annually from 1983-1991. In 1994, Canada took 1600 tons due to improved markets related to lobster bait, but declined to about 200 tons in 1995. Between 1996 and 1999 Canadian catches have alternated between levels of about 8000 tons and 2500 tons based on market acceptability for redfish near the 22 cm size limit. From 2000-2002 Canada has averaged about 3400 tons.

In general, the fishery has occurred primarily from May to October since 1990 (Table 3a). The prominent means of capture from the mid-1970s to the early 1980s was the bottom otter trawl. The use of mid-water trawls from 1990 to 1993 (Table 3b) was primarily by Russia and Cuba. Canadian, Portuguese and Spanish fleets primarily use bottom trawling.

Commercial Fishery Data

Catch and Effort

Catch and effort data for 1959 to 1999 were extracted from ICNAF/NAFO Statistical Bulletins and were combined with provisional 2000-2001 NAFO data and Canadian regional data compiled by various Department of Fisheries and Ocean regional statistics branches. Initially selected from this database were observations where redfish comprised more than 50% of the total catch and were therefore considered to be redfish directed.

These data were analysed with a multiplicative model (Gavaris, 1980) to derive a standardized catch rate index for hours fished. The effects included in the model were a combination country-gear-tonnage class category type (CGT), month, and a category type representing the amount of bycatch associated with each observation. For this effect five groups were arbitrarily established : (>50\%<=60\%), (>60\%<=70\%), $(>70 \%<=80 \%)$, $(>80 \%<=90 \%)$ and ($>90 \%$) where each group corresponds to the percentage of redfish relative to the total catch associated with each observation. In the usual manner, catch or effort data of less than 10 units were eliminated prior to analysis in addition to any categories with less than five samples except in the year category type. A second standardization was conducted for days fished due to missing hours-fished data from two major fleets, EU-Portugal since 1992 and EU-Spain since 1995. For the "days fished" model the only difference in was that observations with effort less than 5 days fished were
eliminated prior to analysis. For all analyses an unweighted regression was run because of unknown percentages of prorating prior to 1984.

Previous catch rate analyses of this stock (Power et al., 1995) suggested different trends in the catch rate series derived for Canada only and for countries that have only fished outside the EEZ. Accordingly, separate standardizations of available catch rate data were conducted as follows: (i) All fleets, (ii) Canada only, (iii) countries which have fished both inside and outside the EEZ (Russia, Cuba and Japan) and (iv) countries which have only fished outside the EEZ (Poland, Portugal, South Korea, Spain and Russia and Japan since 1994).

For the "hours fished" standardization with all fleets, the regression was significant ($\mathrm{p}<0.05$), explaining 57% of the variation in catch rates (Table 4). There was a significant year effect but only the one year was significantly different from the reference year. The catch rate index (Table 5, Fig. 2 upper left panel) shows much within year variability, particularly prior to 1969 and since 1994. Although there are interannual fluctuations, the index shows an increase from 1969 to 1979 followed by a decrease to the lowest level in 1993 . There was a 400% increase in 1994 and a decline to the 1993 level by 1997. The index again sharply by 250% in 1998 and has increased to the second highest rate in the series in 2002.

For the "days fished" standardization with all fleets, the regression was significant ($\mathrm{p}<0.05$), explaining 60% of the variation in catch rates (Table 6). There was a significant year effect but the regression coefficients and their standard errors indicate no year was significantly different from the reference year. The catch rate index (Table 7, Fig. 2 upper right panel) shows much within year variability and fluctuation, particularly prior to 1979 and again in the recent period since 1998. The series generally sugggests an decrease from 1960 to 1965 followed by an increase to one of the highest rates in the series in 1979. A period of stability followed to 1983, which was followed by a decline to 1989. Another period of stability occurred to 1994 and then a dramatic 40% decline to the lowest rate on record in 1995. The index stayed at this level until 1997 and then increased by 120% in 1998. The index declined in 1999 but has since increased in the vicinity of the highest rate in the series in 2002.

The analysis of catch rates separately by fleet category (Fig. 2, lower panels) suggests different trends over the time period from 1960 to 1990, particularly since the mid-1970s in both hours fished and days fished models. The Canadian fleet generally shows an increase over the period while the fleets fishing inside and outside show a decrease. The trends are generally in agreement since 1993. This suggests these fleets should be analysed separately for a historic perspective.

In summary, the analysis of catch rates by the Canadian fleet are not considered indicative of overall trends in the resource. Canada has not accounted for a major portion of the reported catches from Div. 30 and has only fished within the 200 mile EEZ. The recent dramatic fluctuations cannot be accounted for by the biology of redfish. Market conditions have determined the Canadian activity in Div. 30. There are fleets that search for larger sized fish rather than simply maximizing catch rate. The trend in the two foreign fleet catch rate series are similar where comparisons can be made (since and indicate a general decline since the early- to mid-1980s to the more recent period. The catch rates of the fleets that have fished outside is probably indicative of a decline in the proportion of the stock outside the EEZ where most of the effort occurs.

Commercial fishery sampling

Sampling of redfish conducted by Portugal (Vargas et al., MS 2003), Spain (Gonzalez et al., MS 2003) and Russia (Vaskov et. al., MS 2003) from the 2002 trawl fishery (Fig. 3). The Portuguese fleet fished between 200m300 m while the Russian fleet fished from $300 \mathrm{~m}-600 \mathrm{~m}$. Sampling was also available from the Canadian fleet.

The compilation of annual catch at length as number per thousand suggested fish between $21 \mathrm{~cm}-25 \mathrm{~cm}$ generally dominated the catches. Lengths between $21 \mathrm{~cm}-24 \mathrm{~cm}$ (range $15 \mathrm{~cm}-43 \mathrm{~cm}$) dominated the Portuguese catch. The dominant mode in the Spanish catch was between $19 \mathrm{~cm}-21 \mathrm{~cm}$ (range $14 \mathrm{~cm}-31 \mathrm{~cm}$) and the Russian fleet modal catch occurred between $23 \mathrm{~cm}-25 \mathrm{~cm}$ (range $11 \mathrm{~cm}-52 \mathrm{~cm}$), which was sampled for total length.

A compilation of catch at length from various fleets from 1995 to 2002 suggests that the size composition has changed over the time period with fleets catching a larger portion of fish $>25 \mathrm{~cm}$ prior to 1998 .

Research Survey Data

Abundance Indices

Stratified random groundfish surveys have been conducted in the spring and autumn in Div. 30 since 1991, with coverage of depths to 730 m . In addition, a summer survey was conducted in 1993. From 1991 to spring 1995 an Engel 145 otter trawl was used (1.75 n . mi. standard tow) and from autumn 1995 onwards a Campelen 1800 shrimp trawl (0.75 n . mi. standard tow). The 1991 to spring 1995 Engel 145 data were converted into Campelen 1800 trawl equivalent data. Details of the comparative fishing trials and data modelling can be found in Power and Atkinson (MS 1998).

The series of mean weight per standard tow for spring (Table 8) and autumn (Table 9) exhibits large fluctuations in estimates between seasons and years for some strata, not uncommon for bottom trawl surveys for redfish. This is usually accounted for by the influence of one or two large sets on the survey. It is difficult to reconcile year to year changes in the indices, but generally, the spring survey biomass index (Fig. 4) suggests the stock may have increased since the early-1990s, fluctuated over 100000 tons from 1994 to 1999 and declined to 2002. The low 1997 value is considered a sampling anomaly. The autumn surveys, while more stable in the early-1990s, generally supports this pattern. It should also be noted that the 1996 autumn estimate does not include important strata unsampled due to problems on the survey.

In most surveys, stratum by stratum density estimates in the NAFO Regulatory Area (denoted in Tables 8 and 9 as strata $354,355,356,721,722$) were generally lower than inside, although there is a portion of these strata that actually occurs inside. Estimates of percentages of survey biomass have ranged from 3% to 53% with an average of the values being 18% for the spring surveys. For the autumn surveys estimates range from 7% to 37% with an average of the values being 20%.

Recruitment

Size distribution in terms of mean number per tow at length from the spring surveys (Fig. 5) indicates a bimodal distribution in 1991 with modes at 11 cm and 20 cm corresponding to about the 1988 and 1984 year-classes respectively. The 20 cm mode progresses at about a cm per year up to 1994 (at 23 cm) and cannot be traced any further. The $11-\mathrm{cm}$ mode progresses at about $2-3 \mathrm{~cm}$ per year until it reaches 21 cm in 1996. From 1996 to 1998 the mode remains at 21 cm but is dominant. It appears to have increased to 22 cm in 1999 and 23 cm in the 2000 survey. This mode remains dominant and at 22 cm or 23 cm from 2001-2003. A pulse of recruitment was detected in the 1999 survey but has since diminished.

Size distribution from the autumn surveys (Fig. 6) indicates a bimodal distribution in 1991, similar to the spring survey, with modes at 13 cm and 21 cm . The $21-\mathrm{cm}$ mode only progresses to 23 cm by 1994 after which it is no longer discernible. The 13-cm mode progresses to a $17-\mathrm{cm}$ mode in 1992 but only increments to 19 cm up to the 1995 survey. The mode increases about 1 cm per year to 23 cm by 1999 and remains at that length until the 2000 survey. In the 2001-2002 surveys the dominant mode is at 21 cm or 22 cm . The pulses of recruitment detected in the spring of 1999 were also detected in the autumn survey, but both were diminished by 2002. There has been no prospect in the surveys of size groups smaller than 17 cm since 1995.

The size distributions of the survey catches indicate only a narrow range of sizes caught each year in Div. 30. Generally fish smaller than about 10 cm and larger than about 25 cm are absent in survey catches from 1991-2000 which cover strata down to 732 m (400 fathoms). It is well documented that the Engel survey gear (e.g. Power MS 1995) and the Campelen survey gear (e.g. Power and Atkinson, MS 1998b) can catch both smaller (than 10 cm) and larger (than 25 cm) redfish. Length sampling from the commercial fisheries in the mid-1990s reveals a higher proportion of fish greater than 25 cm compared to the survey catches. Therefore, it appears that fish sizes outside this range, especially fish greater than 25 cm , are generally unavailable to the gear in this area. The reasons for this are unknown but may be related to distribution relative to trawlable bottom.

Stratified random groundfish surveys have been conducted in the spring in Div. 30 from 1973 to 1990, with coverage of depths to 367 m . The surveys used a Yankee 41.5 trawl with a liner from 1973-1982 and an Engel 145 trawl with a liner from 1983-1990. Size distributions were plotted to get an indication of historical recruitment pattern
and size range in depths from $93 \mathrm{~m}-367 \mathrm{~m}$, which is considered the shallower end of redfish distribution. It is clear from the varied scales on the y-axis (Fig. 8) that estimates of abundance from these surveys fluctuated greatly from year to year. In general, the upper limit of the size range was 29 cm in this depth range. The 1990 survey shows a dominant mode at 24 cm . This mode could be followed back to the 1981 survey at 9 cm . The next tractable pulse of recruitment occurred in the 1975 survey at $9-10 \mathrm{~cm}$.

Estimation of Stock Parameters

A Non-equilibrium stock production model incorporating covariates (ASPIC)

The catch and CPUE series from the days fished catch rate standardization were utilized in a nonequilibrium logistic production model (Prager, 1994 and 1995). Covariate information used were the Canadian spring survey biomass index used as a beginning of year index (B0), the Canadian autumn survey index used as an end of year index (B2) and the Russian Spring/Summer Biomass Index from Vaskov (MS 2003) used as an average year index (B1). Starting values were those as suggested by Prager (1995) for a long-lived species such as redfish. Initially, all indices were run simultaneously with no penalty constraint on the ratio of Stock Biomass at the beginning of the series to $\mathrm{B}_{\mathrm{msy}}$.

The initial run was terminated because of a negative correlation with the Canadian Spring Index. This was subsequently dropped and secondary runs were performed on each individual covariate index. The Canadian autumn index was also dropped because of negative correlation. A run with the Russian Spring/Summer index ran to convergence. The results, presented in Annex 1, suggest a relatively good correlation with the Catch/CPUE index (0.633). There were large negative loq q residuals with the Russian series for 1987 and 1991 due to the inherently noisy nature of bottom trawl surveys. The residual pattern with the NAFO CPUE in days fished was not disturbing, however, this series used was a standardisation of all fleets which was shown to have different trends over time. Given these caveats, it is suggested that the results of this model be considered illustrative and further investigations into model input be considered.

Catch/Biomass ratio

A fishing mortality proxy was derived by simple catch to biomass ratios. In deriving a fishing mortality proxy, and because most of the catch is taken in the last three quarters of the year, the catch in year " n " was divided by the average of the Canadian Spring (year $=n$) and Autumn (year $=n-1$) survey biomass estimates to better represent the relative biomass at the time of the year before the catch was taken. Survey catchability (q) for redfish is not known but assumed less than one. All fish sizes were included in the survey biomass estimate. The results (Fig. 9) suggest that relative fishing mortality decreased rapidly from the highest in the series in 1992 to the lowest in 1995 but has since increased to the highest estimate in the series in 2002.

Size at Maturity

Recent size at maturity data for redfish (Power and Atkinson, MS 1998) suggests L_{50} is about 28 cm for females and 21 cm for males.

State of the Stock

It is still not possible to determine current fishing mortality rate. It is difficult to accept the CPUE series as representative of the whole stock area given the conflicting trends between fleets. RV surveys do not adequately sample fish greater than 25 cm which up to 1997 have generally comprised the main portion of the fishery. This makes it is difficult to interpret survey estimates in relation to what is happening to the stock as a whole. It is also difficult to accept the proxy fishing mortality rate as an indication of trend in fishing mortality because there is extremely high variability around the survey estimates and are therefore not considered to be reflective of year to year changes in stock abundance. Accepting this caveat and the observation that Canadian spring and autumn survey estimates of Div. 30 redfish are either stable or decreasing in the last few years, the increase in catches in Div. 30 in recent years, particularly in 2001 and 2002 at about 20000 tons, suggests that fishing mortality has increased beginning in 2001. Before 1998, the surveys tracked a relatively strong year class which in recent years has become more targeted by the fishery. There is concern, however, about the poor sign of subsequent recruitment (less than 17 cm). It is also
important to consider that length at which 50% of males are mature is about 21 cm , whereas 50% of females do not reach maturity until about 28 cm .

References

Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37: 2272-2275.

Power, D. MS 1995. Status of redfish in Subarea 2 + Division 3K. DFO Atl. Fish. Res. Doc. 95/25. 25 p.
Power, D. and D. B. Atkinson. MS 1998a. Update on the status of Redfish in 3O. CSAS Res. Doc. 98/110. 20 pp

Power, D. and D. B. Atkinson. MS 1998b. The status of Redfish in Unit 2 (Laurentian Channel Management Unit). CSAS Res. Doc. 98/21. 41 pp

Prager, M. H., 1994. A suite of extensions to a non-equilibrium surplus-production model. Fish. Bull. U.S., 90(4): 374389.

Prager, M. H., 1995. User's manual for ASPIC: a stock production model incorporating covariates, program version 3.82. Miami Lab. Doc. MIA-92/93-55. Fifth Edition. 27 pp

Table 1. Nominal catches (t) and TACs (within the Canadian 200 mile limit) । redfish in Div. 30.

Year	Canada	Others	Total ${ }^{\text {a }}$	TAC
1960	100	4,900	5,000	
1961	1,000	10,000	11,000	
1962	1,046	6,511	7,557	
1963	2,155	7,025	9,180	
1964	1,320	14,724	16,044	
1965	203	19,588	19,791	
1966	107	15,198	15,305	
1967	645	18,392	19,037	
1968	52	6,393	6,445	
1969	186	15,692	15,878	
1970	288	12,904	13,192	
1971	165	19,627	19,792	
1972	508	15,609	16,117	
1973	133	8,664	8,797	
1974	91	13,033	13,124	16,000
1975	103	15,007	15,110	16,000
1976	3,664	11,684	15,348	16,000
1977	2,972	7,878	10,850	16,000
1978	1,841	5,019	6,860	16,000
1979	6,404	11,333	17,737	20,000
1980	1,541	15,765	17,306	21,900
1981	2,577	10,027	12,604	20,000
1982	491	10,869	11,360	20,000
1983	7	7,133	7,340	20,000
1984	167	9,861	16,978	20,000
1985	104	8,106	12,860	20,000
1986	141	10,314	11,055	20,000
1987	183	12,837	27,170	20,000
1988	181	11,111	34,792	14,000
1989	27	11,029	13,256	14,000
1990	155	8,887	14,242	14,000
1991	28	7,533	8,461	14,000
1992	1,219	12,149	15,268	14,000
1993	698	12,522	15,720	14,000
1994	1,624	3,004	5,428	10,000
1995	177	2,637	3,214	10,000
1996	7,255	2,390	9,845	10,000
1997	2,554	2,558	5,112	10,000
1998	8,972	4,380	14,052	10,000
1999	2,344	10,249	12,593	10,200
2000	2,206	10,584	10,003	10,000
2001	4,893	17,203	20,307	10,000
2002	3,000	16,452	17,234	10,000

[^0]Table 2. Nominal reported catches (t) of redfish in Div. 30 by country and year since 1990.

Country	1990	1991	1992	1993	1894	1995	1998	1997	1988	1999	2000	2001	2002
Canada (M)	27	4	27	21	779	4	2124	693	2851	317	1326	336	12
Canada (N)	128	24	1192	677	845	173	5131	1861	6121	2027	880	4557	2988
France (SPM)	-	-	-	-	-	-	-	134	268	-	-	-	-
Japan	1406	226	125	159	-	264	417	285	355	-	-	-	-
Protugal	83	3	1468	4784	2918	1935	1635	894	1875	5489	4555	3537	4610
Spain	4	*	-	-	26	22	338	1245	1884	4549	3747	2314	659
Ruesta	3811	4427	5045	6887	60	416	=	-	*	231	2233	11343	11182
Cubo	2750	2748	2776	665	-	-	*	*	*	.	-	=	-
Estonia	-	-	-	-	-	-	-	-	-	-	49	9	
Lithuania	-	-	-	-	-	-	-	-	-	-	-	-	1
Korea(S)	833	129	1935	17	-	-	-	-	-	-	-	-	-
EU	-	-	-	-	-	-	-	-	-	-	-	-	
OTHER *	5200	900	1900	2500	800	400	200	-	700	-	-	-	-
Total	9042	7561	13368	13220	4628	2814	98.45	\$112	13352	12593	12790	22098	13452
TAC	140000	14000	14000	14000	10000	10000	10000	10000	10000	10200	10000	10000	10000

Table 3a. Nominal reported catches (t) of redfish in Div. 30 by month and year since 1990.

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Unk	Total
1950	108	23	257	26	1220	2474	1534	1571	1002	686	28	113	9042	
1991	17	47	96	1	713	2054	2346	1118	830	338	-	1	7561	
1992	0	57	14	10	635	3262	2520	1808	896	1261	797	2108	13368	
1993	226	14	754	817	2089	1601	1887	2068	1809	829	630	496	13220	
1994	60	93	742	1609	236	83	-	68	1000	540	19	178	4828	
1955	7	125	145	2	45	28	56	765	645	879	107	10	2814	
1996	0	0	89	119	166	46	773	882	1685	2864	1539	1482	9845	
1997	4	0	10	34	86	417	1298	909	622	1274	409	49	5112	
1998	40	193	216	279	1329	2723	1924	953	1280	1964	2275	176	13352	
1999	100	139	262	463	527	942	1644	2513	2298	2056	1434	215	12593	
2000	80	92	943	739	1077	1844	1088	1254	1545	2068	1814	246	12790	
2001	29	10	950	1383	1710	2522	1128	968	1978	3785	3318	2013	2314	22096

Table 3b. Nominal reported catches (t) of redfish in Div. 30 by gear since 1980.

	Ofter Trawts				
Year	BottomAidwater Gillinets			Mise	Total
1990	5501	3537	-	4	9042
1991	4625	2936	-	-	7561
1992	10046	3292	1	29	13368
1993	11997	1214	-	9	13220
1994	3085	1498	26	19	4628
1995	2221	525	26	42	2814
1996	9303	335	7	-	9645
1997	5091	10	2	9	5112
1998	13352				13352
1959	11623	970			12593
2000	12750	39		1	12790
2001	21467	629			22096

Table 4. ANOVA results and regression coefficients from a multiplicative model utilized to derive a standardized catch rate series for Redfish in Div. 3O. Effort is HOURS FISHED. Analysis is for all fleets. (2002 based on preliminary Canadian data).

ANALYSI S OF VARI ANCE						
SOURCE OF VARI ATI ON	DF	SUMS O SQUARES		MEAN SQUARE	F- VALUE	
I NTERCEPT	1	3. 05 E		3. 05E1		
REGRESSI ON	83	2. 24 E		2. 70E0	10. 274	
Cnt ry\| Gear	TC (1)) 27	9. 08 E		3. 36E0	12. 791
Mbnt h(2)	2) 11	7. 91E0		7. $19 \mathrm{E}^{2} 1$	2. 733	
Bycat ch(3)	4	2. 90E		7. 255 EO	27. 551	
Year (4)) 41	3. 83E1		9. $35 \mathrm{E}^{2} 1$	3. 555	
RESI DUALS	640	1. 68E2		2. $63 \mathrm{E}^{2} 1$		
TOTAL	724	4. 23E2				
REGRESSI ON COEFFI CI ENTS						
CATEGORY CO	CODE	$\begin{gathered} \text { VAR } \\ \# \end{gathered}$	REG. COEF	$\underset{\text { ERR }}{\text { STD. }}$	$\begin{aligned} & \text { NO. } \\ & \text { OBS } \end{aligned}$	
Cnt ryl Gear Mont h Bycat ch Year	$\begin{array}{r} 20127 \end{array}$	INT	1. 072	0. 316	724	
	95					
	60					
	2114	1	${ }^{2} 1.086$	0. 175	16	
	2125		${ }^{2} 0.818$	0. 142	18	
	3114	3	${ }^{2} 1.011$	0. 093	77	
	3121		${ }^{2} 1.041$	0. 197	12	
	3123	5	${ }^{2} 1.545$	0. 144	37	
	3124	6	${ }^{2} 0.978$	0. 139	41	
	3125		${ }^{2} 1.119$	0.100	52	
	3154	8	${ }^{2} 1.081$	0. 280	5	
	3155	9	${ }^{2} 0.660$	0. 169	16	
	4127	10	${ }^{2} 0.039$	0. 136	19	
	4157	11	${ }^{2} 0.079$	0.114	32	
	9114	12	${ }^{2} 1.589$	0. 247	6	
	14124	13	${ }^{2} 0.336$	0. 189	9	
	14125	14	${ }^{2} 0.550$	0. 244	5	
	14126	15	${ }^{2} 0.461$	0. 140	18	
	14127	16	${ }^{2} 0.315$	0.110	34	
	16127	17	${ }^{2} 0.648$	0. 247	6	
	17126	18	${ }^{2} 0.631$	0. 207	8	
	20114	19	${ }^{2} 1.439$	0. 169	14	
	20157	20	${ }^{2} 0.140$	0. 088	55	
	25126	21	${ }^{2} 0.282$	0. 149	17	
	25127	22	${ }^{2} 0.172$	0. 124	29	
	27123	23	22.174	0. 210	9	
	27125	24	${ }^{2} 0.674$	0. 124	36	
	34126	25	${ }^{2} 0.324$	0. 259	5	
	34127	26	0. 058	0. 218	14	
	34157	27	${ }^{2} 0.739$	0. 275	5	
CATEGORY		28	${ }^{2} 0.249$	0. 133	20	
	2	29	${ }^{2} 0.200$	0. 131	22	
	3	30	${ }^{2} 0.115$	0. 097	48	
	4	31	${ }^{2} 0.380$	0.101	42	
	5	32	${ }^{2} 0.035$	0. 091	56	
		VAR	REG.	STD.	NO.	
	CODE	\#	COEF	ERR	OBS	
	6	33	${ }^{2} 0.114$	0.082	75	
	7	34	0. 007	0. 077	93	
	9	35	0. 068	0.077	90	
	10	36	0. 067	0.082	76	
	11	37	${ }^{2} 0.108$	0. 090	57	
(3)	12	38	${ }^{2} 0.154$	0.096	48	
	55	39	${ }^{2} 0.759$	0. 101	39	
	65	40	${ }^{2} 0.454$	0. 091	48	
	75	41	${ }^{2} 0.473$	0.083	53	
	85	42	${ }^{2} 0.432$	0. 057	122	
(4)	61	43	0. 090	0. 376	6	
	62	44	${ }^{2} 0.065$	0. 343	11	
	63	45	${ }^{2} 0.076$	0. 338	13	
	64	46	0. 053	0. 374	6	

65	47	20.209	0.387	5
66	48	20.016	0.488	2
67	49	0.173	0.358	7
69	50	20.433	0.354	9
70	51	20.259	0.347	10
71	52	20.016	0.337	14
72	53	20.344	0.330	17
73	54	0.031	0.352	9
74	55	20.404	0.352	9
75	56	20.524	0.370	6
76	57	20.076	0.324	23
77	58	20.146	0.324	23
78	59	20.317	0.322	24
79	60	0.146	0.319	33
80	61	0.008	0.322	26
81	62	0.097	0.325	23
82	63	0.147	0.325	25
83	64	0.004	0.333	17
84	65	20.084	0.324	25
85	66	20.064	0.327	21
86	67	20.120	0.333	18
87	68	20.072	0.321	33
88	69	20.123	0.324	30
89	70	20.292	0.327	26
90	71	20.235	0.327	24
91	72	20.636	0.351	10
92	73	20.387	0.331	31
93	74	20.494	0.362	17
94	75	1.036	0.406	5
95	76	0.094	0.391	6
96	77	20.068	0.339	18
97	78	20.539	0.337	21
98	79	0.455	0.332	34
99	80	0.238	0.340	23
100	81	0.480	0.345	17
101	82	0.418	0.341	22
102	83	0.567	0.346	22

Table 5. Standardized catch rate index for Redfish in Div. 30 from a multiplicative model utilizing HOURS FISHED as a measure of effort. Index is for all fleets (2002 based on preliminary Canadian data).

	PRED CTED CATCH RATE LN TRANSFORM RETRANSFORMED					
YEAR	MEAN	S. E.	MEAN	S. E.	CATCH	EFFORT
1960	1. 0722	0. 0996	3. 171	0. 977	5000	1577
1961	1. 1622	0. 0686	3. 524	0. 908	11000	3122
1962	1. 0069	0. 0384	3. 063	0. 595	7557	2467
1963	0. 9961	0. 0344	3. 036	0. 559	9180	3024
1964	1. 1248	0. 0599	3. 409	0. 823	16044	4706
1965	0. 8633	0. 0728	2. 608	0. 692	19791	7588
1966	1. 0559	0. 1550	3. 034	1. 151	15305	5044
1967	1. 2456	0. 0474	3. 871	0. 833	19037	4917
1969	0. 6392	0. 0400	2. 119	0. 420	15878	7494
1970	0.8131	0. 0360	2. 526	0. 475	13192	5222
1971	1. 0565	0. 0287	3. 234	0. 545	19792	6119
1972	0.7277	0. 0233	2. 334	0. 354	16117	6904
1973	1. 1030	0. 0353	3. 377	0. 629	8797	2605
1974	0. 6680	0. 0370	2. 184	0. 416	13124	6009
1975	0. 5483	0. 0528	1. 923	0.436	15110	7859
1976	0. 9957	0. 0173	3. 061	0. 401	15348	5014
1977	0. 9257	0. 0191	2. 852	0. 392	10850	3805
1978	0. 7554	0. 0183	2. 406	0. 324	6860	2851
1979	1. 2182	0.0156	3. 827	0. 477	17737	4634
1980	1. 0801	0.0157	3. 333	0. 416	17306	5192
1981	1. 1693	0.0173	3. 641	0. 477	12604	3461
1982	1. 2190	0.0155	3. 831	0. 475	11360	2966
1983	1. 0765	0.0210	3. 313	0. 477	7340	2216
1984	0. 9879	0.0164	3. 039	0. 387	16978	5587
1985	1. 0087	0.0196	3. 097	0. 432	12860	4152
1986	0. 9524	0. 0219	2. 925	0. 431	11055	3780
1987	1. 0000	0. 0142	3. 079	0. 366	27170	8824
1988	0. 9494	0.0146	2. 927	0. 352	34792	11888
1989	0. 7805	0.0172	2. 468	0. 323	13256	5370
1990	0. 8368	0.0174	2. 611	0. 343	14242	5454
1991	0. 4365	0.0307	1. 738	0. 302	8461	4868
1992	0. 6856	0.0208	2. 241	0. 322	15268	6813
1993	0. 5781	0. 0432	1. 990	0. 410	15720	7899
1994	2. 1079	0.0775	9. 032	2. 468	5428	601
1995	1. 1664	0. 0639	3. 547	0. 883	3214	906
1996	1. 0041	0. 0278	3. 071	0. 508	9845	3206
1997	0. 5332	0.0271	1. 918	0. 314	5112	2665
1998	1. 5269	0.0220	5. 195	0. 767	14052	2705
1999	1. 3100	0.0278	4. 170	0.691	12593	3020
2000	1. 5521	0.0306	5. 304	0. 921	10003	1886
2001	1. 4899	0. 0282	4. 990	0. 833	20307	4069
2002	1. 6388	0.0317	5. 782	1. 022	17234	2981

Table 6. ANOVA results and regression coefficients from a multiplicative model utilized to derive a standardized catch rate series for Redfish in Div. 3O. Effort is DAYS FISHED. Analysis is for all fleets. (2002 based on preliminary Canadian data).

Table 7. Standardized catch rate index for Redfish in Div. 30 from a multiplicative model utilizing DAYS FISHED as a measure of effort. Index is for all fleets (2002 based on preliminary Canadian data).

PRED CTED CATCH RATE						
YEAR	$\begin{aligned} & \text { LN T } \\ & \text { MEAN } \end{aligned}$	$\begin{gathered} \text { NSFORM } \\ \text { S. E. } \end{gathered}$	RETR MEAN	$\begin{aligned} & \text { FORMED } \\ & \text { S. E. } \end{aligned}$	CATCH	EFFORT
1960	3. 5255	0. 2511	33. 237	15. 674	5000	150
1961	3. 5773	0. 0553	38. 614	8. 962	11000	285
1962	3. 5427	0. 0505	37. 389	8. 302	7557	202
1963	3. 2065	0.0327	26. 952	4. 839	9180	341
1964	3. 3858	0. 0729	31. 601	8. 389	16044	508
1965	3. 0183	0. 1430	21. 129	7. 720	19791	937
1967	3. 6148	0. 0529	40. 134	9. 119	19037	474
1969	3. 2683	0. 0484	28. 447	6. 190	15878	558
1970	3. 0138	0.0410	22. 136	4. 443	13192	596
1971	3. 2689	0.0419	28. 556	5. 791	19792	693
1972	3. 1080	0. 0238	24. 533	3. 765	16117	657
1973	3. 7756	0. 0766	46. 581	12. 662	8797	189
1974	3. 2274	0. 0533	27. 238	6. 211	13124	482
1975	3. 3228	0. 0782	29. 594	8. 126	15110	511
1976	3. 4649	0.0150	35. 209	4. 305	15348	436
1977	3. 4398	0.0174	34. 297	4. 507	10850	316
1978	3. 0946	0.0188	24. 268	3. 317	6860	283
1979	3. 5817	0.0151	39. 570	4. 851	17737	448
1980	3. 4614	0.0143	35. 100	4. 193	17306	493
1981	3. 5933	0. 0153	40. 026	4. 942	12604	315
1982	3. 5199	0.0159	37. 183	4. 672	11360	306
1983	3. 5889	0. 0212	39. 736	5. 755	7340	185
1984	3. 5070	0. 0224	36. 587	5. 456	16978	464
1985	3. 4749	0.0208	35. 460	5. 093	12860	363
1986	3. 3649	0. 0212	31. 760	4. 603	11055	348
1987	3. 3446	0.0148	31. 222	3. 788	27170	870
1988	3. 3841	0.0168	32. 447	4. 191	34792	1072
1989	3. 3230	0. 0163	30. 534	3. 883	13256	434
1990	3. 3047	0. 0188	29.940	4. 093	14242	476
1991	3. 3136	0.0279	30. 073	4. 989	8461	281
1992	3. 3558	0. 0205	31. 486	4. 487	15268	485
1993	3. 3623	0. 0234	31. 643	4. 816	15720	497
1994	3. 3858	0.0350	32. 210	5. 975	5428	169
1995	2. 8987	0. 0359	19. 781	3. 716	3214	162
1996	2. 9735	0. 0230	21. 453	3. 238	9845	459
1997	2. 8199	0. 0233	18. 397	2. 797	5112	278
1998	3. 6045	0.0196	40. 391	5. 633	14052	348
1999	3. 4097	0. 0256	33. 144	5. 271	12593	380
2000	3. 4432	0. 0250	34. 283	5. 392	10003	292
2001	3. 5616	0.0210	38. 668	5. 579	20307	525
2002	3. 7391	0. 0328	45. 906	8. 253	17234	375

[^1]Table 8．Mean number（upper panel）and weight（kg．，lower panel）per standard tow from Canadian SPRING surveys in Div． 30 covering strata to 732 m （ 400 ftm．）．Dashes（ - ） represent unsampled strata．Number of successful sets in brackets．Data from 1991－1995 are Campelen trawl equivalent units（see text），Data from 1995 to present are actual Campelen data． $\mathrm{G}=\mathrm{GadusAtlantica} \mathrm{~W}=$, Wilfred Templeman， $\mathrm{A}=$ Alfred Needler．

			\％													
Stratur	Depth Dange ［M］	Aena	Acea within NRA	Mincs－11 11915－2 Wils	$\begin{aligned} & \text { Wey } 2-13 \\ & 1202-92 \\ & W+12-70 \end{aligned}$	Hapt5－18 1551－02 W13－7	Mes14－22 1234－a2 WH53	May13－2？ 1908－a2 whates	Haycze－30 1551－02 WHIE	Maydun 4317－a2 พ7 74	Nay－Jan 1906－07 W234－？	Mary－kn 19ss－ay wo3s	Maydun 2333－22 耍 $345-55$	May－dun $2001-92$ wass 3 er	Hay 2502－02 whes 471	Mey 2003－a2 wasa
329	033－133	1721	0.09	13．3（5）	0.0 （1）	0.0 （5）	168．8（5）	196 （5）	0.0 ［6］	53.5 （5）	0.0 （7）	a．3（6）	0.0 （5）	0.0 （5）	0.0 （5）	tole（5）
332	093－193	1047	0.00	35.5 （5）	1.4 （5）	0.0 （4）	0.0 （4）	1177． H $^{\text {（4）}}$	181．8（4）	7.3 （3）	34808 （d）	E920（4）	43.5 （4）	44.0 （3）	23.7 （3）	79.7 （3）
33	053－183	988	0.09	607．2（5）	6.5 （4）	2.0 （z）	0.9 （3）	24028（4）	5.0 ［3］	2.9 （3）	7015 （4）	3790 （3）	207.5 （4）	487 （1）	2.7 （3）	429.7 （3）
339	083－183	585	0.09	0.0 （3）	0.0 （z）	0.0 （2）	0.9 （2）	0.0 （2）	0.0 （2）	0.9 （2）	0.0 （2）	0.0 （2）	0.9 （2）	0.0 （2）	0.5 （2）	0.9 （z）
354	093－183	474	0.52	0.0 （3）	0.0 （2）	2577.0 （2）	0.9 （2）	0.0 （3）	25 （2）	0.9 （2）	422.9 （2）	10065 （2）	4.5 （2）	81.1 （2）	0.0 （2）	3.0 （2）
313	185.274	151（147）	0.09	1089.0 （2）	32400 （2）	8184.5 （2）	50275.9 （2）	979.5 （2）	872.1 （2）	231.9 （2）	4321.3 （2）	5502.4 ［2］	1358.9 （2）	1525.5 （2）	941.5 （2）	572.0 （2）
336	185．274	121	0.00	187.5 （2）	688.5 （2）	4496.5 （2）	9955.5 （2）	811500 （2）	1350.5 ［2］	139.1 （2）	348190 （2）	16927 ［2］	1714.3 （2）	17420 （2）	1048．0［2］	1456.5 （2）
355	185－274	103	0.72	119.5 （2）	111.0 （2）	7207.0 （2）	5929.0 （2）	1928.0 （2）	35438.9 （2）	305.2 （2）	5152.0 （2）	2191.6 ［2］	4161.1 （2）	457.5 （2）	515.2 （2）	1458.5 （2）
334	275－366	$92 / 96$｜	0.00	731.0 （2）	223.0 （2）	837.0 （2）	1179.0 （2）	159.0 （2）	1206.8 ［2］	285.2 （2）	733.5 （2）	2515.2 （2）	3960.3 （2）	730.9 （2）	916.5 （2）	3344.5 （2）
335	275－396	58	0.00	38.7 （3）	265.3 （3）	592.5 （2）	6992.0 （2）	2267.0 （2）	15196.4 ［2］	531.6 （2）	5756.0 （2）	9671.3 ［2］	957.6 （2）	4730.6 （2）	4291.9 （2）	1612.3 （2）
356	275－396	61	0.77	444.0 （2）	805.5 （2）	2552.5 （2）	383.5 （2）	39500 （2）	$4347.0{ }^{[2]}$	133.6 （2）	3950.2 （2）	9384.4 （2）	20503.5 （2）	503.2 （2）	2020.9 （2）	566.5 （2）
717	367－549	93（166）	0.00	1461.5 （2）	324.0 （2）	279.0 （2）	1269.8 （2）	312.5 （2）	597.0 （2）	3398.6 （2）	483.6 （2）	3239.6 ［2］	745.5 （2）	139.5 （2）	242.0 （2）	584.0 （2）
719	367－549	76	0.00	277.6 （2）	68.5 （2）	497.5 （2）	1985.0 （2）	331.0 （2）	4.40 .5 ［2］	374.3 （2）	1058.0 （2）	1437.6 ［2］	1485.1 （2）	1755.4 （2）	208.8 （2）	602.5 （2）
721	367－549	76	0.78	174.0 （2）	4369.0 （2）	445.0 （2）	108.8 （2）	7556.5 （2）	575.5 ［2］	262.6 （2）	54300 （2）	3285.2 ［2］	487．${ }^{8}$（2）	541.1 （2）	94.7 （2）	342.5 （2）
718	550．731	111／134）	0.00	58.5 （2）	175 （2）	174.0 （2）	309.0 （2）	15.5 （2）	47.8 ［2］	60.8 （2）	723 （3）	35.4 （3）	368．0（3）	22.5 （2）	72.0 （2）	0.0 （2）
720	550－731	105	0.60	35.5 （2）	1130 （2）	24.0 （2）	34.5 （2）	40.0 （2）	234.6 （2）	63.2 （2）	35.6 （2）	221.3 （2）	53.6 （2）	52.1 （2）	93.1 （2）	32.0 （2）
722	550－731	93	0.76	1建5（2）	720 （2）	78.0 ［ 2 ］	327.5 （2）	170 （2）	an．${ }^{\text {（2）}}$	21．t（2）	3340 （2）	47．5［2］	600．2（2）	4479 （2）	as． 7 （2）	735（2）
	Totat：	6011	\＄29													
Upper（	5\％C1）			465.3	456.	1855.9	3238.5	4318.0	3 man 4	1255.5	10277.2	13495	195.5	2085	234.6	509.5
Weighte	dmean（ by	area）		199．897	180.3	E98． 4	1743.5	2062.6	853.2	141.7	12500	P6P5	571.3	2047	148.3	277.9
Lower I	85\％CI！			．81．3	－175．1	－598． 1	258.5	1057.2	－4978． 1	－ 972.1	．7777．3	390.4	207.1	121.0	64.1	45.4
SURV	Y ABUN	NDANCE	10^{6} ）	155.4	146.7	56 E .3	1445．8	2251.7	738． 2	117.2	10336	712.0	472.4	1893	123.5	220.0
ABUN	DANCE	within NP		7.3	42.0	1181.1	63.1	166.1	405.0	7.8	160.2	143.6	213.3	181	18.2	21.7
\％with	in NRA			4.7	28.6	31.9	4.8	4.8	51.4	4.9	97	20.0	45.2	11.1	15.1	9.5
				Ca	pelen Tram	Equivalem	1991－1995	（21）	＞	Campelen T	Trawl 1966－P	Yesem！				
329	093－183	1721	0.08	0.3 （9）	0.0 （3）	0.0 （5）	11.2 （5）	0.5 （5）	0.0 （5］	1.9 （5）	0.0 （7）	0.0 （5］	0.0 （5）	0.0 （5）	0.0 （5）	3.0 （5）
332	093－183	1047	0.00	0.7 （6）	0.2 （5）	0.0 （4）	0.0 （4）	148.5 （4）	11.9 （4）	0.3 （3）	42.1 （4）	238.5 （4）	1.7 （4）	23 （3）	2.1 （3）	10.3 （3）
337	093－183	548	0.00	14.0 （5）	1.5 （4）	0.9 （2）	0.0 （3）	315.0 （4）	0.1 （3）	0.1 （3）	75.9 （4）	29.5 （3）	14.5 （4）	4.7 （3）	0.0 （3）	59.3 （3）
339	053－183	585	0.00	0.0 （3）	0.0 （2）	0.0 （2）	0.0 （2）	0.0 （2）	0.0 （2）	0.0 （2）	0.0 （2）	0.0 ［2］	0.0 （2）	0.0 （2）	0.0 （2）	0.0 （2）
354	053－183	474	0.52	0.0 （3）	0.0 （2）	284.6 （2）	0.0 （2）	0.0 （3）	0.0 （2）	0.0 （2）	109.4 （2）	28.7 （2）	0.1 （2）	8.4 （2）	0.0 （2）	0.7 （2）
313	185－274	151（147）	0.05	125．8（2）	404.0 （2）	1339.7 （2）	5423.5 （2）	113.5 （2）	120.4 （2）	20.2 （2）	656.3 （2）	797.6 （2）	235.2 （2）	225.7 （2）	154.9 （2）	76.3 （2）
336	185－274	121	0.05	11.6 （2）	81.2 （2）	630.9 （2）	1032.5 （2）	8543.1 （2）	161.8 （2）	7.7 （2）	5058.7 （2）	198.9 （2）	225.1 （2）	2229 （2）	138.7 （2）	2023 （2）
355	185－274	103	0.72	2.7 （2）	28 （2）	972.9 （2）	408.1 （2）	178.4 （2）	4916.3 （2）	7.5 （2）	741.6 （2）	314.7 ［2］	502.8 （2）	44.2 （2）	78.3 （2）	184.3 （2）
334	275－366		0.00	103.3 （2）	38.5 （2）	202.9 （2）	171.1 （2）	29.4 （2）	220.0 ［2］	31.2 （2）	1403 （2）	478.9 ［2］	733.0 （2）	146.4 （2）	142．3（2）	478.2 （2）
335	275－366	58	0.00	4.3 （3）	54.3 （1）	118．3（2）	1210.4 （2）	263.7 （2）	24.55 .8 ［2］	58.7 （2）	10539 （2）	1480.3 （2）	138.7 （2）	741.6 （2）	740.4 （2）	229.1 （2）
\＄56	275－366	81	6.77	25.6 （2）	1130 （2）	462.4 （2）	135．8（2）	4ta 0 （2）	515.8 ［2］	7.5 （2）	651.6 （2）	1600.5 ［2］	4317，（2）	733 （2）	202．7（2）	74.5 （2）
T17	387－548	23 （186）	0.00	452.4 （2）	74.3 （2）	33．2（2）	395.3 （2）	914（2）	131.2 （2）	534.7 （2）	1431 （2）	670.0 （2）	310.8 （2）	20.2 （2）	45.3 （2）	1354 （ 7 ）
719	367－549	78	0.00	32.7 （z）	12.3 （2）	150．0（2）	569.7 （2）	71.1 （z）	72.5 （2）	59.6 （2）	281.6 （a）	23800 （2）	328.3 （2）	366.5 （2）	52.4 （2）	113.0 （z）
721	367－548	78	0.76	24.7 （2）	1895 （a）	110.5 （2）	22.0 （z）	12205 （2）	¢12 2 （2）	20.9 （2）	1530 （a）	651.5 （2）	129.6 （2）	807 （a）	17.2 （2）	43.4 （z）
718	550－731	111／134）	0.09	42.2 （2）	75 （2）	97．7（2）	155.9 （2）	73 （2）	27.2 （2）	15.9 （2）	255 （1）	16．［3］	174.5 （3）	7.4 （2）	18．1（2）	0.0 （2）
T20	550.731	105	0.09	11.7 （2）	57.7 （2）	R．T（2）	15.9 （2）	14.5 （z）	128.1 （2）	21.9 （2）	14.5 （2）	1025 （2）	17.7 （z）	18.2 （2）	30.8 （2）	5.9 （2）
T22	580.731	93	0.75	118.4 （2）	126 （2）	32.2 （2）	125.1 （2）	6.3 （2）	25.4 （2）	12.2 （2）	137.0 （2）	18．${ }^{\text {（2）}}$	261．0（2）	114.2 （2）	25.5 （2）	17．月（2）
Upper（ $95 \% \mathrm{Cl}$ ）																
				100.7	1042	277.6	843.6	451.0	1091.0	189.5	1504.1	258.3	145.8	45.7	37.4	78.7
Woighted mean（by area）Lewar（ S5y Cl）				13.8	19.6	103.1	208.3	283.8	124.2	19.0	132.7	148.2	101.0	31.7	24.3	37.7
				－61．2	－65．0	－71．5	－431．9	116.6	－8326	－151．5	－1118．8	28.1	54.2	17.6	11.3	－3．2
SURVEY BIOMASS（tons）				15278	15961	83874	172264	234648	102695	15699	159313	122550	83508	26183	20126	31202
BIOMASS within NRA				1553	2347	23733	8478	14641	54177	410	16024	19914	36624	3049	3151	2940
\％within NRA				16.2	14.7	28．3	4.2	6.2	528	2.6	11.3	16.2	43.5	11.6	15.7	2.4

30 Spring
 represent unsampled strata．Number of successful sets in Erackets．Data from $1991=1995$ are Campelen trawil equivalent units \｜sea text，Data from 1996 fo present are

tutar	口－ath Burge ｜ 1 A	Hea man			Detin－Mut ［risut	Prentit HH4			Harichect Wrin －15 Thd	$0 \mathrm{OE}-\mathrm{Ex}$ Handan W2404	$\begin{aligned} & \text { Sp-Ge1 } \\ & \text { 15esci } \\ & \text { wesegn } \end{aligned}$		rise	 T T13	＋ TH14
$3{ }^{3}$	503－133	1721	080	1.110	0.013	9．（5）	0.018	4T，［5］	－215	421．4	But（5）	0.04	bub（5）	7exty	4Estis）
72	－004－47	1245	0．co	D．a（4）	的3131	40.7010	118.018	4 covem	11312	do	48.313	x20）	［ss（10）	4T13	12 ± 010
337	－06－133	945	aco	175.5 （4）	6875121	151 （3）	415	S130（2）	4012	1493 （3）	271．3（3）	23.513	coue（3）	373 ，가	터․an
315		595	aso	D，（2）	0.0121	be（ 2	0.012	0 Ca	513	0.0 （2）	6417		1.4	10121	0.5 （2）
754	－904－47	474	059	0．0 120		de（i）	90，（2）	quode	427） 13	cists a	2250	cess 321	des（1）	2725	150．en（z）
331	186．274	＋51［147］	aso	314.5 （2）	1255．0／／2	4789－（2）	20710012	32s（2）	－	215.018	155.212	2305121	43Es（12）	3001712	넡（2）
335	16S－274	121	0.00	384.5 （2）	2760.012	32ESE（2）	48070012	45006	141.5	－19．0 21	641.7 （2）	1481．0／21	ances（2）	131.0124	ETS（2）
＋55	115－274	113	072	94970（2）	43910｜21	1317： 4		2315.7 （2）	均1．4	2150	124.513	$2382{ }^{5121}$	1030．5 13）	比11121	514.5 （7）
334	275－356	9235	0.50	8774.412	$1290101 / 2$	2s0x 7 （3）	90550 12	34740 （2）	－－	Herod ${ }^{\text {a }}$	1170．512）	17811	3787 （12）	144－12｜ 21	106． 2 （2）
335	275－3E5	58	Q．eo	sasen（2）	5980．012	2541.512	Senatola	1－6T，（2）	28ses 5	asas 21	2455.5	2748.0121	24024 12	7005124	7E1．7（2）
＋54	774－35	81	0.75	（7）		54．5（3）	3xT19	） 3 39， 1 （\％）	Heta	7358	－6ata 12	3458	Salta 17	24112 ｜21	5 ce （7）
517	］ET－545	POME5	0.00	－	－	61795（2）	1172512	2347.518	－	13wsts	Sazes 5	E0022014	$3420.1(2)$	14015	458．
714	360.545	76	aco	3125（2）		4354，（2）	20155	2escem	Sols 518	5311.59	1959012	3 COs 0121	22－4， 13	2407512	－420．（2）
T11	3 ET －545	76	6，76	3155		5435（3）	42.513		5755	1tred	$1 \mathrm{H}_{1} 2.512$	505［0］	15920（1）	19705	4210il（a）
THE	$580-731$	114｜124｜	0．co			5200（2）	10515	MESE（2）	－	coter	12512	16950	1200（12）	2895	545.1 （z）
723	580－731	105	aso	－		147．8（2）	$301.01{ }^{12}$	$422(2)$	15ans［2］		471.412	1005	1500（17）		127 （2）
725	$580-731$	14	076	11.5	－	371.50	55^{5124}	365 ${ }^{\text {a }}$	724013	1当耍	2740	15.9	1564 （2）	3123枓	13E4（ ${ }^{\text {a }}$
T 4	732974	105	1.60				－	－		－	5012		4.5 （2）	$00 \mid 21$	0.5 （z）
Tis	738914	39	Q．co	－				－	－	－	0．5 12		0．（2）	0.012	Qe（2）
Tr2	73×14	135	bed	－	－－			－	－	－	80 ${ }^{2}$		（3）（3）		晾（3）
	Tolat：	5150	245												
 Weighted mean（by area ） Lowerisen				3050.2	12173	SET．	6720	9435.2	＊455	7 Ec 4	313e．	Esit	515.7	100017	E18．7
				430］	$5 \pi 20$	371.5	310	1233， 7	201．4	1304．5	455	3595	411．4	4140	317．1
				－ 3179	－TyT	TE00	105.2		－250	－4035	－3225	运3	7ect	－109	15.8
SURUEY ARUNDANCE（910 ${ }^{\text {² }}$				3151	4218	3 FE 1	x13	1920． 1	1513	TESAE	33Ea	203	1902	355	350.
ABUNDAPCE within NRA				18 E 4	1110	251	420	404.8	31.4	258.2	524	T7． 0	Exa	52.7	58.7
S within Pra				32.2	203	d．	11.1	789	20.8	3 m	1515	家	17.1	14.	17.5
				Campelen Trawi Equiralen！1591－1504				\square	Campelen Truad 1995－Present						
325	－56－113	1721	0.00	Dat	40131	曋（5）		1.8	50.15	2306	80 （5）	0.08	E．（5）	42.14	329（5）
332	－ 0 c－137	1245	Qso	Dan（4）	173121	27 （3）	1589	너동）	－2120	T． 7 a	2.713	08 Cl	Dal 13	$011 / 2$	1.7 （3）
337	acc－1a3	945	aco	30.3 （4）	64， 7 ｜21	T．4（3）	5．04 12，	cse（2）	0.012	17.9	$34.513)$	1.913	1278	2913	3 s
等空	ses－1a3	$5{ }_{5}^{5}$	bed	Q 12	10 012		0 的（13）	0 0，	8013	0 b	B012		¢ 212	02121	毼
354	－00－137	474	0．72	D日 12	1715	Den	－000［23		15012	Fsoc	31.512	69001	$0 \cdot(2)$	$33^{2} 2$｜2	10．（a）
331	168－274	151［147］	0.60	27.1 （2）	169.0121	465 （2）	257．7 12	100.0 （2）	－	285121	2 CH 12	18.00121	24.4 （2）	310124	$3 \times(2)$
3nter	185－274	121	0.80	15．5（2）		37E）（3）	557．a 12	4378	1．148	1194	102］（2）	5493	10］（2）	115121	Q（a）
355	185－274	197	072	3 를	45015	77.7 （1）		230．0（3）	37313	300	11.312		127．13）	1130121	4.2 （1）
334	275－356		Q．co	1317．3［2］	48017 ｜21	1E0：（3）	17121｜라	scee（2）	－	2 Eas 81	13 Ec 312	226121	54.818	18388	12.7 （2）
315	275－364	Ex	0 cos	5124	83093121	3514		1EP． 7	3012 17	1114	3421（2）	44321	3554（2）	80， 0121	125（2）
3505	275－per	01	077	［54，4		（0）1（i）	3018 ｜21	樶里国	1495	1061 1	914.512	Stele（z）		37061	［4］（3）
T17	36T－545	golicy	a．co	－	－	1351． 1 （2）	341.4	seere（2）	－	228＋8 61	1334.10	185.7121	1143．7（17）	2392121	75．3）
T14	3ET－54	76	0.00	2584（2）	－	3205 （2）	594214	414.6	6584 4	Eatal	321.18	691.0121	1315．7（3）	\＄710 121	3tay（2）
721	3ETS40	76	076	52.713	m	1004		Med 7	17312		A185	$1 T 580$	230213	3193）	72em
THE	$580-731$	111｜134］	a．co	－	－	169.18	44.2211	400.4 （2）	－	3 T .1	$4.412)$	43.08121	24.3 （2）	T95｜2	1180（2）
T28	$580-731$	105	a．co	－		sos（2）	114.7 d	1es（2）	5726	－	1420（2）	21.3121	$58 \pm 12)$	14．1／21	$24(2)$
T22	$580-731$	35	076	7.712		194．（3）	$2 \mathrm{zT1}$	124）（3）	101.318	abcl	10．5	［13（2）	24：30）	12512 ［27	隹1（a）
T 5	732－974	105	1.60				－		－		1.5		$24(2)$	00.12 레	0.4 （2）
7 me	732914	15	abo	－	－	－	－	－	－	－	6.1	－	$0 \cdot(2)$	0.0121	Que（2）
Tri	737414	135	¢， 0	－	－	－	－	－	－－	－	D．	－	2713	－－	
	Tolat：	5150	0.46												
				3 Ec 5	1474	16S．	104.0	3720	as． 2	11621	654.3	10as	32.1	75.6	es． 1
Weighted mean（tyeren）				44	T13	43t	＋45	151．5	3 ± 5	1804		94	48	416	314．80
				－216．7	52	221	320	4 cs 2	－24．11	－crys	431.9	5.0	24．3	115	0.7
EIOMASS（tons］				14613	5624T	straz	51124	1－3576	22004	15－523	756 Tm	421100	80004	372Es	38975
BIOMASS within MRA				4471		384	5000	46922	3865	3TTM	114×9	11595	bion	需矿	6094
\％within NRA				124	2 s 3	6	2．4	3 xe	15.5	2 S 4	15.11	27.5	14.5	23.0	24.7

30 Autumn

Fig. 1: Nominal catches and TACs of redfish in Div. 30.

Fig. 2. Standardized Mean CPUE ± 2 standard errors for Redfish in Div. 30 from 1960-2002 utiizing effort in HOURS fished (left panel) and DAYS fished (right panel). Lower panels denote standardzations separately by fleets that have fished only inside the 200-mile limit (Canada), fleets that have fish inside and in the NRA (Russia, Cuba) and fleets that have only fished in the NRA

Fig. 3. Commercial catch-at-length for Div. 30 compared with RV catch-at-length.

Fig. 4. Survey biomass for redfish in Div. 30 for spring and autumn surveys from 1991-2002 (upper panel) with $95 \% \mathrm{Cl}$ (lower panels). Surveys prior to autumn 1995 utilized an Engel trawl. Estimates were converted into Campelen equivalents based on comparative fishing trials.

Fig. 5. Length distributions from RV surveys to Div. 30 in SPRING from 1991-2003. Plotted are mean per standard tow. The 1991-1995 data are convertions into Campelen equivalents based on a comparative fishing experiments.

Fig. 6. Length distributions from RV surveys to Div. 30 in AUTUMN from 1991-2002. Plotted are mean per standard tow. The 1991-1994 data are convertions into Campelen equivalents based on a comparative fishing experiments.

Fig. 7. Length distributions from RV surveys to Div. 3 O in spring from 1973-1990. Plotted are mean per standard tow. The surveys covered depths to 200 fathoms.

Fig. 8. Catch/Biomass ratios for Div. 3O. Plotted are average survey biomass between spring (n) and autum $n(n-1)$ for year (n) in which catch was taken.

APPENDEX 1

ASPIC 3.8130 Redfish with NAFO Cpue series $1960-2002$ in days fished
Page 1
17:04.36
ASPIC -- A Surplus-Production Model Including Covariates (Ver. 3.81)
FIT Mode
Author: Michael H. Prager; NOAA/NMFS/S.E. Fisheries Science Center
User's Manual
$\quad 101$ Pivers Island Road; Beaufort, North Carolina 28516 USA

available gratis

author.
Ref: Prager, M. H. $1994 . ~ A ~ s u i t e ~ o f ~ e x t e n s i o n s ~ t o ~ a ~ n o n e q u i l i b r i u m ~$
surplus-production model. Fishery Bulletin $92: 374-389$.

CONTROL PARAMETERS USED (FROM INPUT FILE)

Number of years analyzed: 0	43	Number of bootstrap trials:	
Number of data series: $2.000 \mathrm{E}+03$	2	Lower bound on MSY:	
Objective function computed: $5.000 \mathrm{E}+05$	in effort	Upper bound on MSY:	
```Relative conv. criterion (simplex): 2.000E-03```	$1.000 \mathrm{E}-08$	Lower bound on $r$ :	
```Relative conv. criterion (restart): 5.000E+00```	$3.000 \mathrm{E}-08$	Upper bound on $r$ :	
```Relative conv. criterion (effort): 2345678```	$1.000 \mathrm{E}-04$	Random number seed:	
Maximum $F$ allowed in fitting: 10000	8.000	Monte Carlo search mode, trials:	2

PROGRAM STATUS INFORMATION (NON-BOOTSTRAPPED ANALYSIS)
code 0
Normal convergence.

CORRELATION AMONG INPUT SERIES EXPRESSED AS CPUE (NUMBER OF PAIRWISE OBSERVATIONS BELOW)


GOODNESS-OF-FIT AND WEIGHTING FOR NON-BOOTSTRAPPED ANALYSIS
R-squared
Loss component number and title
in CPUE

MODEL PARAMETER ESTIMATES (NON-BOOTSTRAPPED)


ASPIC 3.8130 Redfish with NAFO Cpue series 1960-2002 in days fished
Page 2

ESTIMATED POPULATION TRAJECTORY (NON-BOOTSTRAPPED)

	Year	Estimated total	Estimated starting	Estimated average	Observed total	Model total	Estimated surplus	Ratio of F mort	Ratio of biomass
Obs	or ID	F mort	biomass	biomass	yield	yield	production	to Fmsy	to Bmsy
1	1960	0.068	$6.832 \mathrm{E}+04$	$7.309 \mathrm{E}+04$	$5.000 \mathrm{E}+03$	$5.000 \mathrm{E}+03$	$1.442 \mathrm{E}+04$	$3.404 \mathrm{E}-01$	$9.502 \mathrm{E}-01$
2	1961	0.138	$7.774 \mathrm{E}+04$	$7.943 \mathrm{E}+04$	$1.100 \mathrm{E}+04$	$1.100 \mathrm{E}+04$	$1.429 \mathrm{E}+04$	$6.891 \mathrm{E}-01$	$1.081 \mathrm{E}+00$
3	1962	0.090	$8.103 \mathrm{E}+04$	$8.434 \mathrm{E}+04$	$7.557 \mathrm{E}+03$	$7.557 \mathrm{E}+03$	$1.401 \mathrm{E}+04$	$4.459 \mathrm{E}-01$	$1.127 \mathrm{E}+00$
4	1963	0.102	$8.748 \mathrm{E}+04$	$8.974 \mathrm{E}+04$	$9.180 \mathrm{E}+03$	$9.180 \mathrm{E}+03$	$1.355 \mathrm{E}+04$	5.091E-01	$1.217 \mathrm{E}+00$
5	1964	0.177	$9.185 \mathrm{E}+04$	$9.051 \mathrm{E}+04$	1.604E+04	1. $604 \mathrm{E}+04$	$1.348 \mathrm{E}+04$	$8.821 \mathrm{E}-01$	$1.278 \mathrm{E}+00$
6	1965	0.230	$8.928 \mathrm{E}+04$	$8.617 \mathrm{E}+04$	$1.979 \mathrm{E}+04$	1. $979 \mathrm{E}+04$	$1.387 \mathrm{E}+04$	$1.143 \mathrm{E}+00$	$1.242 \mathrm{E}+00$
7	1966	0.185	$8.336 \mathrm{E}+04$	$8.275 \mathrm{E}+04$	$1.531 \mathrm{E}+04$	$1.531 \mathrm{E}+04$	1.412E+04	$9.204 \mathrm{E}-01$	$1.159 \mathrm{E}+00$
8	1967	0.239	$8.218 \mathrm{E}+04$	$7.968 \mathrm{E}+04$	$1.904 \mathrm{E}+04$	1. $904 \mathrm{E}+04$	$1.427 \mathrm{E}+04$	$1.189 \mathrm{E}+00$	$1.143 \mathrm{E}+00$
9	1968	0.079	$7.741 \mathrm{E}+04$	$8.137 \mathrm{E}+04$	$6.445 \mathrm{E}+03$	$6.445 \mathrm{E}+03$	$1.418 \mathrm{E}+04$	$3.942 \mathrm{E}-01$	$1.077 \mathrm{E}+00$
10	1969	0.189	$8.515 \mathrm{E}+04$	$8.418 \mathrm{E}+04$	$1.588 \mathrm{E}+04$	1.588E+04	$1.402 \mathrm{E}+04$	$9.386 \mathrm{E}-01$	$1.184 \mathrm{E}+00$
11	1970	0.158	$8.330 \mathrm{E}+04$	$8.374 \mathrm{E}+04$	1.319E+04	1.319E+04	$1.406 \mathrm{E}+04$	$7.839 \mathrm{E}-01$	$1.159 \mathrm{E}+00$
12	1971	0.244	$8.416 \mathrm{E}+04$	$8.123 \mathrm{E}+04$	$1.979 \mathrm{E}+04$	1.979E+04	$1.420 \mathrm{E}+04$	$1.213 \mathrm{E}+00$	$1.171 \mathrm{E}+00$
13	1972	0.208	$7.857 \mathrm{E}+04$	$7.765 \mathrm{E}+04$	$1.612 \mathrm{E}+04$	1. $612 \mathrm{E}+04$	$1.435 \mathrm{E}+04$	$1.033 \mathrm{E}+00$	$1.093 \mathrm{E}+00$
14	1973	0.110	$7.680 \mathrm{E}+04$	$7.961 \mathrm{E}+04$	$8.797 \mathrm{E}+03$	8.797E+03	$1.427 \mathrm{E}+04$	$5.499 \mathrm{E}-01$	$1.068 \mathrm{E}+00$
15	1974	0.159	$8.228 \mathrm{E}+04$	$8.279 \mathrm{E}+04$	1.312E+04	1.312E+04	$1.412 \mathrm{E}+04$	$7.888 \mathrm{E}-01$	$1.144 \mathrm{E}+00$
16	1975	0.183	$8.327 \mathrm{E}+04$	$8.276 \mathrm{E}+04$	$1.511 \mathrm{E}+04$	1.511E+04	$1.412 \mathrm{E}+04$	$9.086 \mathrm{E}-01$	$1.158 \mathrm{E}+00$
17	1976	0.188	$8.228 \mathrm{E}+04$	$8.167 \mathrm{E}+04$	$1.535 \mathrm{E}+04$	$1.535 \mathrm{E}+04$	$1.418 \mathrm{E}+04$	9.351E-01	$1.144 \mathrm{E}+00$
18	1977	0.131	$8.111 \mathrm{E}+04$	$8.280 \mathrm{E}+04$	$1.085 \mathrm{E}+04$	$1.085 \mathrm{E}+04$	$1.411 \mathrm{E}+04$	$6.521 \mathrm{E}-01$	1.128E+00
19	1978	0.078	$8.438 \mathrm{E}+04$	$8.790 \mathrm{E}+04$	$6.860 \mathrm{E}+03$	$6.860 \mathrm{E}+03$	$1.372 \mathrm{E}+04$	$3.884 \mathrm{E}-01$	$1.174 \mathrm{E}+00$
20	1979	0.199	$9.124 \mathrm{E}+04$	$8.908 \mathrm{E}+04$	$1.774 \mathrm{E}+04$	$1.774 \mathrm{E}+04$	$1.362 \mathrm{E}+04$	$9.909 \mathrm{E}-01$	$1.269 \mathrm{E}+00$
21	1980	0.203	$8.712 \mathrm{E}+04$	$8.536 \mathrm{E}+04$	$1.731 \mathrm{E}+04$	1.731E+04	$1.394 \mathrm{E}+04$	$1.009 \mathrm{E}+00$	1.212E+00
22	1981	0.149	$8.375 \mathrm{E}+04$	$8.448 \mathrm{E}+04$	$1.260 \mathrm{E}+04$	1.260E+04	$1.400 \mathrm{E}+04$	$7.425 \mathrm{E}-01$	$1.165 \mathrm{E}+00$
23	1982	0.131	$8.515 \mathrm{E}+04$	$8.644 \mathrm{E}+04$	$1.136 \mathrm{E}+04$	1.136E+04	$1.385 \mathrm{E}+04$	$6.540 \mathrm{E}-01$	$1.184 \mathrm{E}+00$
24	1983	0.081	$8.765 \mathrm{E}+04$	$9.079 \mathrm{E}+04$	$7.340 \mathrm{E}+03$	$7.340 \mathrm{E}+03$	$1.344 \mathrm{E}+04$	$4.023 \mathrm{E}-01$	$1.219 \mathrm{E}+00$
25	1984	0.185	$9.375 \mathrm{E}+04$	$9.184 \mathrm{E}+04$	$1.698 \mathrm{E}+04$	1.698E+04	$1.333 \mathrm{E}+04$	$9.200 \mathrm{E}-01$	1.304E+00
26	1985	0.142	$9.010 \mathrm{E}+04$	$9.043 \mathrm{E}+04$	$1.286 \mathrm{E}+04$	1.286E+04	$1.349 \mathrm{E}+04$	$7.077 \mathrm{E}-01$	$1.253 \mathrm{E}+00$
27	1986	0.120	$9.073 \mathrm{E}+04$	$9.191 \mathrm{E}+04$	$1.106 \mathrm{E}+04$	$1.106 \mathrm{E}+04$	$1.333 \mathrm{E}+04$	$5.985 \mathrm{E}-01$	$1.262 \mathrm{E}+00$
28	1987	0.316	$9.300 \mathrm{E}+04$	8.591E+04	$2.717 \mathrm{E}+04$	$2.717 \mathrm{E}+04$	$1.386 \mathrm{E}+04$	1.574E+00	$1.294 \mathrm{E}+00$
29	1988	0.507	$7.969 \mathrm{E}+04$	$6.863 \mathrm{E}+04$	$3.479 \mathrm{E}+04$	$3.479 \mathrm{E}+04$	$1.432 \mathrm{E}+04$	$2.523 \mathrm{E}+00$	$1.108 \mathrm{E}+00$
30	1989	0.222	$5.922 \mathrm{E}+04$	$5.962 \mathrm{E}+04$	1.326E+04	1.326E+04	$1.403 \mathrm{E}+04$	$1.107 \mathrm{E}+00$	$8.237 \mathrm{E}-01$
31	1990	0.238	$5.999 \mathrm{E}+04$	$5.989 \mathrm{E}+04$	$1.424 \mathrm{E}+04$	1.424E+04	$1.404 \mathrm{E}+04$	$1.183 \mathrm{E}+00$	$8.344 \mathrm{E}-01$
32	1991	0.135	$5.979 \mathrm{E}+04$	$6.271 \mathrm{E}+04$	$8.461 \mathrm{E}+03$	8.461E+03	1.420E+04	$6.715 \mathrm{E}-01$	$8.317 \mathrm{E}-01$
33	1992	0.235	$6.554 \mathrm{E}+04$	$6.505 \mathrm{E}+04$	$1.527 \mathrm{E}+04$	1.527E+04	$1.432 \mathrm{E}+04$	$1.168 \mathrm{E}+00$	$9.115 \mathrm{E}-01$
34	1993	0.246	$6.459 \mathrm{E}+04$	$6.383 \mathrm{E}+04$	$1.572 \mathrm{E}+04$	1.572E+04	$1.427 \mathrm{E}+04$	1.225E+00	$8.983 \mathrm{E}-01$
35	1994	0.080	$6.313 \mathrm{E}+04$	$6.765 \mathrm{E}+04$	$5.428 \mathrm{E}+03$	$5.428 \mathrm{E}+03$	$1.438 \mathrm{E}+04$	$3.993 \mathrm{E}-01$	$8.781 \mathrm{E}-01$
36	1995	0.041	$7.208 \mathrm{E}+04$	$7.771 \mathrm{E}+04$	$3.214 \mathrm{E}+03$	$3.214 \mathrm{E}+03$	$1.432 \mathrm{E}+04$	$2.058 \mathrm{E}-01$	$1.003 \mathrm{E}+00$
37	1996	0.115	$8.319 \mathrm{E}+04$	$8.531 \mathrm{E}+04$	$9.845 \mathrm{E}+03$	$9.845 \mathrm{E}+03$	$1.394 \mathrm{E}+04$	$5.743 \mathrm{E}-01$	$1.157 \mathrm{E}+00$
38	1997	0.056	$8.729 \mathrm{E}+04$	$9.152 \mathrm{E}+04$	$5.112 \mathrm{E}+03$	$5.112 \mathrm{E}+03$	$1.336 \mathrm{E}+04$	$2.779 \mathrm{E}-01$	$1.214 \mathrm{E}+00$
39	1998	0.148	$9.553 \mathrm{E}+04$	$9.496 \mathrm{E}+04$	$1.405 \mathrm{E}+04$	1.405E+04	$1.296 \mathrm{E}+04$	$7.364 \mathrm{E}-01$	1.329E+00
40	1999	0.133	$9.444 \mathrm{E}+04$	$9.465 \mathrm{E}+04$	$1.259 \mathrm{E}+04$	1.259E+04	$1.300 \mathrm{E}+04$	$6.621 \mathrm{E}-01$	1.314E+00
41	2000	0.104	$9.485 \mathrm{E}+04$	$9.629 \mathrm{E}+04$	$1.000 \mathrm{E}+04$	$1.000 \mathrm{E}+04$	$1.278 \mathrm{E}+04$	$5.169 \mathrm{E}-01$	1.319E+00
42	2001	0.216	$9.763 \mathrm{E}+04$	$9.382 \mathrm{E}+04$	$2.031 \mathrm{E}+04$	$2.031 \mathrm{E}+04$	$1.309 \mathrm{E}+04$	$1.077 \mathrm{E}+00$	$1.358 \mathrm{E}+00$
43	2002	0.195	$9.041 \mathrm{E}+04$	$8.855 \mathrm{E}+04$	$1.723 \mathrm{E}+04$	1.723E+04	$1.367 \mathrm{E}+04$	$9.685 \mathrm{E}-01$	$1.258 \mathrm{E}+00$
44	2003		$8.685 \mathrm{E}+04$						1.208E+00

ASPIC 3.8130 Redfish with NAFO Cpue series 1960-2002 in days fished
Page 3


[^2]ASPIC 3.81 30 Redfish with NAFO Cpue series $1960-2002$ in days fished
Page 4


ASPIC 3.8130 Redfish with NAFO Cpue series 1960-2002 in days fished
Page 5
RESULTS FOR DATA SERIES \# 2 (NON-BOOTSTRAPPED)

Russian 30 Spring series

Data type B1: Year-average biomass estimates							Series weight: 1.000	
		Observed	Estimated	Estim	Observed	Model	Resid in	Resid in
Obs	Year	effort	effort	F	biomass	biomass	$\log B$	biomass
1	1960	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$7.309 \mathrm{E}+04$	0.00000	0.0
2	1961	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$7.943 \mathrm{E}+04$	0.00000	0.0
3	1962	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.434 \mathrm{E}+04$	0.00000	0.0
4	1963	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.974 \mathrm{E}+04$	0.00000	0.0
5	1964	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$9.051 \mathrm{E}+04$	0.00000	0.0
6	1965	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.617 \mathrm{E}+04$	0.00000	0.0
7	1966	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.275 \mathrm{E}+04$	0.00000	0.0
8	1967	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$7.968 \mathrm{E}+04$	0.00000	0.0
9	1968	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.137 \mathrm{E}+04$	0.00000	0.0
10	1969	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.418 \mathrm{E}+04$	0.00000	0.0
11	1970	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.374 \mathrm{E}+04$	0.00000	0.0
12	1971	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.123 \mathrm{E}+04$	0.00000	0.0
13	1972	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$7.765 \mathrm{E}+04$	0.00000	0.0
14	1973	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$7.961 \mathrm{E}+04$	0.00000	0.0
15	1974	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.279 \mathrm{E}+04$	0.00000	0.0
16	1975	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.276 \mathrm{E}+04$	0.00000	0.0
17	1976	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.167 \mathrm{E}+04$	0.00000	0.0
18	1977	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.280 \mathrm{E}+04$	0.00000	0.0
19	1978	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.790 \mathrm{E}+04$	0.00000	0.0
20	1979	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.908 \mathrm{E}+04$	0.00000	0.0
21	1980	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.536 \mathrm{E}+04$	0.00000	0.0
22	1981	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.448 \mathrm{E}+04$	0.00000	0.0
23	1982	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.644 \mathrm{E}+04$	0.00000	0.0
24	1983	$1.000 \mathrm{E}+00$	$1.000 \mathrm{E}+00$	0.0	$2.126 \mathrm{E}+05$	$9.079 \mathrm{E}+04$	0.85091	$1.218 \mathrm{E}+05$
25	1984	$1.000 \mathrm{E}+00$	$1.000 \mathrm{E}+00$	0.0	8.410E+04	$9.184 \mathrm{E}+04$	-0.08802	$-7.738 \mathrm{E}+03$
26	1985	$1.000 \mathrm{E}+00$	$1.000 \mathrm{E}+00$	0.0	1.573E+05	$9.043 \mathrm{E}+04$	0.55369	$6.689 \mathrm{E}+04$
27	1986	$1.000 \mathrm{E}+00$	$1.000 \mathrm{E}+00$	0.0	1.221E+05	$9.191 \mathrm{E}+04$	0.28425	$3.022 \mathrm{E}+04$
28	1987	$1.000 \mathrm{E}+00$	$1.000 \mathrm{E}+00$	0.0	$2.053 \mathrm{E}+04$	$8.591 \mathrm{E}+04$	-1.43141	$-6.538 \mathrm{E}+04$
29	1988	$1.000 \mathrm{E}+00$	$1.000 \mathrm{E}+00$	0.0	$9.048 \mathrm{E}+04$	$6.863 \mathrm{E}+04$	0.27641	$2.185 \mathrm{E}+04$
30	1989	$1.000 \mathrm{E}+00$	$1.000 \mathrm{E}+00$	0.0	$2.764 \mathrm{E}+04$	$5.962 \mathrm{E}+04$	-0.76866	$-3.198 \mathrm{E}+04$
31	1990	$1.000 \mathrm{E}+00$	$1.000 \mathrm{E}+00$	0.0	$9.866 \mathrm{E}+04$	$5.989 \mathrm{E}+04$	0.49918	$3.877 \mathrm{E}+04$
32	1991	$1.000 \mathrm{E}+00$	$1.000 \mathrm{E}+00$	0.0	1.349E+04	$6.271 \mathrm{E}+04$	-1.53620	-4.921E+04
33	1992	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$6.505 \mathrm{E}+04$	0.00000	0.0
34	1993	$1.000 \mathrm{E}+00$	1.000E+00	0.0	$1.854 \mathrm{E}+05$	$6.383 \mathrm{E}+04$	1.06649	1.216E+05
35	1994	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$6.765 \mathrm{E}+04$	0.00000	0.0
36	1995	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$7.771 \mathrm{E}+04$	0.00000	0.0
37	1996	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.531 \mathrm{E}+04$	0.00000	0.0
38	1997	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$9.152 \mathrm{E}+04$	0.00000	0.0
39	1998	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$9.496 \mathrm{E}+04$	0.00000	0.0
40	1999	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$9.465 \mathrm{E}+04$	0.00000	0.0
41	2000	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$9.629 \mathrm{E}+04$	0.00000	0.0
42	2001	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$9.382 \mathrm{E}+04$	0.00000	0.0
43	2002	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0	*	$8.855 \mathrm{E}+04$	0.00000	0.0

[^3]ASPIC 3.8130 Redfish with NAFO Cpue series $1960-2002$ in days fished
Page 6


ASPIC 3.81 30 Redfish with NAFO Cpue series $1960-2002$ in days fished Page 7
bserved (O) and Estimated (*) CPUE for Data Series \# 1 -- NAFO CPUE series




ASPIC 3.8130 Redfish with NAFO Cpue series $1960-2002$ in days fished Page 8

Time Plot of Estimated F-Ratio and B-Ratio
3.0 - :

F

F
1.5 -:


:
$0.0-:$
$\qquad$
2010.


[^0]:    ${ }^{\mathrm{a}}$ Totals since 1983 may include adjustments for estimated catches from various sources

[^1]:    AVERAGE C. V. FOR THE RETRANSFORMED MEAN: 0. 181

[^2]:    * Asterisk indicates missing value(s).

[^3]:    * Asterisk indicates missing value(s).

