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Abstract 

The Northwest Atlantic Fisheries Organization (NAFO) Commission has called for a reassessment of the 
vulnerable marine ecosystems (VMEs) and impact of bottom fisheries on VMEs for 2027. Species distribution 
models (SDMs) help to inform on the closed area boundaries and have been used to modify the areas of 
significant concentrations of Large-Sized Sponges and Large Gorgonian Corals produced through kernel 
density analyses (KDE) in the previous review. Here we provide Random Forest SDMs for the Large-Sized 
Sponges, Sea Pens, and Black Corals. For the first time, we provide maps of uncertainty associated with the 
areas of predicted presence and absence. For the Large-Sized Sponges and Sea Pens, we had sufficient data to 
model the distributions of subsets of data for each, viz. the sponges of the sub-order Astrophorina, the families 
Tetillidae and Polymastiidae, and sponge grounds (catches above a weight threshold from the KDE analyses), 
and for Sea Pens, the genera Balticina, Funiculina, Anthoptilum and Pennatula. Predictive models for the Large 
and Small Gorgonian Corals, Erect Bryozoans and Sea Squirts will be separately presented for the 2025 meeting 
of the Working Group on Ecosystem Science and Assessment (WG-ESA), following the workflow presented 
herein.  

Introduction 

Species distribution models (SDMs) predict the presence, absence, or abundance/biomass of a species or 
habitat (the response variable) from environmental variables (the predictor variables) thought to influence it. 
Potential uses of SDMs include 1) explanation, 2) mapping, and 3) transfer (Zurrell et al., 2020), with the first 
focused on identifying the main factors driving the species distributions, the second on producing maps of the 
distribution, and the third on forecasting or projecting the distributions into a different geographic region or 
time period. The primary objective of the SDMs presented here is for ‘Mapping’ (Zurrell et al., 2020). These 
models are particularly valuable in areas where survey vessels do not sample (e.g., rough bottom, cliffs) and 
for non-aggregating taxa such as the black corals that are present in low frequency. The maps will also be used 
to evaluate the area between trawl sets to determine if the full vulnerable marine ecosystem (VME) polygon 
(derived from kernel density analyses (KDE), which does not consider environmental variables (Kenchington 
et al., 2019)) is potential habitat, and to modify the boundaries of the VME polygons if they include areas of 
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predicted species absence. The latter was previously done to modify the VME polygons for Large-sized Sponges 
and Large Gorgonian Corals (NAFO, 2019).  

SDMs for sponge grounds, a habitat dominated by massive structure forming sponges (Knudby et al., 2013 a,b), 
the glass sponge Asconema foliata (NAFO, 2019), black corals, large gorgonian corals and sea pen corals 
(Knudby et al., 2013c), erect bryozoans and sea squirts (Boltenia ovifera) (Kenchington et al., 2019) have 
previously been incorporated into the NAFO assessment of VMEs (NAFO, 2019). In support of the 2024 NAFO 
Commission Request#6, b: Work towards the reassessment of VMEs and impact of bottom fisheries on VMEs for 
2027, and c: Develop materials on the potential of submitting NAFO coral bottom fishing closed areas as OECMs 
for discussion at the 2025 WG-EAFFM meeting, SDMs have been created using a common set of environmental 
predictors and response variables updated to include data through to 2023. For some groups like the sponges, 
an additional ten years or more of data were considered. We followed the Overview/Conceptualisation, Data, 
Model fitting, Assessment and Prediction (ODMAP) steps recommended by Zurrell et al. (2020) for standard 
reporting of SDMs, complemented by the recommendations of Sofaer et al. (2019) for the use of SDMs in 
decision-making. 

Here we present SDMs for the VME functional groups Large-sized Sponges, Sea Pens, and Black Corals (mostly 
a single species Stauropathes arctica). Within the Large-sized Sponges we also present models for the sponge 
grounds (as in Knudby et al., 2013b), the sponge families Tetillidae and Polymastiidae (excluding genera 
Radiella and Tentorium as they are not VME indicator taxa (NAFO, 2024)), as well as for the Astrophorina, a 
suborder of massive sponges in the class Demospongiae. We were not able to construct a new model for the 
glass sponge Asconema foliata as the published data on this species (Murillo et al., 2016; NAFO, 2019) were 
collected in one year (2007) and were not provided for the analyses herein (see below). Within the Sea Pens, 
we also present models for the genera Funiculina, Balticina, Anthoptilum and Pennatula (including P. grandis 
which has been reassigned to the genus Ptilella). These additional models will be used to compare the results 
of the predicted distributions of individual taxa versus that of their functional group. The latter formed the 
original response data to earlier models as there were insufficient records for individual species, or a lack of 
confidence in the identifications of early records. The models for the subgroups will also be used to examine 
differential impacts of bottom fisheries and evaluate the proportional protection afforded to these subgroups 
by the existing closed areas. We discuss recommendations for which models to use in response to Commission 
Request#6b. 

Methods 

Environmental data 

All layers were displayed using a NAD83 UTM 23N projection and the resolution of the final raster surfaces was 
1 km. The spatial extent of the modelled area is bounded by the Canadian Exclusive Economic Zone (EEZ) to 
the west, and to the north, south and east by the 2500 m depth contour (derived from GEBCO 2024, see below). 
This area is referred to as the NAFO Regulatory Area (NRA) and includes Flemish Cap and the Nose and Tail of 
Grand Bank.  

Water column variables 

Environmental layers representing water column properties were the physical oceanographic variables 
bottom temperature, bottom salinity, bottom current speed, bottom stress, mixed layer depth, surface 
temperature, surface salinity, and the biological oceanographic variables chlorophyll a, and primary 
productivity (Table 1). Monthly temperature, salinity, current speed, bottom stress, and mixed layer depth 
were extracted from the Bedford Institute of Oceanography North Atlantic Model (BNAM; Wang et al., 2018) 
for the period 1990-2023. Mean, maximum, minimum and range values derived from BNAM were calculated 
for all months within a year and averaged across all years. Bottom stress (𝜏𝜏𝑏𝑏) was calculated as 𝜏𝜏𝑏𝑏 =
3.5 × 10−3 × 𝜌𝜌 × 𝑈𝑈𝑏𝑏2  where, 𝜌𝜌 is the density of seawater [kg m-3] derived from BNAM, and mean bottom 
current velocity  (𝑈𝑈𝑏𝑏) was calculated from eastward seawater velocity (U) and northward seawater velocity 
(V), with the following formula: 𝑈𝑈𝑏𝑏 = �(𝑈𝑈2 + 𝑉𝑉2). For mixed layer depth, only maximum values were 
calculated as above, averaged across the time period and for seasonal time periods (Winter: January – March; 
Spring: April - June; Summer: July - September; Fall: October – December). Using ArcGIS Pro’s Geostatistical 
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Wizard, BNAM (and BNAM-derived) point data were interpolated using ordinary kriging, and the resulting 
geostatistical layers were exported to the final raster surfaces.  

Daily photosynthetically active radiation (PAR) and surface chlorophyll a concentration data collected by the 
MODIS sensor onboard the Aqua satellite from 2003-2023 were projected onto a 4.64-km resolution equal-
area grid by NASA’s Ocean Biology Processing Group (OBPG). The data were downloaded from the OBPG 
website and averaged into 8-day composites to minimize the effect of missing data (e.g., cloud cover, low solar 
angles), and simplify processing while still retaining sufficient detail in the time scale of the chlorophyll a fields 
to capture short-lived phytoplankton blooms. The Data INterpolating Empirical Orthogonal Functions 
(DINEOF) method was used to fill the remaining spatial gaps. Primary production values were derived from 
chlorophyll a concentration, PAR, and photosynthetic parameters that describe the rate of production as a 
function of available light (Platt and Sathyendranath, 2008). The photosynthetic parameters and their seasonal 
variation were derived from a database of ship-based incubation experiments (i.e., production-irradiance 
curve) carried out between 1977 and 2011 in the modelled area (NRA), and smoothed into 8-day climatologies 
to capture the seasonal phenology of the parameters. Averaged across years and seasonal periods, the mean, 
max, min and the range values were derived from the 8-day chlorophyll a and primary production composites. 
Seasons were delimited in the following manner: Winter: Jan 01 to Mar 29; Spring: Mar 30 to Jul 03; Summer: 
Jul 04 to Sep 29; Fall: Sep 30 to Dec 31.  As with the BNAM data the resulting statistical layers were interpolated 
using ordinary kriging and the geostatistical layers were exported to the final raster surfaces.  

Table 1.  Water column variables used in the Random Forest models (Max: maximum; Min: minimum; 
MLD: Mixed Layer Depth; Chl: Chlorophyll; PP: Primary Production; BNAM: Bedford Institute of 
Oceanography North Atlantic model (Wang et al., 2018); SOPhyE: Satellite Ocean Colour and 
Phytoplankton Ecology Group at the Bedford Institute of Oceanography).  

Variable Metric Unit Native Resolution Source 
Bottom Salinity Mean, Max, Min, Range N/A 1/12º lat/long BNAM 
Bottom Temperature Mean, Max, Min, Range ºC 1/12º lat/long BNAM 
Bottom Current Speed Mean, Max, Min, Range m s-1 1/12º lat/long BNAM 
Bottom Stress Mean, Max, Min, Range m s-1 1/12º lat/long BNAM 
Surface Salinity Mean, Max, Min, Range N/A 1/12º lat/long BNAM 
Surface Temperature Mean, Max, Min, Range ºC 1/12º lat/long BNAM 
Surface Current Speed Mean, Max, Min, Range m s-1 1/12º lat/long BNAM 
Annual MLD  Max  m  1/12º lat/long BNAM 
Summer MLD  Max  m  1/12º lat/long BNAM 
Fall MLD Max  m  1/12º lat/long BNAM 
Winter MLD Max  m  1/12º lat/long BNAM 
Spring MLD Max  m  1/12º lat/long BNAM 
Annual Chl a Max, Mean, Min, Range mg m-3 4 km SOPhyE 
Spring Chl a Max, Mean, Min, Range mg m-3 4 km SOPhyE 
Fall Chl a Max, Mean, Min, Range mg m-3 4 km SOPhyE 
Winter Chl a Max, Mean, Min, Range mg m-3 4 km SOPhyE 
Summer Chl a Max, Mean, Min, Range mg m-3 4 km SOPhyE 
Fall PP Max, Mean, Min, Range mg C m-2 day-1 4 km SOPhyE 
Winter PP Max, Mean, Min, Range mg C m-2 day-1 4 km SOPhyE 
Summer PP Max, Mean, Min, Range mg C m-2 day-1 4 km SOPhyE 
Spring PP Max, Mean, Min, Range mg C m-2 day-1 4 km SOPhyE 
Annual PP Max, Mean, Min, Range mg C m-2 day-1 4 km SOPhyE 
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Terrain variables   

GIS tools from the R package MultiscaleDTM (Ilich et al., 2023) and the System for Automated Geoscientific 
Analyses (SAGA) (v. 8.4.1; Conrad et al., 2015) accessed with the R package RSAGA (Brenning et al., 2022) were 
used to calculate terrain variables (Table 2) in the free statistical computing software R (v. 4.3.2, R Development 
Core Team, 2023). Terrain variables were derived from a digital elevation model (DEM) produced from the 15 
arc-second gridded General Bathymetric Chart of the Oceans (GEBCO) 2024 (GEBCO Compilation Group, 2024) 
covering the modelled area (NRA). The bathymetric horizontal resolution corresponds to approximately 388 
m at the study area’s latitude. The GEBCO bathymetry data layer was then projected onto NAD83 UTM23N 
using the terra R package’s “project” function using EPSG 26923 (Hijmans, 2024). The SAGA ‘Fill sinks’ tool 
(Wang and Liu, 2006) with a slope threshold of 0.005 was used to smooth out artefacts in the GEBCO DEM 
before calculating the derivative terrain layers (Wang and Liu, 2006). 

SAGA was used to calculate slope, eastness, northness, ruggedness, channel network base level and distance, 
valley depth, relative slope position, LS-factor, positive/negative openness, and wind exposition index (here 
interpreted as current exposition). MultiscaleDTM was used to calculate fine- and broad-scale bathymetric 
position index (BPI). The topographic layers, their units of measurement, and the tools and function arguments 
used to produce them are summarised in Table 2. Default arguments for each tool or function were used unless 
otherwise stated. 

Eastness and northness values were calculated using the sin and cosine, respectively, of the aspect values 
calculated by SAGA. The bathymetric position index (BPI) is a modified version of the topographic position 
index (Weiss, 2001) and measures the difference between the value of a focal cell and the mean value of 
neighbouring cells in an annulus around the focal cell (Lundblad et al., 2006). Fine-scale BPI was calculated 
using an annulus with an inner radius of 4 cells and an outer radius of 8 cells, while broad-scale BPI was 
calculated using an annulus with an inner radius of 4 cells and an outer radius of 64 cells. Ruggedness is a 
measure of seabed complexity measured as a function of the variability in elevation at a selected scale and was 
calculated using the vector ruggedness measure (VRM) in SAGA (Sappington et al., 2007).  

The channel network base level, channel network distance, relative slope position (RSP), and valley depth are 
layers derived from two channel network layers. Channels for these layers were generated using Strahler order 
thresholds of 3 and 5, respectively. The lower order channel network retains smaller channels and delineates 
finer topographic features and branching. Channel network base level layers were calculated from the channel 
network layers and denote topographic highs and lows. Channel network distance layers were then calculated 
using the vertical distance between the base DEM and the channel network base level. Valley depth measures 
the distance between the DEM and interpolated ridge level defined by the Strahler order. For this variable, 
Strahler order thresholds of 3 and 5 produced identical results and so only that obtained with a threshold of 3 
was retained. RSP (Böhner and Selige, 2006) is the location along the entire length of a slope on a scale from 0 
(bottom) to 1 (top). Some errors were introduced in the values for channel network distance, valley depth, and 
RSP if the interpolated channel network base level was higher than the base DEM elevation in some cells. These 
errors produced values outside the valid range for these variables. Invalid values were snapped to the closest 
valid value for each layer: 0 for negative values for channel network distance, valley depth, and RSP, and 1 for 
values over 1 for RSP. 

The LS-factor, a combination of slope length and steepness (gradient over the length), predicts erosion 
potential in the terrestrial environment (Desmet and Govers, 1996) and can also be applied in the marine 
context to reflect the potential stability of sediment deposits and hence the likelihood of exposed hard 
substrata.  

Positive and negative topographic openness (Yokoyama et al., 2002) provide information on how prominent 
or sheltered an area is in relation to surrounding topography. Similarly, the wind exposition index represents 
how exposed an area is (Böhner and Antonić, 2009) to wind (or currents in the marine environment), where 
values below 1 are sheltered, and values above 1 are exposed.  

All resulting terrain variable layers were then transformed to match the 1-km resolution and origin of other 
environmental data raster layers with the ‘resample’ function from the raster R package (Hijmans, 2023) using 
a bilinear interpolation method. Layers were then cropped and masked to the study area extent. 
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Table 2.  Description of terrain variable layers calculated from GEBCO 2024 bathymetry data. 

Variable Short name Unit R package RSAGA library 
SAGA module/MultiscaleDTM 
function Arguments 

Fill-sink bathymetry* FS005 m RSAGA ta_preprocessor Fill Sinks (Wang & Liu, 2006) MINSLOPE = 0.005 
Slope SLOPE degrees RSAGA ta_morphometry Slope, Aspect, Curvature UNIT_SLOPE = 1 
Bathymetric Position Index (fine-
scale) BPIF index MultiscaleDTM N/A BPI w = c(4, 8)  
Bathymetric Position Index (broad-
scale) BPIB index MultiscaleDTM N/A BPI w = c(4,64) 
Ruggedness VRM index RSAGA ta_morphometry Vector Ruggedness Measure (VRM) MODE = 0, RADIUS = 3 
Eastness (aspect) EAST radians RSAGA ta_compound Basic Terrain Analysis  
Northness (aspect) NORTH radians RSAGA ta_compound Basic Terrain Analysis  
Channel Network Base Level (3 & 5) CHNETBL3/5 m RSAGA ta_compound Basic Terrain Analysis THRESHOLD = 3 & 5 
Channel Network Distance (3 & 5) CHNETD3/5 m RSAGA ta_compound Basic Terrain Analysis THRESHOLD = 3 & 5 
Valley Depth (3) VALD m RSAGA ta_compound Basic Terrain Analysis THRESHOLD = 3  
Relative Slope Position (3 & 5) RSP3/5 index RSAGA ta_compound Basic Terrain Analysis THRESHOLD = 3 & 5 
LS-Factor LSF index RSAGA ta_compound Basic Terrain Analysis  
Positive and Negative Openness POP/NOP radians RSAGA ta_lighting Topographic Openness  
Wind Exposition Index WEI index RSAGA ta_morphometry Wind Exposition Index  

*Used as the digital elevation model (DEM) for all the other variables requiring a DEM input layer. 
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Fishing effort variables  

Two methods were used to produce fishing effort layers (NAFO, 2019). The first method used both bottom 
trawling and bottom longline effort data resolved at a native resolution of 0.05 degrees (approximately 3.8 x 
5.6 km2) and represented effort as hours fished per grid cell. The second method used only bottom trawling 
data, was resolved at a native resolution of 1 km2, and represented effort as km trawled per km2 per year. Both 
fishing effort layers were used in the analyses as they capture different aspects of fishing pressure at different 
scales of resolution.  

Bottom Trawling and Bottom Longline Effort 0.05 x 0.05 Degree Native Resolution 

The method used to estimate cumulative bottom fishing effort (bottom trawling and bottom longline) was 
based on data from the Vessel Monitoring System (VMS), logbook records (haul-by-haul data), and the IEO 
Scientific Observer Program, from 2016 to 2022. This work was conducted as part of the "NAFO Potential 
Vulnerable Marine Ecosystem-Impacts of Deep-sea Fisheries" NEREIDA project, which was funded by the 
European Union (EU) through NAFO. The analysis was carried out using the improved methodology for 
“coupling VMS and logbook data”, first described by Sacau et al. (2020) and later by Garrido et al. (2023). 
Recognizing the potential for errors in both data sources, a subset of records from the merged VMS and logbook 
database was selected for vessels with a Spanish scientific observer on board. The purpose of this selection was 
to evaluate the extent and nature of errors in each data source, based on the assumption that the actual fishing 
effort for these specific hauls was accurately reported by the scientific observers on board. The core principle 
of this method is that haul-by-haul catch data (logbook) and VMS are complementary data sources. By using 
haul-by-haul data, VMS pings can be classified as "fishing" or "non-fishing" depending on whether they fall 
within the fishing time intervals reported in the haul-by-haul catch data. This approach allows the start and 
end time stamps of fishing events from the logbooks to be used to extract relevant VMS points, which are then 
mapped spatially to represent fishing effort. Since these VMS points occur directly within the reported fishing 
time interval, they are considered to be associated with fishing activity. The coupling of the two datasets has 
already proven to be highly effective in describing the spatial distribution of fishing activity with much finer 
resolution (NAFO, 2017, 2018, 2019). Effort was represented by VMS ping time (i.e. the time interval between 
consecutive fishing pings), which was summed to produce hours fished and applied to a 0.05 x 0.05 degree grid. 
The cumulative bottom fishing effort obtained by Garrido et al. (2023) using this methodology was interpolated 
to a 1x1 km2 grid employing the nearest neighbor approach with the terra package in R version 4.3.2. Lastly, 
the raster was cropped and masked to the bottom fishing footprint extent. 

Bottom Trawling Effort 1 km2 Native Resolution  

Fishing effort for bottom trawls was defined as kilometers of trawl track travelled per km2 per year. This is a 
departure from the previously used effort unit of hours fished per km2 per year, which was calculated from the 
accumulation of the hourly VMS pings. Line features representing the tracks of fishing vessels corresponding 
to individual fishing events (trawl tows) were initially created by the NAFO Secretariat using VMS data between 
2010 and 2018 (NAFO, 2019) and later updated by WG-ESA to cover between 2010 and 2021 (NAFO, 2022). 
Each track represents the movement of individual fishing vessels which are filtered based on known fishing 
speeds (0.5 – 5 knots) derived from logbook data (2016-2021). Each line was also attributed with the type of 
fishing gear used by the vessel. Using VMS tracks instead of raw VMS pings accounts for vessel trajectory, which 
is relevant for fisheries that follow depth contours, and eliminates the need to associate fishing effort at the 
grid scale used to collate VMS pings (0.05 degrees / ~ 5 km). Considering that the distance travelled is clearly 
related to bottom impact for trawlers, as the trawl travels on the sea floor, the fishing effort layer was produced 
using a moving window approach (NAFO, 2019; NAFO, 2020). The total length of VMS track within a specified 
neighbourhood was calculated in meters using the ArcGIS Spatial Analyst ‘Line Statistics’ tool (ArcGIS 10.5). 
The radius of the circular neighbourhood was set at 565 m (area = 1 km2). The resolution of the output raster 
layer was 1 km. The output was converted to the unit of km/km2/year by first converting meters into 
kilometers and dividing the line length by the number of years of data included in the VMS tracks line feature. 
Lastly, the raster was cropped and masked to the bottom fishing footprint extent.  
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Biological data 

The data records used for the response data in the SDMs were drawn from the research vessel trawl surveys 
conducted by the NAFO contracting parties from trawl sets in the NAFO Regulatory Area on Flemish Cap and 
the Nose and Tail of Grand Bank to 2500 m (Table 3). Over time, the at-sea identification and coding of the VME 
Indicator taxa has evolved and different identifications were reviewed and consolidated for each modeled 
taxon (Appendix Table A1). The time frame for the identification of the lower level taxa differs among surveys 
and is indicated in the descriptions for each taxon below and in the Appendices (Appendix Tables A2, A3). 
Initially, data from Canada and Spain were identified only by the functional group attribution and not the taxon 
name or species code, even if such data were recorded at sea. That was because the data were used for the KDE 
analysis and identification of VME polygons at the functional group level (Kenchington et al., 2014), and finer 
taxonomic resolution was not needed. Those earlier records could be reviewed to ensure that the taxon names 
were consistent with the functional groups used today, however, as there are sufficient records that have been 
validated with taxon names (Appendix Table A1) for SDMs, those earlier records were evaluated on a case-by-
case basis for inclusion in the models (see below for details for each functional group).  

Survey data were used to record both species biomass (kg), and presence or absence. Absence data at the 
functional group level (i.e., Large-Sized Sponges, Sea Pens and Black Corals) were determined on a tow-by-tow 
basis for each mission that recorded the presence of the functional group amongst their trawl sets. The 
assumption was that if the functional group was recognized and recorded on the survey mission, its absence 
was not likely due to identification issues. For some functional groups where presence was not consistently 
recorded in the earlier years the associated absence (null) data were excluded from the SDM. The same 
procedure was used to identify null data for the SDMs of the lower-level taxa within each functional group. All 
nulls for the functional group were used, in addition to null data where the subgroups were not observed. This 
was necessary to fill gaps within functional group distributions where particular taxa may not occur. Once this 
data set was produced, subgroup-specific nulls were extracted. A pivot table was created for each set and nulls 
calculated for each subgroup, so the number of nulls will differ by taxon. As an additional check, the number of 
presences by year was examined to ensure that there were no trends in recording the taxon prior to accepting 
subgroup null data. This was used to reduce the number of observations for the black corals (Appendix Table 
A2) as they were not consistently recorded in the earlier years compared with later observations from the same 
survey area. 

Table 3.  Research Vessel Survey Data from NAFO Contracting Parties (EU and Canada); EU, European 
Union; DFO, Department of Fisheries and Oceans; NL, Newfoundland and Labrador; IEO, Instituto 
Español de Oceanografía; IIM, Instituto de Investigaciones Marinas; IPMA, Instituto Português do 
Mar e da Atmosfera. 

Data Source Period NAFO 
Division Gear 

Mesh Size in 
Codend 

Liner (mm) 

Trawl 
Duration 

(min) 

Average 
Wingspread 

(m) 

Spanish 3NO Survey (IEO) 2002 - 2023 3NO Campelen 
1800 20 30  24.2 – 31.9 

EU Flemish Cap Survey (IEO, 
IIM, IPIMAR) 2003 - 2023 3M Lofoten 35 30  13.89 

Spanish 3L Survey (IEO) 2003 - 2023 3L Campelen 
1800 20 30  24.2 – 31.9 

DFO NL Multi-species 
Surveys (DFO) 1995 - 2022 3LNO Campelen 

1800 12.7 15  15 - 20 

  
Large-Sized Sponges  

The available data for the SDM models for the VME functional group Large-Sized Sponges included 7809 
validated presence records (Appendix Table A1) and 4907 null records obtained from the surveys shown in 
Table 3. Only two records from 2013 had biomass values but no taxon name. Those were included in the 
response data set. Recording of sponges in the catch data appears to have been more consistent after 2006 
(Appendix Table A2). Most of the 7809 records (62%) were listed as Porifera (Canadian surveys) or ESPONJAS 
(EU surveys). While the Canadian surveys presently record sponges under this taxon code only, the EU surveys 
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have regularly provided information on individual sponge taxa with their data requests since 2011. This has 
facilitated the modeling of the sponge groups Tetillidae, Polymastiidae (excluding species formerly considered 
in the genera Radiella [e.g., Radiella hemisphaerica currently accepted as Polymastia hemisphaerica] and 
Tentorium as they are not VME indicator taxa (NAFO, 2024)), and Astrophorina. At present, the number of 
records for the VME Indicator taxa Mycale (N=90) and Axinellidae (N=127) were deemed insufficient for 
generating separate SDMs and they were only included in the SDM for the functional group. For the genus 
Asconema, which had previously been modeled using data collected in 2007 (Murillo et al., 2016; NAFO, 2019) 
but not provided for this analysis, 388 records were available under the at-sea identifications ‘Asconema’ and 
‘ASCONEMA SP’. Although this represented a sufficient number of records to support model generation, closer 
examination of their spatial distribution revealed that no data with these codes had been collected in the EU 
Spanish surveys of Flemish Cap (Appendix Table A3), where the species was previously found to have the 
highest probability of occurrence (Murillo et al., 2016; NAFO, 2019 Fig. 12.27). Consequently, this taxon could 
not be modeled with the available data.  

To ensure SDMs of sponge groups Tetillidae, Polymastiidae (with the exceptions noted above), and 
Astrophorina could be directly compared with SDMs of the Large-Sized Sponge functional group and the 
Sponge Grounds, the response data compiled for Large-Sized Sponges comprised only of EU records from 2011-
2023.  

With much of the data recorded at a level of taxonomic resolution that could not ensure the exclusion of non-
VME taxa, the model of the Large-Sized Sponge functional group omitted data that were listed as ‘Radiella sp.’, 
‘Tentorium sp.’, ‘Rhizaxinella spp.’, ‘Stylocordyla sp.’, and Sycettidae which are not VME indicator taxa (NAFO, 
2024) as well as the ‘DEMOSPONGIDAE’, ‘Porifera’ and ‘ESPONJAS (PORIFERA)’. Records were included for taxa 
which meet the FAO (2009) guidelines for VME indicator species even if they are not presently included in the 
VME indicator taxa list (NAFO, 2024) as they will be recommended for inclusion in the next revision of the taxa 
in 2027. These taxa include ‘Pheronematidae’ and ‘Poecillastra compressa’. Records of ‘Isops spp.’ were included 
as ‘Isops phlegraei’, formerly Geodia phlegraei. Higher order taxa for ‘Astrophorida’, ‘Astrophorina’ and 
‘ASTROPHORINA (ASTROPHORIDA)’ were included, as they include the VME geodiids and other taxa listed in 
the VME indicator list (NAFO, 2024), as were ‘Ancorinidae’, which is the family of Stelletta spp. and Stryphnus 
spp. and are also included in the VME indicator list.  

Lastly, to compare results with those of Knudby et al. (2013a,b), the biomass threshold used to identify 
significant concentrations of sponges (i.e., >100 kg/tow) (Kenchington et al., 2019), was used to select a subset 
of sponge observations and generate a presence/absence Random Forest model for Sponge Grounds.  

The final biological data used for the response data in the Large-Sized Sponges SDMs included 1182 
presence/biomass records from 2011-2023 (excluding 2014 where species identification was not consistent, 
Appendix Table A3), and 1716 associated null data. For Sponge Grounds there were 67 presence/biomass 
records from 2011-2023, and 2831 associated null data. Response variables for the SDM of Tetillidae included 
211 records recorded as ‘Craniella’, ‘CRANIELLA SP’, ‘Craniella spp’ and ‘Tetillidae’, and 4096 null records. 
Response variables for the SDM of Polymastiidae included 621 records listed as ‘Polymastiidae’ (Appendix 
Table A1) and 3686 null records. The models for the sponge suborder Astrophorina used 401 records, from the 
at-sea identifications for ‘Ancorinidae’, ‘Astrophorida’, ‘Astrophorina’, ‘ASTROPHORINA (ASTROPHORIDA)’, 
‘Geodia’, ‘GEODIA SP.’, ‘Geodia spp’, ‘Geodiidae’, ‘Isops spp.’, ‘Poecillastra compressa’, ‘STELLETA SP’, 
‘STELLETA SPP’, ‘Stelletta’, ‘Stryphnus’, ‘Stryphnus sp.’, ‘STRYPHNUS SPP’, ‘Thenea’, ‘Thenea levis’, ‘THENEA 
MURICATA’, ‘THENEA SP’, and ‘Thenea spp.’, and 3906 null records (Table 4).  This data set has been archived 
on the NAFO Sharepoint site.  

Sea Pens  

The available data for the VME functional group Sea Pens included 4017 presence records (Appendix Table A1) 
and 5786 null records obtained from the surveys shown in Table 3. Records for the genera Anthoptilum and 
Balticina (formerly Halipteris) first appeared in 2005 from the Canadian surveys (Table 3) when survey 
identification codes for sea pens were first introduced, while Funiculina was not recorded until 2006 and 
Pennatula until 2009. The EU surveys also began recording sea pens in 2005, and details for individual sea pen 
taxa became available in 2011. This chronology is reflected in the numbers of records with taxon names 
reported in each year (Appendix Table A2).  
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The modelled genera are well represented in the data records (Appendix Table A1, Appendix Table A2). For 
Anthoptilum, 1292 records were obtained under the identifications ‘Anthoptilum’, ‘Anthoptilum grandiflorum’, 
‘ANTHOPTILUM GRANDIFLORUM’, ‘ANTHOPTILUM MURRAYI’, ‘Anthoptilum murrayi’, ‘ANTHOPTILUM SP’, 
‘Anthoptilum sp.’, and ‘Anthoptilum spp’, with 69% of the records listed as ‘Anthoptilum’. For Balticina 
(formerly Halipteris), there were 688 records compiled from the following at-sea identifications: ‘Balticina 
finmarchica (=Halipteris)’, ‘Halipteridae’, ‘Halipteris cf. christii’, ‘Halipteris christii’, ‘HALIPTERIS 
FINMARCHICA’, and ‘Halipteris finmarchica’, with 86% of those recorded as ‘Halipteris finmarchica’ and 
‘HALIPTERIS FINMARCHICA’. H. christii and H. finmarchica have different distributions, with the former found 
in the shallower waters on Flemish Cap. For Funiculina, of the 423 records, 98% of them were ‘F. 
quadrangularis’ (including ‘FUNICULINA QUADRANGULARIS’), with 8 records appearing as ‘Funiculina’. It is 
highly likely that the SDM for this genus is representative of  F. quadrangularis. For Pennatula 524 records were 
used as response data in the SDM, including records for ‘Pennatula’, ‘Pennatula aculeata’, ‘PENNATULA 
ACULEATA/PHOSPHOREA’, ‘Pennatula grandis’, ‘PENNATULA GRANDIS’, ‘Ptilella grandis (=Pennatula)’, 
‘Pennatula phosphorea’, and ‘Pennatula sp.’. For 747 records no taxon name or biomass was provided. These 
were collected mostly from 2005-2010, although one record a year exists for 2012, 2013 and 2014 which were 
excluded from the models. A breakdown of the number of records in each taxon group by year is provided in 
Appendix Table A4.  

To ensure SDMs of Anthoptilum spp., Balticina spp., Funiculina spp. and Pennatula spp. could be directly 
compared with those of the Sea Pen functional group, the response data compiled for Sea Pens consisted only 
of records from 2011-2023 (Appendix Table A4).  

The final biological data used for the response data in the Sea Pen SDMs included 1721 presence/biomass 
records from 2011-2023, and 3988 associated null data. Presence/biomass (absence) records for named taxa 
from 2011-2023 included 1200 (4509) records for Anthoptilum spp., 642 (5067) records for Balticina spp., 391 
(5318) records for Funiculina spp., and 441 (5268) records of Pennatula spp. These data came from 5709 trawl 
sets (Table 4). This data set has been archived on the NAFO Sharepoint site.  

Black Corals 

The biological data for the SDM models for the VME functional group Black Corals included 365 data 
presence/biomass records (Appendix Table A1) and 6744 null records obtained from the surveys shown in 
Table 3.  These presence/biomass records were compiled from those identified at sea as ‘Antipatharia’, 
‘Antipatharia sp. (ORDER)’, ‘Stauropathes arctica’, ‘STAUROPATHES ARCTICA’, and ‘Leiopathes cf. expansa’, 
and also included records for the functional group but with no taxon name or biomass provided (N=111). The 
majority of records with taxon names (N=254) were of Stauropathes arctica (74%).  

Of those records with taxon names, the earliest were from the Canadian surveys with gaps in reporting years 
(Appendix Table A2), which raised questions surrounding the consistency of recording and the validity of these 
data. Consequently, presence/biomass records with taxon names (N=14) and without taxon names (N=111) 
collected from 2002-2010 and associated absence records (N=1971), were excluded from the models.  

The final biological data used for the response data in the Black Coral SDMs included 240 presence/biomass 
records from 2011-2023, and 4776 associated null data records (Table 4). This data set has been archived on 
the NAFO SharePoint site.  
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Table 4.  Summary of the Response Data Inputs to the Random Forest Species Distribution Models. 

Response Group Period  No. Presences No. Absences 

Large-Sized Sponges 2011 - 2023 1182 1716 

Sponge Grounds 2011 - 2023 67 2831 
Tetillidae 2011 - 2023 211 4096 
Polymastiidae 2011 - 2023 621 3686 

Astrophorina 2011 - 2023 401 3906 
Sea Pens  2011 - 2023 1721 3988 

Anthoptilum 2011 - 2023 1200 4509 

Balticina 2011 - 2023 642 5067 
Funiculina 2011 - 2023 391 5318 
Pennatula 2011 - 2023 441 5268 

Black Coral 2011 - 2023 240 4776 
 

Variable reduction 

Preliminary SDMs were generated for each of the modelled taxa using the full suite of predictor variables to 
rank variable importance (Appendix Table A5). Following this, an iterative approach was used to conduct 
model specific variable selection. First, Spearman correlations were calculated for variable pairs and for those 
with correlation scores > 0.70, the least important variable was removed. Subsequently, the variable inflation 
factor (VIF), which measures the amount of inflation in the variance of a regression coefficient due to 
multicollinearity, was evaluated for the remaining uncorrelated variables. If VIFs > 10 were observed, the 
Spearman correlation scores were recomputed with progressively lower thresholds (decreased by increments 
of 0.05) until all remaining predictor variables achieved a VIF < 10. 

Model fitting 

Models predicting the probability of presence for each taxon were built using classification Random Forest 
models. Random Forest is an ensemble method, where a large number of decision trees (typically 500-1000) 
are built using random subsets of the data (Breiman, 2001; Cutler et al., 2007). The models were built in the 
free statistical computing software R (v.3.5.1, R Development Core Team, 2018) using the ‘randomForest’ 
package (Liaw and Wiener, 2002) modified to output desired maps and tables (Appendix Table A5). The models 
were run using the default settings of the randomForest function, using 500 trees. 

Predictor importance was investigated for each model using the decrease in end node impurity, measured by 
the Gini index for presence/absence. Partial response plots were used to visualize the relationship between 
each predictor variable and the response variables in turn, while accounting for the average effect of the other 
predictors in the model. 

Models were validated using a bootstrap k-fold cross-validation procedure. For each response variable, the 
data was randomly subsampled into 10 folds and train sets constructed leaving each fold out in turn, to be used 
as test data (resulting in a 90/10 split, keeping balance of classes equal). Models were built using each train set, 
and validation statistics calculated for each corresponding test dataset. A cross-validation approach, such as 
this, gives an average cross-validation score, but also an estimate of variability around the mean. The variability 
can be used as an indicator of the stability of the model fit, and to check for the arbitrary effects caused by 
subsetting data to train and test a model.  Accuracy measures used to validate the models included Sensitivity, 
Specificity, Kappa, True Skill Statistic (TSS, Allouche et al., 2006) and Balanced Accuracy, with the mean and 
standard deviation calculated across model runs (N=10).  

Sensitivity, also referred to as the True Positive Rate, corresponds to the proportion of observed presences 
correctly predicted as such. Conversely, Specificity, or True Negative Rate, is the proportion of absences 
correctly predicted. These can be used to judge how likely a model is to detect presence and how specific the 
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predictions are to the correct class. High sensitivity with a low specificity indicates a model that is 
overpredicting, whilst an underpredicting model shows high specificity and low sensitivity. The overall 
accuracy was additionally investigated using the Kappa statistic, a measure of performance which takes 
account of class imbalance. Also computed were the TSS (Sensitivity + Specificity – 1) and Balanced Accuracy 
(average of Sensitivity and Specificity) which, unlike Kappa, are both independent of prevalence and can give a 
much better estimate of overall model performance where the classes are unbalanced. 

Binary presence/absence maps were created by using two thresholds, the prevalence of the data and a 
threshold optimised to ensure that resulting Sensitivity and Specificity are afforded equal weight 
(Sensitivity=Specificity). The former was used in previous work (Kenchington et al., 2019), as a threshold to 
account for the class imbalance in data. However, in this model iteration the Sensitivity=Specificity threshold 
was used in preference, as it affords equal weight to detection of presence and absence, minimising both false 
positives and false negatives. 

The final model output was plotted as the class (presence/absence) with the majority vote of all 10 model runs. 
Two confidence map layers were also produced consisting of: 1) the frequency of the most common class 
(N/10), and 2) the average probability over all 10 model runs of the majority vote class. 

Results  

Assessment and Prediction of Large-Sized Sponges 

Random Forest models predicting the probability of the presence of Large-Sized Sponges generally had high 
accuracy scores across the validation statistics (Balanced Accuracy, Sensitivity, and Specificity all > 0.7;  Table 
5). However, Kappa, which measures the extent to which the agreement between observed and predicted is 
higher than that expected by chance alone, was of ‘moderate’ (> 0.5) performance for Large-Sized Sponges 
functional group and Sponge Grounds, and ‘fair’ (> 0.3) for individual sponge taxa (Tetillidae, Polymastiidae, 
Astrophorina). The TSS, defined as the average of the net prediction success rate for present sites and that for 
absent sites was 0.86 for Sponge Grounds which indicates high model performance, 0.65 for Large-Sized 
Sponges functional group and 0.61 for Tetillidae, which indicates a good model performance, and a fair model 
performance for Polymastiidae and Astrophorina. 

Table 5.  Model Validation Results for the Presence/Absence Random Forest Model for the Large-Sized 
Sponges VME Functional Group, Sponge Grounds, and Subgroups. TSS=True Skill Statistic 
(Sensitivity + Specificity – 1 ).  

 

Large-Sized 
Sponges 
Functional 
group 

Sponge 
Grounds Tetillidae Polymastiidae Astrophorina 

Accuracy Measure Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 
Sensitivity 0.83 ± 0.03 0.94 ± 0.08 0.81 ± 0.05 0.78 ± 0.02 0.79 ± 0.03 
Specificity 0.82 ± 0.03 0.92 ± 0.04 0.79 ± 0.05 0.77 ± 0.02 0.79 ± 0.03 
Kappa 0.64 ± 0.05 0.53 ± 0.16 0.22 ± 0.06 0.38 ± 0.04 0.32 ± 0.05 
Balanced Accuracy 0.82 ± 0.03 0.93 ± 0.06 0.80 ± 0.05 0.78 ± 0.02 0.79 ± 0.03 
TSS 0.65 ± 0.05 0.86 ± 0.11 0.61 ± 0.09 0.55 ± 0.05 0.58 ± 0.06 

 
Large-Sized Sponges Functional Group 

The five most important variables for the Large-Sized Sponges functional group were the averaged winter mean 
value of chlorophyll a, followed by the averaged range of surface salinity, the averaged minimum value of sea 
surface temperature, the bottom current speed, the broad-scale of the bathymetric position index, and the 
bottom trawl fishing effort in the NRA (1 km resolution) (Figure 1). The models indicate that the Large-Sized 
Sponges are found in depressed or elevated areas with a winter mean value of chlorophyll a < 0.3 mg m-3, ranges 
of surface salinity > 1.3‰, and with low bottom trawl fishing effort (< 10 km/km2/year) (Figure 2).  

The predicted distribution maps are shown in Figure 3 as binary plots of presence/absence based on two 
thresholds (Prevalence and Sensitivity=Specificity). These two plots are very similar. The data distribution is 
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shown overlain on the binary map of presence/absence based on Sensitivity=Specificity (Figure 4).  Outside 
the areas extrapolated by the model, the Large-Sized Sponges are distributed across Flemish Cap, Flemish Pass, 
and the flanks of the Grand Bank of Newfoundland. 

The uncertainty expressed as the frequency of presences and absences for the 10 cross-validation runs (Figure 
4), the areas of extrapolation (Figures 3-5) and the average probability of the maximum frequency class (Figure 
5) indicated high certainty within the fishing footprint for both presence and absence predictions.  
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Figure 1.  Plot of mean decrease and standard deviation in Gini Value for the 10 predictor variables in the Random Forest model for the Large-Sized 
Sponge functional group, indicating their relative importance and variation across 10 model folds. 
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Figure 2.  Response curves showing the partial dependence of the probability of presence on the predictors (Figure 1) identified in the Random Forest 
model for the Large-Sized Sponges functional group. For each variable, the mean response and curves for each of the model folds are plotted. 
The plots show the predicted response to each predictor variable in turn, whilst other variables are held at their mean value. 
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Figure 3.   Random Forest species distribution model for the VME functional group Large-Sized Sponges showing binary maps of VME presence 
thresholded using data prevalence (left panel) and a Sensitivity=Specificity threshold (right panel). The areas of extrapolation show where 
the model has predicted into areas outside of the environment for the presence and absence records. The perimeter of the fishing footprint 
is shown on both maps.  
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Figure 4.   Random Forest species distribution model for the VME functional group Large-Sized Sponges showing the distribution of the presence and 
absence data overlain on a binary map thresholded using a Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by 
showing the frequency of P/A from the 10 cross-validation runs (right panel). The areas of extrapolation show where the model has 
predicted into areas outside of the environment for the presence and absence records. The perimeter of the fishing footprint is shown on 
both maps.  
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Figure 5.   Random Forest species distribution model for the functional group Large-Sized Sponges showing a binary map thresholded using a 
Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated as the average probability of the maximum frequency class 
(right panel). The areas of extrapolation show where the model has predicted into areas outside of the environment for the presence and 
absence records. The perimeter of the fishing footprint is shown on both maps. 
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Sponge Grounds 

The most important variables for the Sponge Grounds were the fill-sink bathymetry (Depth), averaged 
maximum value of surface salinity, the averaged maximum value of summer primary productivity, the bottom 
trawl fishing effort in the NRA (1 km resolution), and the broad-scale bathymetric position index (Figure 6). 
The models indicate that the Sponge Grounds are typically located in depressed areas at depths > 1000 m, with 
maximum values of surface salinity > 34.3 ‰, maximum values of summer primary productivity > 950 mg C 
m-2 day-1, and low bottom trawl fishing effort (< 10 km/km2/year) (Figure 7). 

The predicted distribution maps are presented in Figure 8 as binary plots indicating presence/absence based 
on two thresholds (Prevalence and Sensitivity=Specificity). These two plots are very similar. The data 
distribution is shown overlain on the binary map of presence/absence based on Sensitivity=Specificity in 
Figure 9. Outside the model extrapolation areas, the Sponge Grounds are distributed on East Flemish Cap, the 
southern part of Flemish Pass, and the Tail and canyons of the Grand Bank of Newfoundland. 

The uncertainty expressed as the frequency of P/A from the 10 cross-validation runs (Figure 9), the areas of 
extrapolation (Figures 8-10) and the average probability of the maximum frequency class (Figure 10) indicated 
high certainty within the fishing footprint for both presence and absence predictions. However, there was 
increased uncertainty in the deeper slope waters both in areas of interpolation and extrapolation.  
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Figure 6.  Plot of mean decrease and standard deviation in Gini Value for the 11 predictor variables in the Random Forest model for the Sponge 
Grounds, indicating their relative importance and variation across 10 model folds. 
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Figure 7.  Response curves showing the partial dependence of the probability of presence on the predictors (Figure 6) identified in the Random Forest 
model for the Sponge Grounds. For each variable the mean response and curves for each of the model folds are plotted. The plots show the 
predicted response to each predictor variable in turn, whilst other variables are held at their mean value. 
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Figure 8.   Random Forest species distribution model for the Sponge Grounds showing binary maps of VME presence thresholded using data prevalence 
(left panel) and a Sensitivity=Specificity threshold (right panel). The areas of extrapolation show where model predictions extend into areas 
outside of the environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 9.   Random Forest species distribution model for the Sponge Grounds showing the distribution of the presence and absence data overlain on a 
binary map thresholded using a Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing the frequency of 
P/A from the 10 cross-validation runs (right panel). The areas of extrapolation show where the model has predicted into areas outside of 
the environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 10.   Random Forest species distribution model for the Sponge Grounds showing a binary map thresholded using a Sensitivity=Specificity 
threshold (left panel). Model uncertainty is illustrated by showing the average probability of the maximum frequency class (right panel). 
The areas of extrapolation show where the model has predicted into areas outside of the environment for the presence and absence records. 
The perimeter of the fishing footprint is shown on both maps.
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Tetillidae 

The most important variables for the Tetillidae were the maximum of the mixed layer depth in the spring, the 
wind exposition index, the bottom trawl fishing effort in the NRA (1 km resolution), the averaged mean value 
of summer primary productivity, and the positive openness (Figure 11). The models indicate that the Tetillidae 
taxa are found in moderately sheltered areas, and with maximum mixed layer depth in the spring < 17 m 
(Figure 12). 

The predicted distribution maps are presented in Figure 13 as binary plots indicating presence/absence based 
on two thresholds (Prevalence and Sensitivity=Specificity). These two plots are very similar. The data 
distribution is shown overlain on the binary map of presence/absence based on Sensitivity=Specificity in 
Figure 14. Outside the model extrapolation areas, the Tetillidae group is distributed on the South Flemish Cap, 
on Flemish Pass, and the canyons of Grand Bank of Newfoundland. 

The uncertainty expressed as the frequency of P/A from the 10 cross-validation runs (Figure 14), the areas of 
extrapolation (Figures 13-15) and the average probability of the maximum frequency class (Figure 15) 
indicated increased uncertainty in the deeper slope waters and in areas of transition between the presence and 
absence classes. The average probability of the maximum frequency class was lower over areas of predicted 
presence in some areas (Figure 15).  

 

 

 

 

 

 

 

 



25 
 

Northwest Atlantic Fisheries Organization  www.nafo.int  

 

 

Figure 11.  Plot of mean decrease and standard deviation in Gini Value for the 10 variables in the Random Forest model for the Tetillidae, indicating 
their relative importance and variation across 10 data folds. 
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Figure 12.  Response curves showing the partial dependence of the probability of presence on the predictors (Figure 11) identified in the Random 
Forest model for the Tetillidae. For each variable, the mean response and curves for each of the model folds are plotted. The plots show the 
predicted response to each predictor variable in turn, whilst other variables are held at their mean value. 
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Figure 13.   Random Forest species distribution model for the Tetillidae showing binary maps of VME presence thresholded using data prevalence (left 
panel) and a Sensitivity=Specificity threshold (right panel). The areas of extrapolation show where the model has predicted into areas 
outside of the environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 14.   Random Forest species distribution model for the Tetillidae showing the distribution of the presence and absence data overlain on a binary 
map thresholded using a Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing the frequency of P/A from 
the 10 cross-validation runs (right panel). The areas of extrapolation show where the model has predicted into areas outside of the 
environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 15.  Random Forest species distribution model for the VME functional group Tetillidae showing a binary map thresholded using a 
Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing the average probability of the maximum frequency 
class (right panel). The areas of extrapolation show where the model has predicted into areas outside of the environment for the presence 
and absence records. The perimeter of the fishing footprint is shown on both maps.
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Polymastiidae 

The most important variables for the Polymastiidae group were the range of the surface salinity, the Channel 
Network Base Level 3, the range of the bottom temperature, the mean value of surface temperature, and the 
broad-scale bathymetric position index (Figure 16). The models indicate that the Polymastiidae group are 
found in elevated areas with moderate changes of surface salinity, with mean surface temperatures < 6ºC and 
relatively stable bottom temperatures (Figure 17). 

The predicted distribution maps are presented in Figure 18 as binary plots indicating presence/absence based 
on two thresholds (Prevalence and Sensitivity=Specificity). These two plots are very similar. The data 
distribution is shown overlain on the binary map of presence/absence based on Sensitivity=Specificity in 
Figure 19. Outside the model extrapolation areas, the Polymastiidae group are distributed on the Flemish Cap, 
Flemish Pass, and the southeastern region of the Grand Bank of Newfoundland. 

The uncertainty expressed as the frequency of P/A from the 10 cross-validation runs (Figure 19), the areas of 
extrapolation (Figures 18-20) and the average probability of the maximum frequency class (Figure 20) 
indicated uncertainty for much of the area of predicted presence in the latter indicator (Figure 20), but not the 
former (Figure 19).  
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Figure 16.  Plot of mean decrease and standard deviation in Gini Value for the 11 variables in the Random Forest model for the Polymastiidae, indicating 
their relative importance and variation across 10 data folds. 
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Figure 17. Response curves showing the partial dependence of the probability of presence on the predictors (Figure 16) identified in the Random 
Forest model for the Polymastiidae. For each variable, the mean response and curves for each of the model folds are plotted. The plots show 
the predicted response to each predictor variable in turn, whilst other variables are held at their mean value. 
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Figure 18.   Random Forest species distribution model for the Polymastiidae showing binary maps of VME presence thresholded using data prevalence 
(left panel) and a Sensitivity=Specificity threshold (right panel). The areas of extrapolation show where the model has predicted into areas 
outside of the environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 19.   Random Forest species distribution model for the Polymastiidae showing the distribution of the presence and absence data overlain on a 
binary map thresholded using a Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing the frequency of 
P/A from the 10 cross-validation runs (right panel). The areas of extrapolation show where the model has predicted into areas outside of 
the environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 20.   Random Forest species distribution model for the VME functional group Polymastiidae showing a binary map thresholded using a 
Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing the average probability of the maximum frequency 
class (right panel). The areas of extrapolation show where the model has predicted into areas outside of the environment for the presence 
and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Astrophorina 

The most important variables for the Astrophorina group were the Channel Network Base Level 5, the 
minimum value of average surface temperature, the range of bottom temperature, the maximum value of the 
primary productivity in summer, and the bottom trawl fishing effort in the NRA (1 km resolution) (Figure 21). 
The models indicate that the Astrophorina group are found in depressed areas, with maximum values of 
primary productivity in summer > 900 mg C m-2 day-1, minimum surface temperature > 4ºC, and stable 
environment of bottom temperatures (Figure 22). 

The predicted distribution maps are presented in Figure 23 as binary plots indicating presence/absence based 
on two thresholds (Prevalence and Sensitivity=Specificity). These two plots are very similar. The data 
distribution is shown overlain on the binary map of presence/absence based on Sensitivity=Specificity (Figure 
24).  Outside the model extrapolation areas, the Astrophorina group are distributed on the Flemish Cap, 
Flemish Pass, and the flanks of the Grand Bank of Newfoundland. 

The uncertainty expressed as the frequency of P/A from the 10 cross-validation runs (Figure 24), the areas of 
extrapolation (Figures 23-25) and the average probability of the maximum frequency class (Figure 25) 
indicated high certainty within the fishing footprint for both presence and absence predictions. However, there 
was increased uncertainty in the deeper slope waters both in areas of interpolation and extrapolation.  
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Figure 21.  Plot of mean decrease and standard deviation in Gini Value for the 11 variables in the Random Forest model for the Astrophorina, indicating 
their relative importance and variation across 10 model folds. 
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Figure 22.  Response curves showing the partial dependence of the probability of presence on the predictors (Figure 21) identified in the Random 
Forest model for the Astrophorina. For each variable, the mean response and curves for each of the model folds are plotted. The plots show 
the predicted response to each predictor variable in turn, whilst other variables are held at their mean value. 
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Figure 23.   Random Forest species distribution model for the Astrophorina showing binary maps of VME presence thresholded using data prevalence 
(left panel) and a Sensitivity=Specificity threshold (right panel). The areas of extrapolation show where the model has predicted into areas 
outside of the environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 24.   Random Forest species distribution model for the Astrophorina showing the distribution of the presence and absence data overlain on a 
binary map thresholded using a Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing the frequency of 
P/A from the 10 cross-validation runs (right panel). The areas of extrapolation show where the model has predicted into areas outside of 
the environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 25.   Random Forest species distribution model for the Astrophorina showing a binary map thresholded using a Sensitivity=Specificity threshold 
(left panel). Model uncertainty is illustrated by showing the average probability of the maximum frequency class (right panel). The areas of 
extrapolation show where the model has predicted into areas outside of the environment for the presence and absence records. The 
perimeter of the fishing footprint is shown on both maps.
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Assessment and Prediction of Sea Pens 

Random Forest models predicting the probability of the presence of Sea Pens generally had high accuracy 
scores across the validation statistics (Balanced Accuracy, Sensitivity and Specificity all ≥ 0.79; Table 6). Kappa, 
which measures the extent to which the agreement between observed and predicted is higher than that 
expected by chance alone, was ‘high’ (> 0.71) for the Sea Pens functional group, ‘moderate’ (> 0.54) for 
Anthoptilum spp. and ‘fair’ (> 0.31) for Balticina spp., Funiculina spp. and Pennatula spp. The disparity in Kappa 
values reflects its dependence on prevalence, which for the Sea Pens functional group was close to equal (0.43), 
for Anthoptilum spp. 0.21, and for Balticina spp., Funiculina sp. and Pennatula spp. 0.11, 0.07, and 0.08, 
respectively. The TSS, defined as the average of the net prediction success rate for present sites and that for 
absent sites was highest at 0.72 for the Sea Pens functional group and lowest at 0.58 for Balticina spp., with 
other taxa ranging from 0.60-0.64. 

Table 6.  Model Validation Results for the Presence/Absence Random Forest Model for the Sea Pens VME 
Functional Group and Subgroups. TSS=True Skill Statistic (Sensitivity + Specificity – 1 ).  

 Sea Pen 
Functional 
group 

Anthoptilum 
spp. 

Balticina 
spp. Funiculina spp. Pennatula spp. 

Accuracy Measure Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 
Sensitivity 0.86 ± 0.02 0.82 ± 0.02 0.79 ± 0.02 0.82 ± 0.04 0.80 ± 0.03 
Specificity 0.86 ± 0.02 0.82 ± 0.02 0.79 ± 0.02 0.82 ± 0.03 0.80 ± 0.04 
Kappa 0.71 ± 0.03 0.54 ± 0.04 0.35 ± 0.04 0.31 ± 0.05 0.31 ± 0.07 
Balanced Accuracy 0.86 ± 0.02 0.82 ± 0.02 0.79 ± 0.02 0.82 ± 0.03 0.80 ± 0.04 
TSS 0.72 ± 0.03 0.64 ± 0.03 0.58 ± 0.05 0.64 ± 0.06 0.60 ± 0.07 

 

Sea Pen Functional Group 

The most important variables for the Sea Pen functional group were fill-sink bathymetry, averaged mean 
bottom salinity, averaged minimum surface salinity and valley depth, averaged minimum fall chlorophyll 
concentration and averaged mean bottom current speed (Figure 26). The models indicate that the Sea Pens are 
typically located in depressed areas at depths less than 500 meters, with a optimum depth band around 700-
1250 m depth, low bottom current speeds, mean bottom salinity > 34.7‰, average minimum surface salinity 
of 32.3‰, and low fall chlorophyll a concentrations. Whilst the effect of bottom trawling effort is of lower 
importance in the model in comparison to the environmental conditions the probability of presence increases 
at lower fishing effort (Figure 27). 

The predicted distribution maps are presented in Figure 28 as binary plots indicating presence/absence based 
on two thresholds (Prevalence and Sensitivity=Specificity). These two plots are very similar. The data 
distribution is shown overlain on the binary map of presence/absence based on Sensitivity=Specificity in 
Figure 29.  Outside the model extrapolation areas, the Sea Pen functional group forms a band around the West, 
North and East of the Flemish Cap, and the edge of the Tail of the Grand Bank. 

The uncertainty expressed as the frequency of P/A from the 10 cross-validation runs (Figure 29), the areas of 
extrapolation (Figures 28-30) and the average probability of the maximum frequency class (Figure 30) 
indicated high certainty within the fishing footprint for both presence and absence predictions. However, there 
was increased uncertainty in the deeper slope waters both in areas of interpolation and extrapolation (Figure 
30).  
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Figure 26.  Plot of mean and standard deviation showing decrease in Gini Value for the variables in the 
Random Forest model for the Sea Pen VME functional group, indicating their relative importance 
and variation across 10 data folds. 
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Figure 27.  Response curves showing the partial dependence of the probability of presence on the predictors (Figure 26) identified in the Random 
Forest model for the Sea Pen VME functional group. For each variable, the mean response and curves for each of the model folds are plotted. 
The plots show the predicted response to each predictor variable in turn, whilst other variables are held at their mean value. 
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Figure 28.   Random Forest species distribution model for the Sea Pen VME functional group showing binary maps of VME presence thresholded using 
data prevalence (left panel) and a Sensitivity=Specificity threshold (right panel). Areas of extrapolation show where the model has predicted 
into areas outside of the environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 29.   Random Forest species distribution model for the Sea Pen VME functional group showing the distribution of the presence and absence data 
overlain on a binary map thresholded using a Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing the 
frequency of P/A from the 10 cross-validation runs (right panel). The areas of extrapolation show where the model has predicted into areas 
outside of the environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 30.  Random Forest species distribution model for the Sea Pen VME functional group showing a binary map thresholded using a 
Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing the average probability of the maximum frequency 
class (right panel). The areas of extrapolation show where the model has predicted into areas outside of the environment for the presence 
and absence records. The perimeter of the fishing footprint is shown on both maps.
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Anthoptilum spp.  

The most important variables for Anthoptilum spp. were averaged mean bottom salinity, bathymetry, valley 
depth, broad scale bathymetric position index, and averaged minimum surface salinity (Figure 31). The models 
indicate that Anthoptilum spp. are typically located in depressed areas at depths more than 500 meters, with 
an optimum depth band around 700-1250 m depth, mean bottom salinity > 34.7‰, valley depth > 400 m, and 
low fall chlorophyll a concentration. Whilst the effect of bottom trawling effort is of lower importance in the 
model in comparison to the environmental conditions the probability of presence increases at lower fishing 
effort (Figure 32). 

The predicted distribution maps are presented in Figure 33 as binary plots indicating presence/absence based 
on two thresholds (Prevalence and Sensitivity=Specificity). These two plots are very similar. The data 
distribution is shown overlain on the binary map of presence/absence based on Sensitivity=Specificity (Figure 
34). Outside the model extrapolation areas, Anthoptilum spp. forms a band around the West, North and East of 
the Flemish Cap, and the edge of the Tail of the Grand Bank. 

The uncertainty expressed as the frequency of P/A from the 10 cross-validation runs (Figure 34), the areas of 
extrapolation (Figures 33-35) and the average probability of the maximum frequency class (Figure 35) 
indicated high certainty within the fishing footprint for both presence and absence predictions. However, there 
was increased uncertainty in the deeper slope waters both in areas of interpolation and extrapolation (Figure 
35).  
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Figure 31.  Plot of mean and standard deviation showing decrease in Gini Value for the variables in the Random Forest model for Anthoptilum spp., 
indicating their relative importance and variation across 10 data folds. 
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Figure 32.  Response curves showing the partial dependence of the probability of presence on the predictors (Figure 31) identified in the Random 
Forest model for Anthoptilum spp. For each variable, the mean response and curves for each of the model folds are plotted. The plots show 
the predicted response to each predictor variable in turn, whilst other variables are held at their mean value. 
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Figure 33.   Random Forest species distribution model for Anthoptilum spp. showing binary maps of VME presence thresholded using data prevalence 
(left panel) and a Sensitivity=Specificity threshold (right panel). The areas of extrapolation show where the model has predicted into areas 
outside of the environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 34.   Random Forest species distribution model for Anthoptilum spp. showing the distribution of the presence and absence data overlain on a 
binary map thresholded using a Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing the frequency of 
P/A from the 10 cross-validation runs (right panel). The areas of extrapolation show where the model has predicted into areas outside of 
the environment for the presence and absence records.  
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Figure 35.  Random Forest species distribution model for the Sea Pen VME functional group showing a binary map thresholded using a 
Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing the average probability of the maximum frequency 
class (right panel). The areas of extrapolation show where the model has predicted into areas outside of the environment for the presence 
and absence records. 
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Balticina spp. 

The most important variables for Balticina spp. were averaged mean bottom salinity, averaged bottom 
temperature range, maximum mixed layer depth in spring, bathymetry, averaged minimum surface current 
speed and averaged minimum fall chlorophyll concentration (Figure 36). The models indicate that Balticina 
spp. are typically located in areas with mean bottom salinity > 34.7‰, low temperature variability with 
average bottom temperature range < 1°, high spring mixed layer depth (> 22 m), low surface current speeds 
and low fall chlorophyll a concentration (Figure 37). Depth is a less important predictor variable than for the 
Sea Pens in general, with optimum depth > 500 m. The effect of bottom trawling effort is of low importance in 
the model but in contrast to the Sea Pen functional group, shows the probability of presence slightly increasing 
with increased fishing effort. 

The predicted distribution maps are presented in Figure 38 as binary plots indicating presence/absence based 
on two thresholds (Prevalence and Sensitivity=Specificity). These two plots are very similar. The distribution 
of the response data is shown overlain on the binary map of presence/absence based on Sensitivity=Specificity 
(Figure 39). Outside the model extrapolation areas, Balticina spp. is distributed around the Flemish Cap and 
edge of the Grand Bank seen with the Sea Pens functional group and other sea pen taxa. However, it has the 
shallowest predicted distribution of all of the individual sea pen taxa modelled, and is also predicted to be 
present to the South of the Flemish Cap.  

The uncertainty expressed as the frequency of P/A from the 10 cross-validation runs (Figure 39), the areas of 
extrapolation (Figures 38-40) and the average probability of the maximum frequency class (Figure 40) 
indicated high certainty within the fishing footprint for both presence and absence predictions, although the 
shallower portions of the predicted presence on Flemish Cap had a lower average probability (Figure 40). 
Increased uncertainty was also identified in the deeper slope waters (Figure 40).  
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Figure 36.  Plot of mean and standard deviation showing decrease in Gini Value for the variables in the Random Forest model for Balticina spp., 
indicating their relative importance and variation across 10 data folds. 
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Figure 37.  Response curves showing the partial dependence of the probability of presence on the predictors (Figure 36) identified in the Random 
Forest model for Balticina spp. For each variable, the mean response and curves for each of the model folds are plotted. The plots show the 
predicted response to each predictor variable in turn, whilst other variables are held at their mean value. 
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Figure 38.   Random Forest species distribution model for Balticina spp. showing binary maps of VME presence thresholded using data prevalence (left 
panel) and a Sensitivity=Specificity threshold (right panel). The areas of extrapolation show where the model has predicted into areas 
outside of the environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 39.   Random Forest species distribution model for Balticina spp. showing the distribution of the presence and absence data overlain on a binary 
map thresholded using a Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing the frequency of P/A from 
the 10 cross-validation runs (right panel). The areas of extrapolation show where the model has predicted into areas outside of the 
environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 40.   Random Forest species distribution model for Balticina spp. showing a binary map thresholded using a Sensitivity=Specificity threshold (left 
panel). Model uncertainty is illustrated by showing the average probability of the maximum frequency class (right panel). The areas of 
extrapolation show where the model has predicted into areas outside of the environment for the presence and absence records. The 
perimeter of the fishing footprint is shown on both maps.  
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Funiculina spp.  

The most important variables for Funiculina spp. were the averaged minimum summer primary productivity, 
averaged mean bottom salinity, averaged bottom temperature range, channel network base level (effectively a 
coarse scale representation of bathymetry), averaged minimum fall chlorophyll a concentration, and maximum 
mixed layer depth in spring (Figure 41). The models indicate that Funiculina spp. are typically located in areas 
with low summer primary productivity, mean bottom salinity > 34.7‰, low temperature variability with 
average bottom temperature range < 1°, base depths > 500 m, and low fall chlorophyll a concentration (Figure 
42). The likelihood of occurrence increases with higher spring mixed layer depths. The effect of bottom trawling 
effort is of low importance in the model but shows the probability of presence slightly increasing with increased 
fishing effort. 

The predicted distribution maps are presented in Figure 43 as binary plots indicating presence/absence based 
on two thresholds (Prevalence and Sensitivity=Specificity). These two plots are very similar. The data 
distribution is shown overlain on the binary map of presence/absence based on Sensitivity=Specificity (Figure 
44).  Outside the model extrapolation areas, Funiculina spp. generally follows the distribution around the 
Flemish Cap and edge of the Grand Bank seen with the Sea Pens functional group and other sea pen taxa. 
However, along with Balticina spp., it is also predicted to be present to the South of the Flemish Cap. 

The uncertainty expressed as the frequency of P/A from the 10 cross-validation runs (Figure 44), the areas of 
extrapolation (Figures 43-45) and the average probability of the maximum frequency class (Figure 45) 
indicated high certainty across most of the area except for the boundary areas between the predicted presence 
and absence classes and in the deeper slope waters.  
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Figure 41.  Plot of mean and standard deviation showing decrease in Gini Value for the variables in the Random Forest model for Funiculina spp., 
indicating their relative importance and variation across 10 model folds. 
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Figure 42.  Response curves showing the partial dependence of the probability of presence on the predictors (Figure 41) identified in the Random 
Forest model for Funiculina spp. For each variable the mean response and curves for each of the model folds are plotted. The plots show the 
predicted response to each predictor variable in turn, whilst other variables are held at their mean value. 
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Figure 43.   Random Forest species distribution model for Funiculina spp. showing binary maps of VME presence thresholded using data prevalence 
(left panel) and a Sensitivity=Specificity threshold (right panel). The areas of extrapolation show where the model has predicted into areas 
outside of the environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 44.   Random Forest species distribution model for Funiculina spp. showing the distribution of the presence and absence data overlain on a binary 
map thresholded using a Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing the frequency of P/A from 
the 10 cross-validation runs (right panel). The areas of extrapolation show where the model has predicted into areas outside of the 
environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 45.   Random Forest species distribution model for Funiculina spp. showing a binary map thresholded using a Sensitivity=Specificity threshold 
(left panel). Model uncertainty is illustrated by showing the average probability of the maximum frequency class (right panel). The areas of 
extrapolation show where the model has predicted into areas outside of the environment for the presence and absence records. The 
perimeter of the fishing footprint is shown on both maps.



66 
 

Northwest Atlantic Fisheries Organization  www.nafo.int  

Pennatula spp.  

The most important variables for Pennatula spp. were bathymetry, averaged surface salinity range, valley 
depth, averaged mean surface temperature, averaged mean bottom salinity, and averaged range of summer 
chlorophyll a concentration (Figure 46). The models indicate that Pennatula spp. are typically located in in 
depressed areas at depths > 500 meters, with optimum depths occurring at > 700 m. Likelihood of presence 
increased in areas with variable surface salinity, mean bottom salinity > 34.7‰, and low summer chlorophyll 
a concentration (Figure 47). The effect of bottom trawling effort is of low importance in the model but shows 
the probability of presence slightly increasing with increased fishing effort. 

The predicted distribution maps are presented in Figure 48 as binary plots indicating presence/absence based 
on two thresholds (Prevalence and Sensitivity=Specificity). These two plots are very similar. The data 
distribution is shown overlain on the binary map of presence/absence based on Sensitivity=Specificity (Figure 
49). The distribution of Pennatula spp. outside the model extrapolation areas differs from the sea pens in 
general. Unlike the other taxa Pennatula spp. occurs on the Sackville Spur and has a wider distribution in the 
Flemish Pass and on the Nose of the Grand Bank. In contrast, the predicted distribution excludes most of the 
Northern and Eastern flanks of the Flemish Cap. The distribution along the edge of the Tail of Grand Bank 
follows that of the other sea pen taxa. 

The uncertainty expressed as the frequency of P/A from the 10 cross-validation runs (Figure 49), the areas of 
extrapolation (Figures 48-50) and the average probability of the maximum frequency class (Figure 50) 
indicated high certainty within the fishing footprint for both presence and absence predictions, although the 
shallower portions of the predicted presence on Flemish Cap had a lower average probability (Figure 50). 
Increased uncertainty was also identified in the deeper slope waters (Figure 50).  
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Figure 46.  Plot of mean and standard deviation showing decrease in Gini Value for the variables in the Random Forest model for Pennatula spp., 
indicating their relative importance and variation across 10 data folds. 
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Figure 47.  Response curves showing the partial dependence of the probability of presence on the predictors (Figure 46) identified in the Random 
Forest model for Pennatula spp. For each variable, the mean response and curves for each of the model folds are plotted. The plots show the 
predicted response to each predictor variable in turn, whilst other variables are held at their mean value. 
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Figure 48.   Random Forest species distribution model for Pennatula spp. showing binary maps of VME presence thresholded using data prevalence (left 
panel) and a Sensitivity=Specificity threshold (right panel). The areas of extrapolation show where the model has predicted into areas 
outside of the environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 



70 
 

Northwest Atlantic Fisheries Organization  www.nafo.int  

 

Figure 49.   Random Forest species distribution model for Pennatula spp. showing the distribution of the presence and absence data overlain on a binary 
map thresholded using a Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing the frequency of P/A from 
the 10 cross-validation runs (right panel). The areas of extrapolation show where the model has predicted into areas outside of the 
environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 50.   Random Forest species distribution model for Pennatula spp. showing a binary map thresholded using a Sensitivity=Specificity threshold 
(left panel). Model uncertainty is illustrated by showing the average probability of the maximum frequency class (right panel). The areas of 
extrapolation show where the model has predicted into areas outside of the environment for the presence and absence records. The 
perimeter of the fishing footprint is shown on both maps.
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Assessment and Prediction of Black Corals 

Random Forest models predicting the probability of the presence of the Black Coral VME functional group 
generally scored high accuracy across the validation statistics (Balanced Accuracy, Sensitivity and Specificity 
all > 0.8;  Table 7). However, Kappa, which measures the extent to which the agreement between observed and 
predicted is higher than that expected by chance alone, was 0.25 which is considered ‘fair’ performance. The 
TSS, defined as the average of the net prediction success rate for presence sites and that for absence sites was 
0.66 which indicates good model performance. 

Table 7.  Model Validation Results for the Presence/Absence Random Forest Model for the Black Coral VME 
Functional Group. TSS=True Skill Statistic (Sensitivity + Specificity – 1 ).  

Accuracy Measure Mean ± SD 
Sensitivity 0.85 ± 0.04 
Specificity 0.81 ± 0.04 
Kappa 0.25 ± 0.06 
Balanced Accuracy 0.83 ± 0.04 
TSS 0.66 ± 0.07 

 
The most important variables were the averaged range of summer Primary Productivity, followed by the 
terrain variable Channel Network Base Level (3), the range of the mean bottom temperature, and the mean 
maximum bottom temperature (Figure 51). The models indicate that the Black Corals are found in areas with 
a summer primary productivity range > 500 mg C m-2 day-1, stable temperature environments with bottom 
temperature ranges < 1ºC ,  and topographic complexity (Figure 52).  

The predicted distribution maps are shown in Figure 53, shown as binary plots of presence/absence based on 
the two thresholds (Prevalence and Sensitivity=Specificity). These two plots are very similar. The distribution 
of the data is shown overlain on the binary map of presence/absence based on Sensitivity=Specificity (Figure 
54).  Outside areas of model extrapolation, the black corals are distributed around the Flemish Cap between 
500 and 1000 m depth and south of Flemish Pass. 

The uncertainty expressed as the frequency of P/A from the 10 cross-validation runs (Figure 53), the areas of 
extrapolation (Figures 53-55), and the average probability of the maximum frequency class (Figure 55) 
indicated high certainty within the fishing footprint for both presence and absence predictions. However, there 
was increased uncertainty in the deeper slope waters (Figure 55) and in areas of transition between the 
presence and absence classes (Figures 54-55).



73 
 

Northwest Atlantic Fisheries Organization  www.nafo.int  

 

Figure 51.  Plot of mean and standard deviation showing decrease in Gini Value for the 14 variables in the Random Forest model for the Black Coral 
VME functional group, indicating their relative importance and variation across 10 data folds. 
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Figure 52.  Response curves showing the partial dependence of the probability of presence on the 14 predictor variables (Figure 51) identified in the 
Random Forest model for the Black Coral VME functional group. For each variable, the mean response and curves for each of the model folds 
are plotted. The plots show the predicted response to each predictor variable in turn, whilst other variables are held at their mean value. 
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Figure 53.   Random Forest species distribution model for the VME functional group Black Coral showing binary maps of VME presence thresholded 
using data prevalence (left panel) and a Sensitivity=Specificity threshold (right panel). Areas of extrapolation show where the model has 
predicted into areas outside of the environment for the presence and absence records. The perimeter of the fishing footprint is shown on 
both maps. 
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Figure 54.   Random Forest species distribution model for the VME functional group Black Coral showing the distribution of the presence and absence 
data overlain on a binary map thresholded using a Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing 
the frequency of P/A from the 10 cross-validation runs (right panel). The areas of extrapolation show where the model has predicted into 
areas outside of the environment for the presence and absence records. The perimeter of the fishing footprint is shown on both maps. 
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Figure 55.  Random Forest species distribution model for the VME functional group Black Coral showing a binary map thresholded using a 
Sensitivity=Specificity threshold (left panel). Model uncertainty is illustrated by showing the average probability of the maximum frequency 
class (right panel). The areas of extrapolation show where the model has predicted into areas outside of the environment for the presence 
and absence records. The perimeter of the fishing footprint is shown on both maps.



78 
 

Northwest Atlantic Fisheries Organization  www.nafo.int  

Discussion 

All models generally scored high accuracy across the validation statistics. The binary Presences/Absences 
maps are based on a threshold of Sensitivity=Specificity, which is the threshold where the chance of correctly 
predicting a positive or negative observation is the same. Previously, Prevalence (the ratio of 
Presences/Absences) was used which produced very similar outputs. However, a threshold of 
Sensitivity=Specificity will be used for the 2027 review of the closed areas.  

Another advancement over previous work is the presentation of uncertainty associated with the distributions. 
This is shown in three distinct ways: 1) inclusion of areas of model extrapolation (predictions occurring outside 
of the range of environmental conditions encountered by response variables) on all maps; 2) maps showing 
the frequency of Presences/Absences from the 10 cross-validation runs (values close to 1 give confidence in 
the Presences/Absences identified in the binary maps); and 3) maps of the average probability of the maximum 
frequency class (e.g. presence or absence) from the 10 cross-validation runs (areas with lower average 
probability within the same class can be associated with areas of uncertainty). For each model we provided 
maps of the predicted Presences/Absences based on a threshold of Sensitivity=Specificity, showing the areas 
of extrapolation and uncertainty from the 10 cross-validation runs. For all of the models there were areas of 
uncertainty at the border of the Presence/Absence prediction (e.g., Figure 39 for Balticina spp.). This 
occurrence is not unexpected as at these boundaries some of the model runs are likely to deviate in their 
predictions. More interesting are the uncertainties expressed within the areas of predicted presence. For 
example, in the Black Coral functional group model (Figure 55) within the area of predicted presence on 
Flemish Cap, the uncertainty shown as the average probability increases with depth. This is seen in other 
models such as in the sea pen Funiculina spp. (Figure 45), except uncertainty increases in both deeper and 
shallower water.  

Models of the subgroups for the sponges and sea pens illustrated that there is potential for unequal protection 
of the VME Indicator taxa. For the sponges (Figure 56), the greatest area of predicted presence is seen in the 
Large-Sized Sponge functional group, as expected, and indicates that some of the VME indicators in this taxon 
that were not numerous enough to model independently have an influence on the distribution, particularly in 
the shallower areas of Flemish Cap. The model of the sponge grounds, which selected catches above the 
biomass threshold used for the KDE analyses (Kenchington et al., 2019), restricts the distribution to the slopes, 
some areas of which are predicted with high confidence, but most of which lie in areas of extrapolation. Some 
of those slope areas were previously validated with underwater camera observations (Kenchington et al., 
2019). Comparison with previous sponge grounds models (Knudby et al., 2013a,b) shows very similar areas of 
predicted presence, despite the different data sets used to construct the models. This gives further confidence 
in the models themselves and in the validity of the sponge ground model presented here. 
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Figure 56.  Random Forest species distribution model for the different sponge data sets showing binary maps of VME presence thresholded using 
Sensitivity=Specificity. A: Large-Sized Sponges functional group (see also Figure 3); B: Sponge grounds (see also Figure 8); C: Tetillidae (see 
also Figure 13); D: Polymastiidae (see also Figure 18); E: Astrophorina (see also Figure 23). 
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Figure 57.  Random Forest species distribution model for the different sea pen data sets showing binary maps of VME presence thresholded using 
Sensitivity=Specificity. A: Anthoptilum spp. (see also Figure 33); B: Funiculina spp. (see also Figure 43); C: Sea Pen functional group (see also 
Figure 28); D: Pennatula spp. (see also Figure 48); E: Balticina spp. (see also Figure 38). 
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Compared to the sponges, there was more similarity among the individual models of sea pens (Figure 57), 
although there are differences among the genera. Balticina spp. extending into shallower waters, especially on 
the top of Flemish Cap, while Pennatula spp. appear in the Flemish Pass and along the slopes of the Tail of Grand 
Bank. Closer examination of this taxon with respect to the closed areas may show that it is not as well protected 
as the other genera which have wide bands of predicted presence in the region of the closed areas on Flemish 
Cap. Overlying these distributions may be an informative approach to discerning the relative protection 
afforded to the different genera. As they all have very different morphologies, this unequal protection may 
require different evaluations of significant adverse impacts (SAI) to be conducted.  

For all VME functional groups and subgroups, records where there was uncertainty in the accuracy of 
identification were excluded from the modeling process. In future, those presence records could be used to 
independently validate model performance by evaluating their position relative to the binary 
Presence/Absence predictive surfaces. It would also be useful to superimpose the uncertainty predictions 
directly onto the binary predictive surfaces so that areas of higher uncertainty could be directly evaluated. This 
will be explored for presentation at the WG-ESA 2025 meeting.  To that end, it was agreed that an intersessional 
meeting of those involved in the reassessment of the areas closed to bottom fishing be held in September 2025 
in advance of the WG-ESA meeting in order to agree on the best way to present these results so that appropriate 
maps can be prepared in advance.  

The model of the Astrophorina is very similar to that of the Sponge Grounds, that sub-order being the main 
constituent of the latter, however it also includes lower catch weights and so the distribution along the mid-
slope of Flemish Cap is stronger compared to that of the sponge ground model. The last two groups, the families 
Tetillidae and Polymastiidae show differing areas of predicted presence with the former not predicted to be 
present in the northern part of Flemish Pass and for large areas of Flemish Cap in contrast with the 
Polymastiidae and with different variables influencing the predictions (Figures 11 and 16).   
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Appendix  

Table A1.  At-sea Identification Nomenclature and Corresponding Number of Records for Each of Large-
Sized Sponges, Sea Pens, and Black Corals Considered for the Response Data in the Species 
Distribution Models. *Indicates taxon from the records of the Canadian DFO NL Multi-species 
Surveys (Table 3); All other taxa are as recorded from the EU Surveys undertaken by Spain and 
Portugal (Table 3).  

At-Sea Identification for Large-Sized 
Sponges 

Number of 
Records 

At-Sea Identification for Sea Pens Number of 
Records 

Ancorinidae 4 Anthoptilum 889 
Asconema 286 Anthoptilum grandiflorum* 135 
ASCONEMA SP 102 ANTHOPTILUM GRANDIFLORUM* 1 
Astrophorida 180 ANTHOPTILUM MURRAYI 1 
Astrophorina 26 Anthoptilum murrayi* 1 
ASTROPHORINA (ASTROPHORIDA) 15 ANTHOPTILUM SP 64 
AXINELLIDAE 116 Anthoptilum sp. 172 
Chondrocladia 21 Anthoptilum sp.* 1 
Craniella 36 Anthoptilum spp 28 
CRANIELLA SP 10 Balticina finmarchica (=Halipteris) 63 
Craniella spp 3 Distichoptilum 3 
DEMOSPONGIDAE 50 Distichoptilum gracile 59 
ESPONJAS (PORIFERA) 99 Distichoptilum gracile* 1 
Euplectellidae 2 DISTICHOPTILUM GRACILE 8 
Forcepia sp. 6 Funiculina 8 
Geodia 43 Funiculina quadrangularis 364 
GEODIA SP. 6 Funiculina quadrangularis* 37 
Geodia spp 3 FUNICULINIA QUADRANGULARIS 14 
Geodiidae 172 Halipteridae 1 
Isodictya palmata 1 Halipteris cf. christii 10 
Isops spp 3 Halipteris christii 24 
Mycale 50 Halipteris finmarchica 561 
MYCALE SP 40 HALIPTERIS FINMARCHICA 29 
Phakellia 2 Kophobelemnon stelliferum 8 
PHAKELLIA SP. 5 Pennatula 227 
Phakellia spp 4 Pennatula aculeata 14 
Pheronematidae 1 Pennatula aculeata* 25 

Poecillastra compressa 1 
PENNATULA 
ACULEATA/PHOSPHOREA 26 

Polymastiidae 668 

Pennatuloidea sp. (SUPERFAMILY) 
formerly PENNATULACEA SPP. 
(ORDER )* 138 

Porifera  3726 Pennatula grandis 163 
Porifera*  1074 PENNATULA GRANDIS 10 
Radiella 45 Ptilella grandis (=Pennatula)* 39 
RADIELLA (TRICHOSTEMMA) 
HEMISPHAERICA 7 Pennatula phosphorea 7 
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At-Sea Identification for Large-Sized 
Sponges 

Number of 
Records 

At-Sea Identification for Sea Pens Number of 
Records 

Radiella hemisphaerica 207 Pennatula sp. 13 
RADIELLA SP. 1 Pennatulacea 14 
Rhizaxinella 10 Umbellula 105 
RHIZAXINELLA SPP 1 Umbellula spp 2 
STELLETA SP 1 Umbellula sp 5 
STELLETA SPP 3 Taxon Name Not Provided 747 

Stelletta 21 
At-Sea Identification for Black 
Corals 

Number of 
Records 

Stryphnus 2 Antipatharia 57 
Stryphnus sp. 24 Antipatharia sp. (ORDER)* 7 
STRYPHNUS SPP 13 Stauropathes arctica 174 
Stylocordyla 41 STAUROPATHES ARCTICA 5 
Stylocordyla sp. 1 Stauropathes arctica* 10 
Sycettidae 9 Leiopathes cf. expansa* 1 
Tentorium 28 Taxon Name Not Provided 111 
Tentorium semisuberites 350   
Tentorium sp. 4   
Tetillidae 183   
Thenea 75   
Thenea levis 3   
THENEA MURICATA 1   
THENEA SP 17   
Thenea spp 5   

Taxon Name Not Provided 2   
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Table A.2.  The Number of Records with Taxon Name Provided by VME Functional Group (Large-Sized 
Sponges, Sea Pens, and Black Corals) by Year. 

Year Large-Sized 
Sponges Sea Pens Black Corals 

2002 34 0 1 
2003 20 0 0 
2004 38 0 0 
2005 81 18 0 
2006 244 54 4 
2007 335 106 7 
2008 312 9 0 
2009 326 48 0 
2010 302 49 2 
2011 423 200 8 
2012 464 225 6 
2013 569 297 21 
2014 444 314 29 
2015 589 310 21 
2016 583 243 12 
2017 540 263 26 
2018 546 248 14 
2019 502 238 20 
2020 214 95 19 
2021 344 149 16 
2022 320 183 19 
2023 484 221 15 
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Table A.3.  The Number of Records with Taxon Name Provided for the Large-Sized Sponge Subgroups by 
Mission. Values in red highlight 0 records. 

  Astrophorina Tetillidae Polymastiidae Asconema N Sets 

CAFC11 11 1 19 0 139 
CAFC12 17 3 12 0 175 
CAFC13 18 7 24 0 183 
CAFC14 9 1 20 0 181 
CAFC15 12 2 16 0 182 
CAFC16 18 4 14 0 181 
CAFC17 12 1 29 0 184 
CAFC18 13 1 13 0 182 
CAFC19 14 1 10 0 180 
CAFC20 22 2 12 0 180 
CAFC21 27 2 24 0 181 
CAFC22 20 4 24 0 183 
CAFC23 5 1 4 0 184 
FN3L11 5 6 13 0 89 
FN3L12 6 5 15 11 98 
FN3L13 8 12 27 10 101 
FN3L14 10 15 27 29 99 
FN3L15 13 16 39 38 104 
FN3L16 24 19 34 39 105 
FN3L17 19 14 35 21 99 
FN3L18 5 13 25 29 100 
FN3L19 4 3 30 36 96 
FN3L23 21 11 34 37 100 
PLA11 13 7 14 0 122 
PLA12 7 11 20 0 123 
PLA13 10 7 17 8 124 
PLA14 5 0 0 0 114 
PLA15 12 12 12 11 122 
PLA16 9 7 12 14 115 
PLA17 12 8 13 8 112 
PLA18 9 5 20 18 115 
PLA19 6 5 10 14 115 
PLA21 15 7 18 27 113 
PLA22 5 6 12 22 114 
PLA23 9 8 20 16 106 

 



88 
 

Northwest Atlantic Fisheries Organization  www.nafo.int  

Table A.4.  The Number of Records of Sea Pens for Different Subsets of the Data by Year. Shading of the column 2011 indicates the first year selected 
for response data in the SDMs.  

TAXON 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Total 

TOTAL SETS 187 490 631 501 541 476 533 598 633 509 669 641 609 612 643 277 350 425 478 9803 

Anthoptilum       89 82 109 115 110 99 104 99 82     889 

Anthoptilum grandiflorum 3 23 38 3 14 8 4 2 4 4 5 5 2 2 9 1  9  136 

Anthoptilum murrayi   1               1  2 

ANTHOPTILUM SP                 15 23 26 64 

Anthoptilum sp.            1    44 42 45 41 173 

Anthoptilum spp                   28 28 

TOTAL ANTHOPTILUM 3 23 39 3 14 8 93 84 113 119 115 105 106 101 91 45 57 78 95 1292 
Balticina finmarchica 
(=Halipteris) 1 10 16 2 6 7 1 2 2 1 3 2 2 1 5   2  63 

Halipteridae       1             1 

Halipteris cf. christii                3 6  1 10 

Halipteris christii       1  4 6 5 3 2 1 2     24 

Halipteris finmarchica       27 39 42 55 48 52 57 62 49 22 41 42 54 590 

TOTAL HALIPTERIS 1 10 16 2 6 7 30 41 48 62 56 57 61 64 56 25 47 44 55 688 

Funiculina       6    2         8 

Funiculina quadrangularis  4 19 2 5 2 20 23 49 56 26 20 29 25 32 13 26 37 21 409 
FUNICULINIA 
QUADRANGULARIS                   6 6 

TOTAL FUNICULINA 0 4 19 2 5 2 26 23 49 56 28 20 29 25 32 13 26 37 27 423 

Pennatula       16 25 41 16 32 13 24 26 34     227 

Pennatula aculeata     6 1 2 2 3 9 8 1 2  2   1 2 39 
PENNATULA 
ACULEATA/PHOSPHOREA                 12 1 13 26 

Pennatula grandis       13 19 10 25 28 18 14 15 10  3 7 11 173 

Pennatula phosphorea                   7 7 
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TAXON 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Total 

Pennatula sp.                5 4 3 1 13 

Ptilella grandis (=Pennatula) 3 4 15 2 5 1  1   1 2 1  2   2  39 

TOTAL PENNATULA 3 4 15 2 11 2 31 47 54 50 69 34 41 41 48 5 19 14 34 524 

Distichoptilum       1     2        3 

Distichoptilum gracile   1    1 3 6 5 11 7 14 3 3 1  5 8 68 

Kophobelemnon stelliferum         3 5          8 

Umbellula       13 17 20 15 13 11 10 2 4     105 

Umbellula sp  3 1  1               5 

Umbellula spp                   2 2 

TOTAL OTHERS 0 3 2 0 1 0 15 20 29 25 24 20 24 5 7 1 0 5 10 191 

Pennatulacea       1 6 2 2   1 1  1    14 
Pennatuloidea sp. 
(SUPERFAMILY) formely 
PENNATULACEA SPP. (ORDER) 11 10 15  11 30 4 4 2  18 7 1 11 4 5  5  138 

SEA PENS WITH TAXA NAME 18 54 106 9 48 49 200 225 297 314 310 243 263 248 238 95 149 183 221 3270 

NULL FOR TAXA 169 436 525 492 493 427 333 373 336 195 359 398 346 364 405 182 201 242 257 6533 

SEA PENS FUNCTIONAL GROUP 41 194 260 153 200 180 200 226 298 315 310 243 263 248 238 95 149 183 221 4017 
NULL FOR SEA PEN 
FUNCTIONAL GROUP 146 296 371 348 341 296 333 372 335 194 359 398 346 364 405 182 201 242 257 5786 
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Table A5. R Code Used to Run the Species Distribution Models. 

############################################################################### 
######          NAFO Sea pen distribution models 2024              ############ 
############################################################################### 
 
#Load packages and library files 
library(raster) 
library(maptools) 
library(randomForest) 
library(ranger) 
library(dplyr) 
library(vtable) 
library(pdp) 
library(sf) 
library(data. Table) 
library(ggcorrplot) 
library(patchwork) 
library(caret) 
library(dsmextra)  
 
## Colour palette 
cpl <- c('#d4ebe7','#cbbcbb','#f5f1f1','#172957','#66afad') 
names(cpl) <- c('lt','dbe','lbe','dbl','dt') 
 
OneB_theme <- 
  ggplot2::theme(axis. Title.y = element_text(vjust=4,  size=12,colour="black"), 
                 axis. Text.y  = element_text(vjust=0.5, size=12,colour="black"), 
                 axis. Text.x  = element_text(vjust=0.5, size=12,colour="black"), 
                 axis. Title.x  = element_text(vjust=-4, size=12,colour="black"), 
                 strip.background = element_rect(fill=cpl['lbe']), 
                 strip. Text.x = element_text(size=12, face="bold"), 
                 panel.grid.major = element_line(colour=cpl['lbe']), 
                 panel.grid.minor = element_line(colour=cpl['lbe']), 
                 panel.background = element_rect(fill="white"), 
                 plot.margin = ggplot2::margin(0.5, 0.5, 1, 0.5, "cm")) 
 
 
###################################################################### 
###### STEP 1: IMPORT THE RESPONSE AND ENVIRONMENTAL DATA ############ 
###################################################################### 
 
# Set working directory 
wdir = ("C:/Users/AD06/OneDrive - CEFAS/VME/NAFO2024") 
setwd(wdir) 
 
# Set response variable title for model outputs 
rvar = 'SeaPens' 
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### Environmental data ----- 
 
# Directory containing environmental rasters 
rasterdir = "/ENVDATA/FINAL"   
 
# List of raster files 
predictorfiles = list.files(path = paste(wdir, rasterdir, sep=""), pattern = "\\. Tif$", full.names=T) 
# Now read the raster data (create a raster stack) 
predictors = stack(predictorfiles,RAT=F) 
# Confirm raster stack with all raster layers present 
predictors 
names(predictors) 
names(predictors)[72:73] <- c("NRA_fishing_effort_1km","NRA_fishing_effort_5km") 
# Plot raster files 
plot(predictors) 
 
# coordinate system for rasters 
rprj = st_crs(predictors) # or if is not included in data set manually e.g. CRS('+proj=longlat +datum=WGS84 
+no_defs') 
 
####################### 
 
### Response data --- 
 
# Directory containing response data  
respdir = ("BIODATA/") 
 
# Read and investigate csv 
responsefile = read.csv(paste(respdir,"sea_pens.csv", sep=""), header=TRUE) 
head(responsefile) 
dim(responsefile) 
 
# Response variable name 
respvar = "VME_P_A" 
# Coordinate variable names 
xyvars = c("Start_Long_DD","Start_Lat_DD") 
 
# Select response and coordinate columns 
responsedata = data.frame(pa=responsefile[,respvar],x=responsefile[,xyvars[1]], 
y=responsefile[,xyvars[2]]) 
head(responsedata) 
dim(responsedata) 
 
# Check response column is a factor 
if (!is.factor(responsedata$pa)) { 
  responsedata$pa <- as.factor(responsedata$pa) 
} 



92 
 

Northwest Atlantic Fisheries Organization  www.nafo.int  

# Check factor levels  
levels(responsedata$pa) 
 
# Final data removing NAs 
response = responsedata[complete.cases(responsedata),] 
 
## Convert to spatial -- 
# Define coordinate system 
pprj = CRS('+proj=longlat +datum=WGS84 +no_defs') 
# Convert to sf 
response_sp = st_as_sf(response,coords=c('x','y'),crs=pprj) 
response_sp 
 
# Check response and environmental variables are in the same coordinate system 
if (pprj != rprj) { 
  response_sp <- st_transform(response_sp, rprj) 
} 
 
st_write(response_sp,dsn = paste0('BIODATA/',rvar,'_Data.shp'),append = FALSE) 
 
######################################################################### 
#### STEP 2. EXTRACT THE VALUES OF PREDICTORS AT RESPONSE LOCATIONS ##### 
######################################################################### 
 
### Extract the values from each predictor for each location in the response data, and put results in a new 
dataframe 
p.data = extract(predictors, response_sp) 
sdata = data.frame(response, p.data) #adds all the extracted values to the existing dataframe 
head(sdata) 
prnames = colnames(p.data)  #get names from new columns 
str(sdata) 
 
### Labels to use for environmental variables 
# names of predictor columns 
prnames 
# Read csv file with two columns 'variable' with predictor column names and 'label' with labels to use for 
plotting 
varlabs <- read.csv("Models/varnames.csv") 
# Convert to named vector 
envlab <- varlabs$label 
names(envlab) <- varlabs$variable 
envlab 
 
 
######################################################################### 
#### STEP 3. QUALITY CONTROL ############################################ 
######################################################################### 
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# Ensure that all observations (locations) have data values for all variables 
sdata = sdata[complete.cases(sdata),]  #'complete.cases' command returns only those rows in the 
dataframe that have non-NA  
head(sdata) 
dim(sdata) 
summary(sdata) 
# Values for all columns 
str(sdata) 
nrow(sdata) 
missingdata = data.frame(response, p.data)  #creates a new dataframe called 'missingdata' 
missingdata = missingdata[!complete.cases(missingdata),]  #!interested in rows that are NOT complete 
cases 
dim(missingdata) 
 
#### THIS IS POTENTIAL TO INCLUDE IF WANT #### 
 
## Increase prevalence by sub-sampling absence data -- 
 
# calculate number of presences 
npres <- sdata %>% 
          filter(pa=='1') %>% 
          nrow() 
# Calculate prevalence 
preval <- npres/nrow(sdata) 
preval 
             
# If prevalence threshold of 5% is not met subsample absences to match it  
if (preval <0.05) { 
sdata <- sdata %>% 
          filter(pa=='1') %>%  
          bind_rows(sdata %>% 
                      filter(pa=='0') %>% 
                      sample_n(20*npres)) 
} 
 
################################################# 
 
# Save the data frame and labels 
save(sdata,envlab, 
     file = paste0('Models/',rvar,'_Data.RData'))  
 
######################################################################### 
#### STEP 4. VARIABLE ELIMINATION/SELECTION ############################# 
######################################################################### 
 
# This is for backwards compatibility for code for now 
numvars <- prnames 
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# Define the number of class levels 
numclass <- nlevels(sdata[[1]]) 
 
### Data exploration ---- 
 
## Summary statistics -- 
# All 
sumtable(sdata, simple.kable = TRUE) 
# Environmental variables for presences only 
sumtable(sdata[sdata$pa=="1",], simple.kable = TRUE) 
 
## Covariance of environmental variables -- 
# Correlation 
corr <- cor(sdata[-1]) 
colnames(corr) <- envlab[colnames(corr)] 
rownames(corr) <- envlab[rownames(corr)] 
# Correlation plot 
corplot <- ggcorrplot::ggcorrplot(corr, method='circle',type = 'upper',hc.order = TRUE) 
corplot 
 
 
### Preliminary full model to compare variable importance ---- 
 
## Build model -- 
prelRF <- randomForest(pa~., 
                       data=sdata, 
                       importance=TRUE) 
prelRF 
 
## Extract importance and place in order -- 
full.importance <- data. Table(Predictor=rownames(prelRF$importance),prelRF$importance) 
full.importance <- full.importance[order(full.importance[,MeanDecreaseGini],decreasing=T),] 
full.importance 
 
## Plot partial dependence -- 
 
# Set up obkject to save plot data to 
plotdata <- NULL 
predselnf <- numvars # for backwards compatibility for now 
 
# Define class to plot 
cl = '1' 
 
# Loop through environmental variables to create data for partial plots 
for (j in 1:length(predselnf)) { 
     
    pdata <- partial(prelRF,pred.var = predselnf[j],which.class = cl, 
                     plot = FALSE,train=sdata,grid.resolution=100,prob = TRUE) 
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    predname <- predselnf[j] 
    temp <- data.frame(predvar=predselnf[j],class=cl,x=pdata[[1]],y=pdata[[2]]) 
    plotdata <- rbind(plotdata,temp) 
   
} 
 
# Round values 
plotdata.r <- plotdata %>% 
                mutate(y= round(y, 1)) 
 
# Create list of partial plots 
fullRP.list <- list() 
 
# Loop through each predictor variable to plot partial dependence and add to the list 
for (i in predselnf) { 
   
  fullRP.list[[i]] <- ggplot(plotdata[plotdata$predvar==i,],aes(x=x,y=y,col=class)) + 
    geom_smooth(linewidth=0.8,se=FALSE,span = 0.3,col='#172957') + 
    facet_wrap(~ predvar,scales = "free_x", ncol=3) + 
    ylim(c(min(c(0,plotdata$y)),max(plotdata$y))) + 
    theme(axis. Title.y = element_text(vjust=0.5, size=12,colour="black"), 
          axis. Text.y  = element_text(vjust=0.5, size=12,colour="black"), 
          axis. Text.x  = element_text(vjust=0.5, size=12,colour="black"), 
          axis. Title.x  = element_blank(), 
          plot. Title =  element_text(size=12,colour="white", face = "bold",vjust=2), 
          strip.background = element_rect(fill="grey90"), 
          strip. Text.x = element_text(size=12, face="bold"), 
          panel.grid.major = element_line(colour="grey80"), 
          panel.grid.minor = element_line(colour="grey80"), 
          panel.background = element_rect(fill="white"), 
          legend. Title = element_blank(), 
          legend.key = element_rect(fill = NA), 
          legend. Text = element_text(size=12,colour="black")) 
} 
 
# Write a pdf with all partial plots to check 
pdf(paste0("Models/combined_plots_",rvar,".pdf"), width = 8, height = 11) 
# Loop through the plots and arrange them in a 2x4 grid, 8 plots per page 
for (i in seq(1, length(fullRP.list), by = 8)) { 
  combined_plot <- wrap_plots(fullRP.list[i:min(i+7, length(fullRP.list))], ncol = 2, nrow = 4) 
  print(combined_plot) 
} 
# Close the PDF device 
dev.off() 
 
### Select uncorrelated variables to keep ---- 
 
## Correlation matrix with variables in order of full model importance -- 
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vl <- full.importance[[1]] # Variable list 
vl <- vl[vl %in% numvars] # Numeric variables only - for back compatibility 
cr <- cor(sdata[,vl]) # correlation matrix 
# Remove variables correlated to a higher importance variable 
for(j in 1:length(cr[1,])){ 
  if (j == 1){ 
    pl <- c(names(cr[j,][1]),names( cr[j,][sqrt((cr[j,])^2)<0.65])) 
    pl1 <- pl 
  } else if (names(cr[j,])[j] %in% pl1){ 
    rem <- names(cr[j,-c(1:j)][sqrt((cr[j,-c(1:j)])^2)>0.65]) 
    if (length(rem) != 0L){   
      pl <- pl[!pl %in% rem] 
    } 
  } 
  next 
} 
# Show list of selected variables 
pl 
 
## Calculate Variance Inflation Factors (vif) for selected variables -- 
# Null model vif function 
corvif =  function(dataz) { 
  dataz <- as.data.frame(dataz) 
   
  #vif part 
  form    <- formula(paste("fooy ~ ",paste(strsplit(names(dataz)," "),collapse=" + "))) 
  dataz   <- data.frame(fooy=1 + rnorm(nrow(dataz)) ,dataz) 
  lm_mod  <- lm(form,dataz) 
   
  cat("\n\nVariance inflation factors\n\n") 
  print(data.frame(vif=car::vif(lm_mod))) 
} 
 
# Table kept variables and their vif 
crval <- as.data.frame(pl) 
crval$vif <- corvif(sdata[,pl]) 
crval 
 
## This process can be redone to decrease allowed correlation if vif values  
## remain too high 
 
### Choose the set of variables to use in model ---- 
 
# List selected variables 
predsel <- crval[[1]] # keeping this line for backwards compatibility 
 
# List of all variables including response 
clms <- c(names(sdata)[1],predsel) 
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# Data to use in model 
mdata <- sdata[,clms] 
summary(mdata) 
 
### Save preliminary model and model data ---- 
save(prelRF,full.importance,crval,clms,mdata,plotdata.r, 
file=paste0("Models/RF_Prelim_",rvar,".RData")) 
save(sdata,mdata,clms,predsel,file = paste0("Models/",rvar,'_Data.RData')) 
 
######################################################################### 
#### STEP 5. BUILD MODEL & VALIDATION ################################### 
######################################################################### 
 
# We are building the model inside the 10 loops and predict with it and get the validation at the  
# same time. 
 
### Set up data and constants ---- 
 
# Set name of response variable to be used in results tables 
tax = 'Sea pens' 
# Set the name of the positive class 
pcl = '1' 
# Predictor variable constants 
preds <-   predsel # for backwards compatibility   
facvars <- NULL # gear code when running full model 
predselnf <- predsel # this code doesn't do anything here, is backwards compatibility 
 
# Rename the response column (just to fit with existing code) 
setnames(mdata,1,'resp') 
 
### Set number of cross-validation runs required --- 
nruns <- 10  
 
### Set up training data --- 
 
# Set up empty lists for looping through 
train.sets <- list() 
test.sets <- list() 
 
# Split for 10 random subsets (list of row numbers), selects 90% of rows, keeping balance of classes equal, 
times = 10 runs 
trainIndexP <- createDataPartition(mdata$resp, p = .90, # Repeated sampling 
                                  times = nruns) 
trainIndexK <- createFolds(mdata$resp,k=nruns) # K-fold 
 
# Create 10 x seperate train and tests sets using K-fold 
for (j in 1:nruns){ 
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  train.sets[[j]] <- mdata[unname(unlist(trainIndexK[-j])),] 
  test.sets[[j]] <- mdata[trainIndexK[[j]],] 
   
  next} 
 
# Save the datasets 
save(train.sets,test.sets,file=paste0("Models/Train_Test_",rvar,".RData")) 
 
### Drop unnecessary layers from predictors --- 
dr <- names(predictors) 
dr <- dr[!dr %in% predsel] 
predictors <- dropLayer(predictors, dr) 
predictors 
 
### Set up lists and tables for outputs --- 
 
ffs <- list() # Create empty list for forests 
imps <- list() # create empty list for importances 
res <- list() # create empty list for results 
tshs = NULL # create empty object for a list of optimal thresholds 
cvpred <- NULL # create empty object for a stack of model class predictions 
cvpred.cps <- list() # create empty list for model probability predictions 
plotdata <- NULL # create empty object for partial plot data 
 
# Create empty table for collecting all model performance statistics 
class.res.all <- data.frame(Name=character(0), 
                            Run=character(0), 
                            N=character(0), 
                            Acc=numeric(0), 
                            NIR=numeric(0), 
                            P=numeric(0), 
                            Kappa=numeric(0), 
                            Sensitivity=numeric(0), 
                            Specificity=numeric(0), 
                            BalancedAcc=numeric(0), 
                            TSS=numeric(0), 
                            stringsAsFactors =F) 
 
# Below code is a loop that runs x 10 
# Before running the whole loop, test the code by running just 1 model (run j=1) 
 
for (j in 1:10){ 
   
  train <- train.sets[[j]] 
  test <- test.sets[[j]] 
   
  ffs[[j]] <- randomForest(resp ~.,data=train, 
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                           ntree=500,  
                           strata=resp, 
                           replace=FALSE, 
                           importance=T,  
                           keep.forest= T) 
   
  results <- as.data.frame(rownames(test)) #check results 
  results$actual <- test[[1]] #adds column to results - P/A as factor 
  results$PA <- as.numeric(as.character(test[[1]])) # changes factor to numeric 
   
  # Predict class with model j 
  results$predicted <- as.data.frame(predict(ffs[j],test))[,1] # outputs factor 
   
  # Predicted probability is of PRESENCE 
  results$predprob <- as.data.frame(predict(ffs[j],test,type='prob'))[,2] # Check second column is 
presence! 
  names(results)[1] <- "id" 
   
  # Choose own optimal probability threshold: ID,observed, predicted. Various threshold methods,  
  # but 'Sens=Spec' returns equal amounts true and false positive classifications 
   
  require(PresenceAbsence) 
   
  opttsh <- results %>% 
    dplyr::select(id,PA,predprob) %>% 
    optimal. Thresholds(opt.methods = 'Sens=Spec') %>% 
    pull(predprob) 
  tshs <- c(tshs, opttsh) 
   
  # Presence by threshold, adds column for optimal thresholded class 
  results <- results %>% 
    mutate(optimal=as.factor(case_when(predprob>=opttsh ~ '1', 
                                       TRUE~'0'))) 
   
  # Calculate confusion matrix for predictions by model i 
  results.matrix <- confusionMatrix(results$optimal, results$actual,positive = '1',) 
  results.matrix 
 
   
  # Get overall accuracy measures for model validation run i 
  class.res.all[j,2] <- j 
  class.res.all[j,3] <- nrow(test) 
  class.res.all[j,4] <- results.matrix[[3]][[1]] 
  class.res.all[j,5] <- results.matrix[[3]][[5]] 
  class.res.all[j,6] <- results.matrix[[3]][[6]] 
  class.res.all[j,7] <- results.matrix[[3]][[2]] 
  class.res.all[j,8] <- results.matrix[[4]][[1]] 
  class.res.all[j,9] <- results.matrix[[4]][[2]] 
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  class.res.all[j,10] <- results.matrix[[4]][[11]] 
  class.res.all[j,11] <- results.matrix[[4]][[1]] + results.matrix[[4]][[2]] - 1  
   
  class.res.all$Name <- tax 
  class.res.all 
   
  imps[[j]] <- list(round(randomForest::importance(ffs[[j]]), 2)) 
   
  require(pdp) 
   
  for (p in 1:length(predselnf)) { 
       
      pdata <- partial(ffs[[j]],pred.var = predselnf[p],which.class = pcl, 
                       plot = FALSE,train=mdata,grid.resolution=100,prob = TRUE) 
      predname <- predselnf[p] 
      temp <- data.frame(Name=tax,run=j,predvar=predselnf[p],class=pcl,x=pdata[[1]],y=pdata[[2]]) 
      plotdata <- rbind(plotdata,temp) 
 
     
  } 
   
  ## Predict rasters 
  rnn <-  paste0('Run',j) # Set layer name 
  # Check if there is already a raster stack - if not create one 
  if (is.null(cvpred)){ 
    # Probabilities for each class 
    cvpred.cps[[rnn]] <- predict(predictors,ffs[[j]],type='prob',index=1:numclass)  
    # Presence/Absence raster from applying to the threshold to presence probability 
    cvpred  <- stack(cut(cvpred.cps[[rnn]]$layer.2,breaks=c(-1,tshs[j],1))) 
    cvpred <- cvpred - 1 
    names(cvpred) <- rnn 
  } else { 
    # Probabilities for each class 
    cvpred.cps[[rnn]] <- predict(predictors,ffs[[j]],type='prob',index=1:numclass)  
    # Presence/Absence raster from applying to the threshold to presence probability 
    tmpl <- cut(cvpred.cps[[rnn]]$layer.2,breaks=c(-1,tshs[j],1))-1 
    names(tmpl) <- rnn 
    cvpred <- addLayer(cvpred,tmpl) 
  } 
   
  next 
} 
 
# Save models and validation results, plot data and importances 
save(ffs,plotdata,class.res.all,imps,file = paste0('Models/RF_Results_',rvar,'.RData')) 
 
#### Look at the Validation statistics ---- 
require(matrixStats) 
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# Calculate averages and standard deviations for validation statistics 
callavevalsB <- colMeans(class.res.all[,4:11]) 
callsdvalsB <- colSds(as.matrix(class.res.all[,4:11])) 
 
# Combine values in a table 
BCallvalsT <- data.frame(Accmean=round(callavevalsB[1],2), 
                         Accsd=round(callsdvalsB[1],2), 
                         Pmean=round(callavevalsB[3],2), 
                         Psd=round(callsdvalsB[3],2), 
                         Kmean=round(callavevalsB[4],2), 
                         Ksd=round(callsdvalsB[4],2), 
                         Sensmean=round(callavevalsB[5],2), 
                         Senssd=round(callsdvalsB[5],2), 
                         Specmean=round(callavevalsB[6],2), 
                         Specsd=round(callsdvalsB[6],2), 
                         BAmean=round(callavevalsB[7],2), 
                         BAsd=round(callsdvalsB[7],2), 
                         TSSmean=round(callavevalsB[8],2), 
                         TSSsd=round(callsdvalsB[8],2)) 
 
# Rename columns 
names(BCallvalsT) <- c("Accmean","Accsd","Pmean","Psd","Kmean","Ksd", 
                       "Sensmean","Senssd","Specmean","Specsd", 
                       "BAmean","BAsd","TSSmean","TSSsd") 
 
 
# Print table 
BCallvalsT 
 
asg.perf <- data. Table(N = nrow(train), 
                       'Sensitivity'= paste(BCallvalsT$Sensmean, '/u00B1',BCallvalsT$Senssd), 
                       'Specificity' =  paste(BCallvalsT$Specmean, '/u00B1',BCallvalsT$Specsd), 
                       'Kappa' = paste(BCallvalsT$Kmean, '/u00B1',BCallvalsT$Ksd) , 
                       'Balanced Accuracy'= paste(BCallvalsT$BAmean, '/u00B1',BCallvalsT$BAsd), 
                       'TSS'=paste(BCallvalsT$TSSmean, '/u00B1',BCallvalsT$TSSsd)) 
 
asg.perf[, data. Table(t(.SD), keep.rownames=TRUE),] %>% 
  kbl('html',digits = 2,escape = FALSE, col.names = c('Statistic','Mean /u00B1 SD'), 
      caption='Performance statistics') %>% 
  kable_classic(full_width = F, position = "left",fixed_thead = T) %>% 
  row_spec(0, bold = T)  %>% 
  column_spec(1:2, width = "3cm")  
 
#### Plot variable importance ---- 
 
# Importance plot 
imppl <- data. Table(Var=rownames(imps[[1]][[1]])) 
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for (i in 1:10){ 
   
  imppl <- cbind(imppl,as.data. Table(imps[[i]][[1]])[,MeanDecreaseGini]) 
   
} 
 
setnames(imppl,c('Var','Imp1','Imp2','Imp3','Imp4','Imp5','Imp6','Imp7','Imp8','Imp9','Imp10')) 
 
imppl[, 
      c("Mean",'Sd','Se') :=  
        .(rowMeans(.SD, na.rm = TRUE),  
          apply(.SD, 1, sd, na.rm = TRUE), 
          apply(.SD, 1, plotrix::std.error, na.rm = TRUE)),  
      .SDcols = 2:11] 
 
imppl[,Var:=factor(Var,levels=Var[order(Mean)])] 
 
impplot <-  ggplot(imppl,(aes(x=Var,y=Mean))) + 
  geom_bar(stat = 'identity',fill='#66afad', col='#172957',) + 
  scale_x_discrete(labels=envlab[levels(imppl$Var)]) + 
  geom_linerange(inherit.aes=FALSE, 
                 aes(x=Var, ymin=Mean-Se, ymax=Mean+Se),  
                 colour='#172957', alpha=0.9, linewidth=1.3) + 
  ylab(label = 'Mean decrease in Gini coefficient') + 
  coord_flip() + 
  theme(axis. Title.y = element_blank(), 
        axis. Text.y  = element_text(vjust=0.5,hjust = 1, size=12,colour="black"), 
        axis. Text.x  = element_text(vjust=0.5, size=12,colour="black"), 
        axis. Title.x  = element_text(vjust=-4, size=12,colour="black"), 
        plot. Title =  element_text(size=12,colour="white", face = "bold",vjust=2), 
        strip.background = element_rect(fill="grey90"), 
        strip. Text.x = element_text(size=12, face="bold"), 
        panel.grid.major = element_line(colour="grey80"), 
        panel.grid.minor = element_line(colour="grey80"), 
        panel.background = element_rect(fill="white"), 
        legend. Title = element_blank(), 
        legend.key = element_rect(fill = NA), 
        legend. Text = element_text(size=12,colour="black"), 
        plot.margin = ggplot2::margin(0.5, 0.5, 1, 0.5, "cm"),) 
impplot 
 
ggsave(impplot, 
       filename=paste0('Models/',rvar,'_VariableImportance.png'), 
       device = 'png', width = 15, height=16, units='cm', dpi=300, scale=1) 
 
#### Partial response plots ---- 
 
pplotdata <- plotdata # this is here if need to make any changes to plotdata 
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# Create list for plots 
cvRP.list <- list() 
 
# Loop through predictors to create plots 
for (i in predsel) { 
   
  mxy <- max(pplotdata[pplotdata$class==pcl,'y']) 
   
  cvRP.list[[i]] <- ggplot(pplotdata[pplotdata$predvar==i & 
pplotdata$class==pcl,],aes(x=x,y=y,group=run)) + 
    geom_smooth(method='loess',linewidth=0.01,se=FALSE,span = 0.2,col='#66afad') + 
    geom_smooth(inherit.aes=FALSE,aes(x=x,y=y), 
                method='loess',linewidth=0.9,se=FALSE,span = 0.2,col='#172957') + 
    facet_wrap(~ predvar,scales = "free_x",ncol =3,labeller = labeller(predvar = envlab)) + 
    ylim(c(min(c(0,pplotdata$y)),mxy)) + 
    OneB_theme + 
    theme(axis. Title.y = element_blank(), 
          axis. Text.y  = element_text(vjust=0.5, size=12,colour="black"), 
          axis. Text.x  = element_text(vjust=0.5, size=12,colour="black"), 
          axis. Title.x  = element_blank(), 
          legend. Title = element_blank(), 
          legend.position = 'none', 
          legend.key = element_rect(fill = NA), 
          legend. Text = element_text(size=12,colour="black"), 
          plot.margin = unit(c(0.5, 0.5, 0,0), "cm")) 
} 
 
length(cvRP.list) 
 
# Layout of all plots 
cvRP <-  wrap_plots(cvRP.list) + plot_layout(ncol=4) 
cvRP 
 
# Save the plot data 
save(results,asg.perf,imppl, impplot,pplotdata,cvRP,cvRP.list, 
file=paste0("Models/RF_",rvar,"_Results_Summary.RData")) 
 
#### Raster outputs ---- 
 
### Create a raster stack for spatial confidence results 
ROutput <- stack() 
 
### Calculate most frequent class and its frequency 
# Most frequent class - change to 0 and 1 for absence and presence 
MaxClass <- modal(cvpred,freq=FALSE) 
ROutput <- addLayer(ROutput,MaxClass) 
# Frequency of most frequent class (fraction of runs) 
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MaxClassF <- modal(cvpred,freq=TRUE)/nruns 
ROutput <- addLayer(ROutput,MaxClassF) 
 
### Calculate average probabilities for classes 
classsums <- Reduce("+", cvpred.cps) 
AvePclass <- classsums / nruns 
 
### Find average probability of maximum frequency class 
MaxClassAveProb <- stackSelect(AvePclass, MaxClass+1) 
ROutput <- addLayer(ROutput,MaxClassAveProb) 
 
### Calculate new layer for frequency x probability 
CombConf <- MaxClassF * MaxClassAveProb 
ROutput <- addLayer(ROutput,CombConf) 
 
### number of models predicting presence 
cvPA <-  stack(cvpred) 
cvSum <-  raster::calc(cvPA,sum) 
ROutput <- addLayer(ROutput,cvSum)        
 
### Rename layers 
names(ROutput) <- c("MaxClass","MaxClassF","MaxClassAveProb","CombConf","cvSum") 
 
### Plot layers  
plot(ROutput) 
 
### Export Raster 
raster::writeRaster(ROutput$MaxClass, paste0("Models/",rvar,"_raster_output_maxclass. Tif"), 
format="GTiff",overwrite=T) 
raster::writeRaster(ROutput$MaxClassF, paste0("Models/",rvar,"_raster_output_maxclassf. Tif"), 
format="GTiff",overwrite=T) 
raster::writeRaster(ROutput$MaxClassAveProb, 
paste0("Models/",rvar,"_raster_output_maxclassaveprob. Tif"), format="GTiff",overwrite=T) 
raster::writeRaster(ROutput$CombConf, paste0("Models/",rvar,"_raster_output_combconf. Tif"), 
format="GTiff",overwrite=T) 
raster::writeRaster(ROutput$cvSum,  paste0("Models/",rvar,"VME_raster_output_cvsum. Tif"), 
format="GTiff",overwrite=T) 
 
### Save raster stack to R workspace 
save(AvePclass,ROutput,file= paste0("Models/",rvar,"_raster_output_all.RData")) 
 
### Extrapolation areas 
library(dsmextra)  
 
covariates.names <- predsel 
 
allpred <-rasterToPoints(predictors) 
p.data.all = data.frame(allpred) 
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aftt_crs <- sp::CRS("+proj=utm +zone=23 +datum=NAD83 +units=m +no_defs") 
 
extrapolation.area <- compute_extrapolation(samples = mdata, 
                                            covariate.names = predsel, 
                                            prediction.grid = p.data.all, 
                                            coordinate.system = aftt_crs) 
 
plot(extrapolation.area$rasters$ExDet$analogue) # analogue areas 
plot(extrapolation.area$rasters$ExDet$univariate) # univariate extrapolation 
plot(extrapolation.area$rasters$ExDet$combinatorial) # combinatorial extrapolation 
plot(extrapolation.area$rasters$mic$analogue) # most important variables causing analogue conditions 
plot(extrapolation.area$rasters$mic$univariate) # most important variables causing univariate 
extrapolation 
plot(extrapolation.area$rasters$mic$combinatorial) # most important variables causing combinatorial 
extrapolation 
### Export Raster 
writeRaster(extrapolation.area$rasters$ExDet$analogue, paste0("Models/",rvar,"_ext.analogue. Tif"), 
format="GTiff",overwrite=T) 
writeRaster(extrapolation.area$rasters$ExDet$univariate, paste0("Models/",rvar,"_ext.univariate. Tif"), 
format="GTiff",overwrite=T)  
writeRaster(extrapolation.area$rasters$ExDet$combinatorial, 
paste0("Models/",rvar,"_ext.combinatorial. Tif"), format="GTiff",overwrite=T)  
writeRaster(extrapolation.area$rasters$mic$analogue, paste0("Models/",rvar,"_mic.analogue. Tif"), 
format="GTiff",overwrite=T)  
writeRaster(extrapolation.area$rasters$mic$univariate, paste0("Models/",rvar,"_mic.univariate. Tif"), 
format="GTiff",overwrite=T)  
writeRaster(extrapolation.area$rasters$mic$combinatorial, paste0("Models/",rvar,"_mic.combinatorial. 
Tif"), format="GTiff",overwrite=T) 


	SCIENTIFIC COUNCIL MEETING – NOVEMBER 2024
	Abstract
	Introduction
	Methods
	Environmental data
	Water column variables
	Terrain variables  

	Fishing effort variables 
	Bottom Trawling and Bottom Longline Effort 0.05 x 0.05 Degree Native Resolution
	Bottom Trawling Effort 1 km2 Native Resolution 

	Biological data
	 Large-Sized Sponges 
	Sea Pens 
	Black Corals


	Variable reduction
	Model fitting
	Results 
	Assessment and Prediction of Large-Sized Sponges
	Large-Sized Sponges Functional Group
	Sponge Grounds
	Tetillidae
	Polymastiidae
	Astrophorina
	Assessment and Prediction of Sea Pens
	Sea Pen Functional Group
	Anthoptilum spp. 
	Balticina spp.
	Funiculina spp. 
	Pennatula spp. 
	Assessment and Prediction of Black Corals

	Discussion
	Acknowledgements
	References
	Appendix 

